
Model-Free Authoring by Demonstration
of Assembly Instructions in Augmented Reality

Ana Stanescu, Dieter Schmalstieg, Peter Mohr and Denis Kalkofen

Fig. 1: (a) Our approach supports model-free authoring of step-by-step assembly instructions with no scene preparation from
recording user demonstrations. (b) From the recordings, we build a 3D reconstruction, a video segmentation, and a partial assembly
graph of the demonstrated procedures. (c) A user can follow the instructions, while being guided by AR situated visualizations that
react to each step interactively.

Abstract— Among the most compelling applications of Augmented Reality are spatially registered tutorials. The effort of creating such
instructions remains one of the obstacles precluding a wider use. We propose a system that is capable of extracting 3D instructions
in a completely model-free manner from demonstrations, based on volumetric changes.The instructions are visualised later in an
interactive Augmented Reality guidance application, on a mobile head-mounted display. We enable a technology that can be used by
anyone in an ad-hoc tabletop setup for assemblies with rigid components.

1 INTRODUCTION

Many maintenance and construction tasks require following instructions
on how to assemble and disassemble objects. It has been shown that
delivering such instructions via Augmented Reality (AR) can reduce
the cognitive load and, thus, the effort to complete the task [35]. The
AR application enables delivering the equivalent of a traditional manual,
but in a situated manner. In the AR application, the instructions are not
statically printed on a piece of paper, but embedded in the user’s 3D
perception of the workspace.

While situated 3D instructions are compelling tools for end-users,
creating them can be challenging. Authoring instructions commonly
requires generating a database of 3D CAD objects first. The need for
CAD modeling is a serious impediment to scalability. For example, a
repair scenario would potentially require models of thousands of spare
parts. Even if only a fraction of these parts is relevant, one usually does
not know this subset in advance. Consequently, models for all possible
occurrences are required. Arguably, model preparation is one of the
important missing pieces standing in the way of a broader adoption

• Ana Stanescu and Peter Mohr are with Graz University of Technology.
E-mail: {ana.stanescu|mohr}@icg.tugraz.at

• Denis Kalkofen is with Flinders University and Graz University of
Technology. E-mail: kalkofen@icg.tugraz.at

• Dieter Schmalstieg is with VRVis GmbH and Graz University of Technology.
E-mail: schmalstieg@tugraz.at

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

of AR assembly tutorials. Thus, a model-free approach without object
priors is much preferred.

Furthermore, the sensors deployed in the AR system can be used to
monitor changes made by the user and assess the user’s performance.
Hence, interactive tutorials present the opportunity to automatically
provide feedback (confirmations or warnings) accordingly. However,
to date, AR instructions have been limited to showing only a few
select objects, mostly consisting of easily detectable pieces [11, 38,
43]. These applications serve as a proof of concept, but lack a clear
demonstration of scalability to complex assemblies with many parts.
Our work makes an attempt towards better scalability by relying on real-
time volumetric reconstruction using an RGB-D sensor for extracting
part shapes directly during demonstration without prior modeling.

Thus, we propose the authoring of assembly sequences by mere
demonstration. We focus on the problem of extracting information
about the parts of a workpiece, i.e., an object that is being manipulated
(e.g., assembled, disassembled, or reconfigured) by a human operator.
Our system extracts information about an assembly tutorial directly
from the user’s actions, with no prerequisite information about the ob-
jects, and without scene preparation. We identify, from one or multiple
sequential user demonstrations, recorded as RGB-D camera streams,
(1) the part geometry of an object, (2) the assembly graph that encodes
possible assembly sequences, and (3) video sequences that show the
performed actions The resulting 3D tutorial is subsequently visualized
in 3D AR, using a Microsoft Hololens 2 in our current implementation.
Please see Figure 1 shows an illustration of the proposed workflow.

Thus, we present the first approach to determine assembly instruc-
tions without prerequisite information about the objects’ class and
geometric structure. This is essential not only for authoring the physi-

cal procedures, but also for detecting at runtime if users are correctly
following the instructions or not. Hence, our main contribution is the
first method for modeling multi-part assemblies purely from demon-
strations, with no need for manual model editing or manual param-
eter tuning. We show our work’s performance and versatility in an
authoring-by-demonstration tool and in an AR guidance tool, which
provides feedback on the user’s performance in real-time, in addition to
proactive instruction visualizations, based on the freshly extracted as-
sembly information. This enables a large variety of objects and avoids
clicking the “Go to the next step” button. In summary, our work makes
the following technical contributions:

• We introduce the first approach for authoring multi-part assembly
tutorials from user demonstrations without prior information.

• We introduce a new approach for topology change detection from
volumetric scans, which is capable of providing real-time update
rates in an assembly scenario.

• We evaluate the approach for volumetric change detection with an
ablation study.

2 RELATED WORK

Our work is at the intersection of two areas: first, authoring and delivery
of situated instructions in AR, and, second, methods for the reconstruc-
tion of dynamic scenes. In this section, we discuss previous work in
these two areas and comment on similarities and dissimilarities to the
approach presented in our paper.

2.1 Situated instructions
Previous work on delivering AR instructions has always assumed that
object priors are available for the parts and the required manipulations.
Oftentimes, the latter is assumed to be a linear sequence, although more
sophisticated methods exist to model the entire assembly graph [17].
For a survey, see Lambert et al. [18]. We concentrate our discussion on
the methods used to detect and track the parts in assembly applications.
The detection can be roughly categorized into marker-based methods,
methods that use natural visual features of the parts, and methods that
operate on a volumetric representation (like we do).

Research that primarily focuses on investigating user interface as-
pects of AR instructions generally relies on instrumented scenes. Early
work [29,46] used fiducials applied to parts, which can be problematic if
parts are small or occluded. Even recent work, such as AuthorAR [41],
which concentrates on versatile authoring, places fiducials on the parts
and thus, introduces a complex preparation phase.

Other work relies on comparing natural visual features of the parts
with prior models for detection and tracking. For example, Wu et
al. [43] demonstrate a template matching approach (LINEMOD [13])
on RGB-D input, running at 9-17 Hz and operating on rather large,
brightly colored parts. Similarly, Wang et al. [38] present an AR assem-
bly system that combines a template matching approach on RGB video,
enhanced with a probability model based on the assembly graph to
disambiguate the parts. Yamaguchi et al. [45] use a method for contour
segmentation and tracking (PWP3D [28]) together with a given assem-
bly graph for extracting disassembly sequences from a video. They
detect the presence of known parts in the video frames, followed by a
region of interest (ROI) computation considering the contours of parts,
hands, and tools. The recent work of Huang et al. [14] investigates the
delivery of AR instructions that are adaptive to the user’s performance.
They rely on pre-registered regions of interest in a partially static envi-
ronment combined with a neural network for detection of objects and
object states that have been learned as a prior. Another recent approach
by Chidambaram et al. [5] makes use of virtual tools manipulated
with 3D controllers to author instructions, employing per-frame object
detection to identify the present objects in the scene.

While feature-based model tracking is constrained by the necessity of
having rich image features present within the object’s image boundaries,
template-based methods fail beyond a certain level of occlusion [13].
Besides, these methods assume that the object’s detailed appearance
and shape are known in advance.

In contrast to shape- and feature-based models, volumetric models
are more suitable for representing the aggregation or combination of
parts, since they are less constrained by a pre-determined shape or
texture. A volume can be used as a generic representation of any
intermediary model existing during an assembly procedure. Gupta
et al. [11] realized that a volumetric representation can be used 1:1
for tracking the assembly of Duplo models, which consist of voxel-
shaped blocks. A similar system was recently presented by Buttner
et al. [4]. Both methods are only applicable to Duplo pieces. Miller
et al. [21] developed another voxel-grid based approach for authoring
block-based assemblies. Later approaches have been built up on top
of LatticeFirst [1] to prototype an interactive error-detection capable
system, also using toy building blocks.

Further AR instructions approaches that assume that 3D models are
already available include the work by Makris et al. [20] and, more
recently, Zogopoulos et al. [50]. Zhou et al. [47] and Güven et al. [16]
propose state detection methods for AR technical support that assume
that a user captures each state in advance to train machine learning
models. Unlike these works, our method focuses on authoring AR
instructions without 3D models or labeled data. The system proposed
by Bhattscharya et al. [3] uses point clouds from a depth sensor to detect
known parts from a database. Object segmentation is spatially and
temporarily constrained by the absence of hands (users have to retract
hands to trigger recognition). While these approaches use 3D models,
Petersen et al. [27] aim to author instructions as video overlays from
first-person-view human activity; they design a system for identifying
significant events around the user’s hand interactions, and later show
the video snippets when the same user activity is detected. This is
related to our work in its model-free authoring character. However, no
3D reconstruction or partial assembly graph is extracted.

Overall, we are not aware of any work that creates a volumetric
model as a generic representation of an assembly process on the fly
(i.e., model-free), as we do.

2.2 Reconstruction of dynamic scenes
In surveillance and robotics applications, large-scale reconstruction and
change detection over longer periods is a recurring requirement. For
example, construction engineers would like to visualize progress over
time [51] or compare as-planned and as-built information [10, 25, 34].
These applications require change detection on 3D scenes, which can
be determined from images [37] and volumetric models [7, 8, 12, 19].
Extracting the objects that have changed and re-detecting them (or other
objects of the same types) are additional requirements that emerge in
the context of the change detection problem [9].

For large scenes, obtaining a new scan and searching for changes is
generally a time-consuming task that must be carried out offline. For
example, the approach of Finman et al. [8] learns objects from changes
in the surroundings over time. The scenario is that of a robot during
multiple traversals of a large scene, and new objects are discovered
by computing differences of point clouds. For each object, features
are learned, so that the objects can be subsequently recognized in new
scans. The approach is not aimed at real-time interaction, but at long-
term object discovery. In contrast, Wasenmüller et al. [39] show that
discrepancy checking can also work at millimeter-level precision and
run in real-time for small and medium-sized objects. However, the
requirement remains that both the scan of the current environment and
the reference model must be fully available before comparison starts.

In contrast, SLAM using depth sensors makes it feasible to obtain
dense reconstructions incrementally. The most popular representations
used in dense SLAM are either volumes of a truncated signed distance
function (TSDF) [15, 23] or collections of surfels [40].

While the original approaches for dense SLAM assumed a static
scene, recent work attacks the problem of mapping for dynamic scenes.
This area has similar goals as in surveillance or robotics, but is scaled
down to room-size environments and operating incrementally. The
ability to run in real-time and to reconstruct the scene while it is chang-
ing unlocks exciting new possibilities, but also incurs a steep increase
in algorithmic complexity, making it necessary to enforce certain re-
strictions about the nature of the changes. These assumptions are not

Fig. 2: (a) Our system uses input from an RGB-D camera for body and hand tracking as well as for SLAM-based camera tracking. (b) We analyze
the volume that has been generated for tracking the camera to identify changes in the object’s 3D reconstruction. (c) This analysis informs the
extraction of 3D parts and the derivation of the sequence of instruction steps in the authoring mode. (d) We automatically generate visualizations
that provide instructions in the guidance mode.

always explicitly stated in the literature, so we make an attempt of
summarizing them here.

The first and most fundamental capability of SLAM for dynamic
scenes is to reconstruct a static background scene while ignoring any
unwanted foreground objects. Typical approaches detect foreground
objects either using semantic segmentation [2] or geometric segmen-
tation [24, 33], i.e., motion residuals. A more demanding capability
is to recover the shape and relative motion of one or multiple moving
objects in addition to the background scene. Moving object detection
can either be done with purely geometric segmentation [31] or with the
additional help of (expensive) semantic segmentation [32, 44]. Very
recent work explores the use of an advanced space carving approach to
enhance geometric segmentation [42].

However, all of these methods operate on a different – larger – scale
compared to our scenario of a user assembling and manipulating a multi-
part object. Typical foreground objects are sizable pieces of furniture,
such as chairs. In contrast, assembly scenarios demand supporting
object parts that are at least one order of magnitude smaller, and that
are representing potentially interlocking parts of an assembly. These
parts should be detected instantly once they are added, removed, or
replaced. Previous work considering smaller foreground objects [30]
relies on learned categories such as “cup” or “teddybear” and expects
objects to be clearly seen and placed in an uncluttered environment.

An assembly scenario like ours does not fit well with these assump-
tions. The user is almost permanently interacting with the assembly,
performing fast motion with the parts held in the hand, and causing
heavy occlusions of the assembly. Approaches such as Co-Fusion [31]
or RigidFusion [42] can segment and track novel dynamic objects, but
only if they are slow-moving and not occluded. Consequently, we must
design our approach to be more tolerant of these adverse conditions
than previous work. We achieve such tolerance by detecting topologi-
cal changes with respect to previous scene states, i.e., by considering
the structure of the object at the points in time before and after the
manipulation happened.

3 OVERVIEW

In this section, we give an overview of our system, highlighting the
physical setup, the overall authoring procedure, and the underlying
software components. The latter are further described in the following
sections. Figure 2 provides an overview of the proposed workflow.

3.1 Physical setup
Our application relies on observing manipulations applied to a work-
piece placed on top of a workbench from a single head-worn RGB-D
camera, within a workspace of roughly 1 m3 that is placed in front of

the initial camera pose, on top of the workbench. We target a fully mo-
bile setup, where the camera is incorporated into an AR head-mounted
display (HMD). In our test setup, we relied on the Hololens 2, but used
a high-resolution depth sensor (Kinect Azure) rather than the less capa-
ble built-in depth sensor of the HoloLens (Figure 2(a)). We fabricated
a custom mount for the camera on top of the HoloLens. The Kinect is
attached to a desktop PC and sends data via Wifi to the HoloLens.

While this configuration is fully operational, in its current iteration,
it suffers from ergonomic drawbacks. For example, the Kinect must
be tethered to a desktop computer and adds a weight of 440g to the
headset. Therefore, we also support a configuration with minimal
operator fatigue by mounting the Kinect on a tripod rather than on the
HoloLens. Since the tripod is mobile, all results were created with the
assumption of a moving camera, as would be required for fully mobile
deployment. We did not consider a (stationary) multi-camera setup,
which would likely improve reconstruction quality, but at the price of a
much heavier infrastructure with correspondingly poorer scalability.

3.2 Authoring procedure

Our goal is to support authoring by demonstration. The user performs
the required assembly steps in front of an RGB-D camera. Our ap-
proach is model-free, i.e., no prior model is given. Instead, 3D shapes
of the object parts are collected during a demonstration along with the
placement of the parts on the workpiece, and the order in which the
parts are assembled is recorded as well. Thus, a single demonstration
yields a linear list which constitutes a partial assembly graph. If mul-
tiple demonstrations are observed, and these performances deviate in
their assembly order, a directed acyclic assembly graph is recovered
automatically. Any path through this graph represents a possible assem-
bly sequence. Finally, to better convey subtle activities not captured by
the assembly graph (e.g., fastening of fixtures), we record detail views
as indexed video sequences, which are cut from the RGB recording and
associated with corresponding edges in the assembly graph. Figure 2(b)
shows an illustration of the authoring.

3.3 Software components

The core function of our system is the analysis of changes to the vol-
umetric reconstruction observed over time. We are interested when a
change happened and what (i.e., which volumetric region) was changed.
As we assume the manipulation process can be represented as an assem-
bly graph, the event detection (Section 4) – the when question – is a
prerequisite to the content extraction (Section 5) – the what question.
More specifically, the difference between the reconstructions before
and after the change event will reveal the 3D shape of the changed

part. To provide detail about assembly actions, we further extract video
sequences from the recordings, based on detected events.

We use this method both during authoring and during guidance. The
demonstration mode lets us capture an assembly procedure and extract
a description. The guidance mode (Section 6) leads a user through
the procedure while displaying instructions and giving feedback based
on the observed events (Figure 2(c)). In this mode, the AR system
overlays instructions in the user’s view. The instructions are interactive
in the sense that they automatically respond to the user’s activities. In
particular, a visual cue is displayed at the position where the next part
to be added to the assembly belongs to, and a video segment showing
the required activity is shown as an inset. After detecting that the user
has added a part, feedback (right or wrong step performed) is given.

4 EVENT DETECTION

Our method relies on identifying events over time. We refer to events as
the frames when a user is adding or removing parts of an object. This
is the core of our approach for both the authoring and for live guidance.

We detect events by analyzing a real-time scene reconstruction,
based on a modified implementation of InfiniTAM [15]. Thus, the
scene is stored as TSDF, represented in a volume of voxels v containing
values d(v) in the range [−1,1].

4.1 Initialization
For observing the assembly sequence, we are only interested in the
workpiece itself and not in the immutable background model (such as
the bench on which the workpiece is placed). Therefore, we start by
reconstructing a background model of the empty workspace. After-
wards, incoming depth frames are aligned to the background model via
an iterative closest point (ICP) method. In doing so, we assume that a
large portion of the pixels always shows the background, and relying
on these pixels makes the camera tracking most stable. After the initial-
ization converges, we disable further integration into the background
by ignoring new depth values that are within a threshold (empirically
set to 8.8 mm) from the background surface.

For change detection, we define a ROI in the workspace, in the shape
of a cube that is axis-aligned to the voxel grid, with roughly the size of
1 m3. After the background model is established, the user is expected
to place the workpiece in the workspace. In the case of an assembly
sequence, the user is prompted to place the first part to which additional
parts are added in the assembly process. In the case of a disassembly
sequence, the completed workpiece is placed in the ROI.

If a previous recording, and, thus, a 3D tutorial exists, the workpiece
must be registered to the previous model reconstruction. This is the case
either in guidance mode, when the AR instructions should be aligned
with the workpiece to indicate the right placement of the next part, or
when multiple demonstrations are being collected during authoring. We
use the Open3D library [49] for registration in two steps, a fast global
registration [48], followed by a colored ICP refinement [26].

Our implementation uses two tracking systems: (1) InfiniTAM (data
from the Kinect Azure) and the (2) Hololens SLAM, each with its own
world origin. The two coordinate systems are registered in the begin-
ning of the pipeline using one of two methods. First, we can estimate
the pose of a fiducial marker in either coordinate system, P1 and P2. We
then compute the transformation from one world coordinate system to
the other as T1→2 = P1 ·P−1

2 . An alternative method uses the workpiece
itself to register the coordinate systems. We automatically register the
workpiece to the dense reconstruction of InfiniTAM as described above,
then we manually register a virtual copy to the Hololens coordinate
system with a pinching gesture.

Provided the alignment works as expected, instructions are registered
precisely in the user’s view, as can be seen for example in Figure 8,
which shows portions of AR content recorded with the live capture
video of the Hololens. The video-see-through stream delivered by the
Hololens is a hardware feature which is nearly identical to what can be
seen in optical see-through mode. The Open3D registration can fail if
workpieces are poorly reconstructed. However, in our experiments, this
was not an issue, and we find analyzing the accuracy of Open3D of the
scope in this paper.

Fig. 3: The change detection relies on a change function that measures
the volumetric difference between close frames. When the function
forms a cluster of close peaks, an event is detected.

4.2 Candidate events
After initialization, we start observing the workpiece for change detec-
tion. Therefore, snapshots of the TSDF are saved periodically every
k0 frames. We set k0 = 38 empirically, which corresponds to a 1.2
s interval at 30 Hz. We choose this interval because the integration
usually takes a few seconds to converge. By spacing the snapshots, we
ensure that sufficient change can occur in between, thereby reducing
spurious detections. In Figure 3, the snapshots are visualized on the
x-axis by “save” icons. In order to detect a change to the assembly of
the workpiece, two questions arise:

1. At which point in time can we observe a pattern indicating a
significant change in the reconstruction?

2. Which two snapshots can we use to characterize a state “before”
and “after” the change, which let us identify a part that has been
introduced or removed from the scene?

In order to address the first question, we use a continuous change
function φ that is evaluated frequently, e.g., every k1 = 3 frames. We
use the change function directly on the TSDF reconstruction within
the volume of interest. Our approach is inspired by Fehr et al. [7], but,
unlike them, we apply it in real-time, on a smaller scale, and with a
human operator present. An illustration of the change function can be
seen in Figure 3. We define φ at time t as

φ(t) = ∑
j
[d(v j(t))−d(v j(t− k1))< ε1],

where v j(t) is the j-th voxel of the TSDF volume (0 ≤ j < J) taken
at time t, ε1 is a small constant, and [.] is the Iverson bracket. We
also apply a moving average with a window size of 3 to smooth the
curve and eliminate noise, which is equivalent to a one-dimensional
convolution K ∗ φ(t) with a uniform kernel K. If φ is larger than a
configurable threshold θevent , a change event candidate is reported.
After a change event, the detection is disabled for a cool-down period
of 20 frames to suppress duplicate events.

Our modified InfiniTAM also keeps track of the empty space in our
scene, so we can reason about seen and unseen space. This ability
is important when an exploring camera discovers previously unseen
portions of the workspace. In such a case, the event detection should
not be triggered. Discovery of unseen space can also take place after
a large part has been removed, revealing an area at a different depth
that is not adjacent to the removed part in object space. In this case,
suppressing event detection would lead to a false negative. Thus, we
use a more conservative threshold for this criteria.

The candidate events, depicted with vertical blue lines in Figure 3,
indicate that a significant change is happening. In the following, we
will describe how to identify the optimal time to extract this change,
answering the second question.

4.3 Temporal volumetric differences
We are interested in the new part, i.e., the portion of the volume occu-
pied in the new state that was not occupied in the old state, (or, in the
case of a disassembly, by the volume that was occupied and became
free). Therefore, we need to choose the two moments in time, t− and

Fig. 4: Under- and over-segmentation of the user’s hands – the body
segmentation sometimes has challenges around the depth discontinu-
ities of the body. While a too large mask is not a problem, an under-
segmentation can lead to noise in the reconstruction, as small hand
areas can be wrongfully integrated.

t+, that enclose the peaks representing the addition or removal of the
part, such that t− = t+−∆t. We choose t− as the closest snapshot
before the detected candidate event. However, if this snapshot is very
close to the candidate event, the second-to-last snapshot is considered
instead. This heuristic ensures that the change curve has not yet started
significantly increasing, and we capture the entire period of change.

Since volumetric integration of new depth information relies on an
averaging scheme [15, 23], we search for t+ forwards from t− until the
change curve becomes flat, i.e.,

∂φ(t+)
∂ t

< ε2,

with the derivative approximated using backward differences. A small
value indicates that the reconstruction has ended, so the shape can be
extracted. Moreover, we want to make sure that the candidate events did
not just capture some noise in the reconstruction, and that the volume
of the change area is significant. Thus, we compute the integral∫ t+

t−
φ(t)dt,

which accumulates the change within a period of ∆t frames. If this
quantity is larger than the object threshold θob j, a change event is
validated. After the validation, the detection is disabled for the same
cool-down period of 20 frames as mentioned before. Since the integral
takes into account a number of voxels that have changed during a time
period, we make sure not to count the same voxel multiple times.

Note that we must assume that the reconstruction is incomplete in
both the old and the new state, i.e., certain portions of the scene, such
as the backside, have never been seen by the camera, or insufficient
time was allotted for the reconstruction to fully converge to the true
surface. Therefore, we need a volumetric difference that is robust
to small inconsistencies. In the case of object addition, we achieve
such robustness by copying the portion of the new volume at time t+
that deviates by more than ε1 from the old volume at time t− into a
difference volume ∆d j(t); in case of a removal, we copy the part at
time t−:

∆d j(t)
j∈J

=

{
d(v j(t+))∨d(v j(t−)), if |d(v j(t+))−d(v j(t−))|> ε1,

−1, otherwise.

Since the integration is already disabled in locations that are very
close to the surface of the background model, we expect that no parts
of the background model contaminate the resulting difference volume.
Consequently, the resulting difference ∆d(t) represents the reconstruc-
tion of the part that was added or removed at time t.

4.4 Threshold calibration
The addition or removal of parts results in a change curve with a
peak when such an event happens. However, manually adjusting the
sensitivity of detection for each specific workpiece would be tedious.
Therefore, we auto-calibrate the event thresholds to a specific workpiece
after adding the base piece. The thresholds θevent and θob j are set to 1
% and 0.2 % of the base object size, respectively.

4.5 Human body segmentation
As we want to exclude the user’s body from corrupting the SLAM map,
we segment the body before detecting events. Pixels of the RGB-D
camera output are selectively discarded via a body mask, which uses

Fig. 5: Matching strategy for diverging sequences: (a) Two examples
of disassembly sequences extracted from the Coffee Maker. The order
of the removal of the drip tray and of the water tank are swapped,
leading to branching in the assembly graph. (bottom row) Object part
reconstruction results. (b) A piece of the Coffee Maker obtained by
careful manual scanning. (c) Two partial reconstructions as obtained
by our method, and the result of our merging strategy.

the hand tracking feature provided by the Hololens, when the Kinect is
mounted on the HMD, and the Kinect body tracker, when mounted on
a tripod at a sufficient distance so the user’s body is mostly visible.

Unfortunately, both segmentations are not always pixel-accurate. If
the user performs fast motions, the body mask may lag behind. Since
we do not want to delay the volumetric processing to match this lag, we
dilate the body mask with a 3×3 kernel to make it more conservative.
The dilation eliminates most of the disturbances from the user’s body
appearing in the input frame, except for minor amounts of isolated
pixels (see Figure 4). Since we use the SLAM map outside of the
immediate vicinity of the workpiece only for camera tracking and never
update it, we may safely ignore the problem of body tracking errors.

However, we need an additional safeguard to prevent noisy pixels
from creeping into the reconstruction of the workpiece itself. These
are primarily caused by the user’s hands holding a part close to the
workpiece during adding or removing the part. Therefore, we create
additional filtering constraints with larger safety zones around the user’s
hand. We use axis-aligned bounding boxes of size 17× 17× 17 cm,
centered around the user’s hand center, which is assumed to lie 15 cm
away from the tracked wrist along the direction indicated by the lower
arm. The voxels within the hand bounding volumes are disregarded
during event detection. Thus, the small regions of the workpiece near
the user’s hands may be temporarily filtered out during workpiece
manipulation, but the reconstruction converges swiftly in these areas as
soon as the hands move away. Regarding the tracking performance of
body parts with varying skin tones, we use tools provided by Microsoft.
The Hololens 2 uses the depth sensor for hand tracking, which works
independent of skin tones1. Microsoft also states about the Kinect
Azure body segmentation that the training data was ”ethically balanced
(...) included varying height, body size, and skin tone.”2.

5 CONTENT EXTRACTION

Our approach extracts information from the author’s demonstration
at the moment when an assembly event occurs. This data is further
filtered and processed to synthesize AR instructions.

Part geometry The outcome of the event detection is a series of
part reconstructions, annotated with time and place where the part was
added or removed. Before we can use a difference volume representing
a detected part, it is further refined to eliminate any residual noise.
First, we apply a 3D morphological opening on the TSDF representa-
tion of the part. Second, a triangular mesh is extracted via marching
cubes. Third, over-tessellated areas of the mesh are simplified by vertex
clustering. Fourth, a connected component analysis eliminates noisy
sub-meshes with few triangles (we empirically set the threshold to 30 %
of the entire mesh of the respective part).

1https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/research-mode
2https://github.com/microsoft/Azure-Kinect-Sensor-SDK/issues/1270

Fig. 6: Sequence containing some actions where the change in reconstruction is challenging to detect, but our systems still extracts video snippets
of actions, representing the user screwing in a metal screw after adding object parts.

Fig. 7: Example obtained assembly graph of the Coffee Maker, after
merging three different recordings, where the step order differs.

If only one demonstration session is recorded, the assembly graph
(or, more precisely, the known portion of the graph) is just a linear
sequence. Here, the part order is the essential information, but it is still
helpful to record the timing and the location where the part is added or
removed, if we want to synthesize instructions later.

If multiple recording sessions are available, they may diverge in
the order in which parts are manipulated, thereby revealing additional
branches of the assembly graph. We merge multiple sequences in the
following manner: First, the initial states have to be registered, so
that we can establish spatial correspondences between the recorded
sequences. This registration happens in the same way as described
in Section 4.1. Then, the individual parts need to be matched. The
re-localization of InfiniTAM could be used in place of our registration
method; however, it is optimized for a moving camera in a static scene
and performs poorly when trying to register our workpieces.

Therefore, given two assembly sequences, each as a list of extracted
parts, we compare every part in the first list with every part in the second
list using a distance measure provided by the Open3D library [49]. The
matching is performed step by step and relies on the spatial presence
and layout of the pieces, quantified by a measure that accounts for the
distance from each point in the first point cloud to each point in the
second point cloud. If the matching score exceeds a threshold, the parts
are considered as having the same label. Such matches are merged by
concatenating their point clouds. We show an example of a part merge
from multiple recordings, namely the grinding tank of the coffee maker
in Figure 5. The labels are used to build the partial assembly graph.
We can imagine the matching procedure in the shape of a bipartite
graph, as shown in Figure 5. If there are intersecting edges, then the
two assembly sequences have diverged, and we represent this as an
intersection in the partial assembly graph.

The merging step also serves as a filter for false positives. If a part
has only poor scores (large distances), no corresponding part has been
found. Therefore, the part is either a false positive, or it has been
discovered only in one recording, while the event detection for the part
failed in the other recordings. To recover from such a condition, the
authoring concludes with a feasibility check and prompts the operator

Fig. 8: The guidance mode visualization in first person view as shown
on the Hololens 2: On the left, a part is in todo state, and on the right
side, a part is in correct state, as a result of the interactive guidance
detecting a correct assembly step.

to resolve any ambiguous cases.
To provide an overview visualization, we furthermore allow export-

ing the partial assembly graph to a format understood by the graph
visualization software GraphViz [6]. An example of output sequences
and the corresponding partial assembly graph can be seen in Figure 7.

The recordings from the guidance mode can be used as informa-
tion sources as well. However, since it is not guaranteed that the user
performs the correct steps during AR guidance, only the part recon-
structions are considered, while the assembly graph is not modified.

Video sequences In addition to preparing the part geometry and
the assembly graph, we also extract video segments showing each
assembly action. We compile all frames between t− and t+ of each
event into a short video loop in order to preserve subtle visual cues that
contribute in important ways to the understanding of the activity [45].
When the event detection has challenges with extracting small parts
or short actions, which are suppressed by the noise filter, the video
loops extracted alongside the assembly graph fill in the gaps. The video
frames are also cropped around the position of the object, projected
into image space. For instance, assembling the stool in Figure 6 re-
quires screwing in the top and bottom parts. While the screws are not
detected as parts, videos of the screwing actions are retrieved. Figure 8
demonstrated how the extracted video sequences are visualized on a
billboard during AR guidance.

6 GUIDANCE

The guidance mode uses the extracted information to deliver real-time
AR instructions. The visualization shows hints for each current object
part, spatially registered to the object. The area is computed as the 3D
convex hull of the extracted part model. The color of the highlight,
along with a status icon, indicates the three possible states, as shown in
Figure 8: blue (assembly to-do), green (step is correct), or red (step is
incorrect). The icons are placed at the center of the bounding box of
the 3D convex hull of a part reconstruction; the video snippet is played
on a canvas next to the object. Along with this situated visualization,
a floating video billboard is shown to the user next to the object [45]
indicating the action that needs to be performed.

An error detection mechanism provides interactive feedback, based
on the relative spatial layout of the parts. When a piece is added or
removed, the extracted mesh is filtered and a spatial distance to the
expected part is computed based on point clouds. If the parts are similar
and an event is detected, the addition or removal is validated and the
part enters a green (step is correct) state. Otherwise, an error message
is displayed, and the part that needs to be handled remains in the blue
(assembly to-do) layout.

Fig. 9: Evaluation objects. (a) Real objects (top, left to right) Rocket, Stool, Coffee Maker, Tower, and Juicer. (b) We use three virtual datasets: a
virtual stackable tower toy, a subdivided cube, and a Lego rocket. An exploded view of each object shows parts that we use in our evaluation. (c)
To simulate the user interaction, we also use an animated virtual hand model. The hand contour creates a mask for perfect segmentation.

7 EVALUATION

We present an evaluation that demonstrates the approach’s robustness
by testing with multiple objects and demonstrations, either captured
with the Kinect or using synthetic scenes.

7.1 Experimental setup

In order to run qualitative experiments, we use a Kinect Azure camera,
which we chose because of its high depth resolution (640×576). We
let the camera warm up before we start the experiments to ensure more
precision of the measurements [36]. The automatic white balance of
the camera is disabled, and the lighting is manually set to a fixed value
so that it remains consistent throughout the whole session, even if the
camera position and the light sources are changing. We run most of the
experiments at 30 Hz in “unbinned narrow field of view” mode, as this
offers the highest quality of the depth maps [36], and the reconstruction
heavily relies on the depth values.

The system runs on a desktop PC with an NVIDIA RTX 3080
Ti GPU, an Intel Core i7 CPU, and 32 GB of RAM, and streams
to the HoloLens via WiFi. We use InfiniTAM v3 for mapping and
tracking, with modifications, such as the aforementioned background-
only tracking mode. The core functionality (event detection, volumetric
differences, morphological operations etc.) is implemented in CUDA
and shares the GPU with InfiniTAM.

For showing the capabilities of our system, we choose the following
objects, as shown in Figure 9 (a):

• Coffee Maker: A coffee machine consisting of a base part and six
removable parts, that can be built in a different order.

• Stool: A wooden stool that can be assembled by the user. The parts
are thinner but larger.

• Tower: An example of a stackable “Tower of Hanoi” toy that is
symmetric and has few features.

• Rocket: A Lego toy with little texture and many small bricks. How-
ever, we use groups of bricks as parts for our experiments.

• Juicer: An appliance with multiple parts of various sizes.

The objects only contain parts that can be either added or removed. In
our evaluations, we do not include any events containing undetectable
parts or more complex actions like pulling, screwing, etc.

The average runtime of the change detection algorithm with the afore-
mentioned experimental setup for the captured data is 25.7 milliseconds
per frame. The communication between our headset application (Unity)
and the PC (C++) runs over UDP on WiFi, which has less than 5 mil-
liseconds of latency. Some events trigger asynchronous processing
in background threads. For initial registration, the user must wait an
average of 3.6 s until the interactive mode starts. For error checking,
after the event is detected, the user must wait an average of 0.8 s until
the performed step is validated and the result is displayed (measured on
the Coffee Maker). The AR rendering is always refreshed at full HMD
frame rate; only the display of new results is delayed for a short period
due to the event validation occurring after the change function peak.
This accounts for the time needed for the reconstruction to converge.

Dataset Mode Voxelsize TP FP FN Precision Recall
Coffee Maker Disassembly 0.003 6 0 0 1.00 1.00
Stool Disassembly 0.003 2 0 0 1.00 1.00
Tower Disassembly 0.002 6 0 0 1.00 1.00
Rocket Disassembly 0.003 4 0 0 1.00 1.00
Juicer Disassembly 0.003 5 1 0 0.83 1.00
Coffee Maker Assembly 0.003 4 0 2 1.00 0.66
Stool Assembly 0.003 2 0 0 1.00 1.00
Tower Assembly 0.002 5 0 1 1.00 0.83
Rocket Assembly 0.003 3 0 0 1.00 1.00
Juicer Assembly 0.003 5 0 0 1.00 1.00

Table 1: Precision and recall of the change detection function in identi-
fying assembly or disassembly events for the used objects.

7.2 Quantitative results

We evaluate the function for change detection with recorded datasets
containing our test objects. We measure the accuracy of the detection
of assembly or disassembly events. For this evaluation, we manually
label when the event happens by choosing the first frame where the part
touches (or disconnects from) the workpiece. We consider a detection
successful if the addition or removal of a part is captured between t−
and t+, and no other event detection falls into that period. Results are
shown in Table 1. Precision and Recall are computed with regards
to the number of True Positives (TP), False Positives (FP), and False
Negatives (FN), as Precision = TP/(TP + FP), Recall = TP/(TP + FN).

Figure 10 shows the change functions in disassembly (top) and
assembly mode (bottom), respectively. When an event occurs, a pattern
of two neighboring peaks usually encloses a valley. This reflects the
behavior of the TSDF when a part is removed, namely, a sudden change,
followed by the slow integration of the piece. The first peak can contain
noise from the potentially unreliable hand mask. Other sources of noise
include areas in the depth map that cannot be reconstructed due to
reflections, or along depth discontinuities, where spurious pixels can
appear. Moreover, slight deviations of the tracking can happen when
larger parts of the background are occluded. The overall results show
that our system is able to recover from all these conditions.

Our approach is able to correctly detect most events, but can oc-
casionally deliver false negatives. For example, in the Coffee Maker
assembly sequence, two events are missed. One of them is the water
tray located on the bottom of the assembly, close to the workbench
underneath. Since we disable integration within a short distance from
the background surface, parts directly touching the background (the
workbench) may not be fully reconstructed. In the case of the water
tray, its flat bottom is truncated. Consequently, it is not recognized as a
valid part that has been added.

7.3 Synthetic data

We chose to also evaluate our system on synthetic data, in order to
obtain results in an environment where we can control the amount
of noise. Synthetic data lets us measure system performance under
idealized conditions (no noise, no reflective surfaces, no camera jitter).
The datasets are generated by rendering frames of manually created
animations. The animations have the same format as the captured data:
a set of temporally ordered color and depth frames, with body parts
masked out, and annotated with the positions of the wrists.

Fig. 10: Top: Unfiltered outputs of the change function during disassembly (from left to right) of Tower, Coffee Maker, Stool, Rocket, and Juicer,
and outputs from the assembly mode on the bottom. The green highlights indicate the ground truth events, the blue lines mark the candidate
events as detected by the system, and the red lines mark the validation event.

Fig. 11: Change functions of the synthetic datasets, ran in disassembly mode.

We chose to vary the following parameters: (1) type of camera
movement, (2) voxel size, (3) part size, and (4) hand presence. The
camera movement can be static, scanning (follow a circular arc path
of 45◦ around the assembly during the initialization stage, after the
base object has been placed) or continuous (follow the aforementioned
path during the assembly procedure). We vary the voxel size as well as
the part size to investigate the system’s ability to extract small objects.
Finally, hand presence offers insight on how occlusions caused by the
hands impacts event detection and reconstruction quality. To this aim,
we render a virtual hand into a mask suppressing depth pixels (Figure 9
(c)) to obtain results akin to a perfect hand segmentation.

We generate the synthetic data in Blender, where we render RGB-D
frames for different camera trajectories. We also output the intrinsics
of the virtual camera, since our system needs a calibrated camera to
run. In Table 2 below, the tested scenarios and objects are shown.

We use three objects, as shown in Figure 9(b): The baseline is a
simple cube with a side length of 30 cm, composed of 5×5 smaller
cubes. In the “slices” configuration, the object is disassembled into
five horizontal parts, while, in the “subparts” configuration, every small
cube component from the top slice is removed one by one. The other
two test objects are CAD versions of the Tower and the Rocket3, which
we also used as physical test objects. The rocket is disassembled in
the same way as in the real scenario, by splitting it into four pieces.
Hence, we are able to compare the test results on synthetic objects with
their real-world counterparts, giving us an indication of the influence
of real-world sensor noise.

The results of the evaluation can be found in Table 3. The system
is able to extract most of the parts, even each small cube components
of the Cubes3 dataset. The curves of the change function with the
synthetic data shown in Figure 11 look cleaner, since there is no noise
being integrated. In the output for Rocket1, one can see that the peaks

3https://grabcad.com/library/lego-nasa-apollo-saturn-v-21309-1

Synthetic Dataset Move Voxelsize Hands Granularity
Cubes1 static 0.002 no slices
Cubes2 scan 0.002 no slices
Cubes3 static. 0.002 no subparts
Tower1 static 0.002 no all parts
Tower2 cont. 0.002 no all parts
Rocket1 static 0.003 yes large sub-assemblies

Table 2: Setup of the used synthetic datasets, with varying parameters
in terms of camera movement, hand presence, part granularity and
voxel size (in meters) during event detection.

Dataset Mode TP FP FN Precision Recall
Cubes1 Disassembly 5 0 0 1.00 1.00
Cubes2 Disassembly 5 0 0 1.00 1.00
Cubes3 Disassembly 25 0 0 1.00 1.00
Tower1 Disassembly 7 0 0 1.00 1.00
Tower2 Disassembly 3 1 4 0.75 0.43
Rocket1 Disassembly 4 0 0 1.00 1.00

Table 3: Precision and recall of the change detection function in identi-
fying disassembly events for the synthetic objects.

are also proportional to the size of the removed pieces. The only noisy
result is the dataset Tower2. Here, a continuous camera movement is
present, and a very smooth, uniform wall as background is used for
tracking. The ICP-based tracker fails to converge after some frames
using these background voxels, causing the spikes in the second half of
the run. The resulting erroneous camera poses cause the integration of
noise, lowering precision and recall. For such challenging conditions,
using visio-inertial tracking (e.g., the Hololens tracking) would likely
yield more stable results. However, we used open-source InfiniTAM
during authoring to have better control than possible with the closed-
source Hololens SLAM.

We also experimented with a larger voxel size of 3 millimeters for
Cubes3. However, this experiment results in the 25 top cubes not being
detected, in contrast to all being detected for the 2 millimeter resolution.

Fig. 12: Extracted pieces from the rocket object (top) captured by the
RGB-D camera and (bottom) from a synthetically generated RGB-D
dataset, Rocket1.

7.4 Qualitative results
Reconstruction quality Our part reconstruction does not neces-

sarily aim to deliver complete geometric models. We extract the parts
with visualization purposes in mind. Extracting a partial reconstruction
is enough for an estimation of the location and of the rough size of a
part, required for the visualization of spatially registered hints, as seen
in Figure 8. Unsurprisingly, our results reveal that synthetic input leads
to more complete reconstructions, even just from one view (static cam-
era), after a disassembly procedure. For example, Figure 12 shows the
extracted parts of the synthetic Rocket. Sample frames of this sequence
can be seen in Figure 9 (c).

After performing the matching as described in Section 5, the parts
are completed by new observations. In Figure 5 we show a part of the
Coffee Maker that is completed after multiple runs: the ground truth
(obtained by manual scanning), the part extracted by our method in two
different runs in disassembly mode, and the merged models.

Public dataset We also run our system on a public dataset intro-
duced by the Co-Fusion work of Rünz et al. [31], namely, the sequence
that contains topological changes. The calibration step cannot be per-
formed on this dataset, because no base object is available. As a
workaround, we heuristically set a threshold θob j that accounts for a
minimum changed volume of 40×40×20 millimeters, scaled by the
voxel size. With these preparations, our system was able to detect all
events and extract partial reconstructions and video snippets. However,
since our use case requires the ability to handle heavy hand occlu-
sion, we do not track assembled parts individually. Consequently, our
reconstruction quality is less dense than the one obtained with Co-
Fusion. Moreover, the hand segmentation is ignored; therefore, the
reconstruction of the hand is also present in the scene (Figure 13).

Additionally, we also ran Co-Fusion on our own dataset, Coffee
Maker Disassembly. This experiment did not deliver satisfactory re-
sults; individual pieces cannot be clearly segmented by Co-Fusion. The
failure of Co-Fusion is likely caused by the faster motions, as well as
to the parts being smaller, and to more hand occlusions. We ran the
algorithm with its default parameters as provided in the source reposi-
tory. After manually adjusting thresholds to allow smaller regions to be
considered as parts, Co-Fusion was able to partly detect the base object,
but not the individual parts.

8 DISCUSSION

While our implementation demonstrates the feasibility of assembly
sequence authoring and guidance, the quality of results is affected by
a number of (known) limitations of the underlying technology, i.e., a
time-of-flight camera feeding into volumetric fusion.

Concerning the workspace size, the system is capable of processing
workpieces that fit atop a workbench, which is reasonable for many
assembly tasks. However, the tabletop workspace does not benefit much
from the ability to move the camera, as the user’s mobility is limited by
the need to stay close to the table. A more severe restriction comes from
the inability to handle small parts, such as screws or fasteners, which
are not reconstructed properly due to the limited spatial resolution of the
RGB-D camera. Besides, black, transparent, or highly reflective objects
pose challenges for time-of-flight sensors operating with infrared light.

The body segmentation itself has a significant influence on the recon-
struction pipeline as well. If a very agile user frequently moves in and
out of the camera’s field of view, the body tracker may occasionally fail.

Fig. 13: Our result on the topology change data used by Co-Fusion [31].
Note that our system needs a hand segmentation, but this particular
example was run directly on the dataset with no hand mask information,
hence the hand reconstruction on the left side of the thermos flask. On
the right side, the change function of this dataset shows three peak
clusters that correspond to the addition of the three objects.

In this case, the reconstruction is not only polluted with a few noisy
pixels, but with larger portions of the body, which can be larger than
typical parts used in the assembly. If the pollution of the reconstructed
volume becomes too significant, the tracking suffers, and artifacts may
creep into the reconstruction of the parts. An overall higher framerate
of both the camera and of the computing pipeline would likely reduce
these problems without requiring changes to the algorithms.

Reconstruction by volumetric fusion tends to smooth edges, which
can represent an additional challenge for small or thin parts, which rely
on features at a scale that cannot tolerate the smoothing applied by the
SLAM system. In unfortunate circumstances, edge smoothing com-
bined with our noise filtering leads to small objects being suppressed
entirely. A sensor with a higher resolution may ameliorate the issue.

We support only rigid parts, and the volumetric difference procedure
cannot deal with parts that need to be deformed to fit other parts. For
example, when building the Stool in Figure 9(a) and placing the top
part, the user needs to slightly pull apart the sides in order for the top
part to fit in place. This action can confuse the difference computation
and result in hallucinated parts being extracted.

9 CONCLUSION AND FUTURE WORK

We introduce a method for automatically extracting a multi-part recon-
struction and a partial assembly graph driven by change event detection.
We demonstrate that our approach has high practical value for instruc-
tion authoring and delivery with an AR application. It works with
commodity hardware and lets operators perform authoring by demon-
stration with ease of use.

Currently, we support either an assembly or disassembly mode,
which has to be chosen before using the system. In the future, this
can be extended to support both operations in the same sequence, for
example, when a group of parts is replaced during a repair procedure.

Our system supports authoring by an expert or interactive guidance
for a user that follows the tutorial. Another possible application is to
create an AR guidance mode that is a mixture between the two: The
user would have the freedom to choose whether to enter authoring
mode or guidance mode. A user could decide, during the guidance,
that they want to add a new branch to the tutorial. This could be useful
in the case when a user wants to build a new configuration of Lego
blocks, or when an expert is specialized in a particular sub-assembly.
In these cases, one may follow the guidance up to the desired level of
completion and then switch to authoring mode.

Other interesting directions are support for annotations during user
demonstration and guidance on how to hold parts in front of the camera
to improve the reconstruction [22]. While our experiments did not
indicate that the additional guidance is a critical aspect for novice
users, the camera observing the parts from multiple viewpoints during
manipulation could improve the reconstructions if the parts are large
and visible enough to be tracked.

ACKNOWLEDGMENTS
This work was enabled by the Austrian Science Fund FWF (grant no.
P30694 and I5912) and the Competence Center VRVis, which is funded
by BMK, BMDW, Styria, SFG, Tyrol and Vienna Business Agency in
the scope of COMET - Competence Centers for Excellent Technologies
(879730) which is managed by FFG.

REFERENCES

[1] J. Alves, B. Marques, M. Oliveira, T. Araújo, P. Dias, and B. S. Santos.
Comparing spatial and mobile augmented reality for guiding assembling
procedures with task validation. In IEEE International Conference on
Autonomous Robot Systems and Competitions, pp. 1–6, 2019.

[2] B. Bescos, J. M. Facil, J. Civera, and J. Neira. Dynaslam: Tracking, map-
ping, and inpainting in dynamic scenes. IEEE Robotics and Automation
Letters, 3:4076–4083, 10 2018. doi: 10.1109/LRA.2018.2860039

[3] B. Bhattacharya and E. H. Winer. Augmented reality via expert demon-
stration authoring (areda). Computers in Industry, 105:61–79, 2019.

[4] S. Büttner, A. Peda, M. Heinz, and C. Röcker. Teaching by demonstrating–
how smart assistive systems can learn from users. In International Confer-
ence on Human-Computer Interaction, pp. 153–163. Springer, 2020.

[5] S. Chidambaram, H. Huang, F. He, X. Qian, A. M. Villanueva, T. S.
Redick, W. Stuerzlinger, and K. Ramani. Processar: An augmented reality-
based tool to create in-situ procedural 2d/3d ar instructions. In Designing
Interactive Systems Conference 2021, pp. 234–249, 2021.

[6] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz and dynagraph—static and dynamic graph drawing tools. In
Graph drawing software, pp. 127–148. Springer, 2004.

[7] M. Fehr, F. Furrer, I. Dryanovski, J. Sturm, I. Gilitschenski, R. Siegwart,
and C. Cadena. Tsdf-based change detection for consistent long-term
dense reconstruction and dynamic object discovery. In IEEE International
Conference on Robotics and Automation, pp. 5237–5244. IEEE, 2017.

[8] R. Finman, T. Whelan, M. Kaess, and J. J. Leonard. Toward lifelong
object segmentation from change detection in dense rgb-d maps. In 2013
European Conference on Mobile Robots, pp. 178–185. IEEE, 2013.

[9] F. Furrer, T. Novkovic, M. Fehr, A. Gawel, M. Grinvald, T. Sattler, R. Sieg-
wart, and J. Nieto. Incremental object database: Building 3d models from
multiple partial observations. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6835–6842. IEEE, 2018.

[10] M. Golparvar-Fard, F. Pena-Mora, and S. Savarese. Monitoring changes
of 3d building elements from unordered photo collections. In ICCV
Workshops, pp. 249–256, 2011.

[11] A. Gupta, D. Fox, B. Curless, and M. Cohen. Duplotrack: a real-time sys-
tem for authoring and guiding duplo block assembly. In ACM Symposium
on User Interface Software and Technology, pp. 389–402, 2012.

[12] M. Halber, Y. Shi, K. Xu, and T. Funkhouser. Rescan: Inductive instance
segmentation for indoor rgbd scans. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 2541–2550, 2019. doi: 10.
1109/ICCV.2019.00263

[13] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and
V. Lepetit. Gradient response maps for real-time detection of textureless
objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(5):876–888, 2011.

[14] G. Huang, X. Qian, T. Wang, F. Patel, M. Sreeram, Y. Cao, K. Ramani,
and A. J. Quinn. Adaptutar: An adaptive tutoring system for machine
tasks in augmented reality. In Proc. ACM CHI, pp. 1–15, 2021.

[15] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr, and D. W.
Murray. Very High Frame Rate Volumetric Integration of Depth Images
on Mobile Device. IEEE Transactions on Visualization and Computer
Graphics, 22(11), 2015.

[16] S. G. Kaya, B. Zhou, R. R. Arora, N. Zheutlin, G. Vanloo, and E. K.
Eyigoz. Dynamic content generation for augmented technical support. In
2021 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), pp. 441–446. IEEE, 2021.

[17] B. Kerbl, D. Kalkofen, M. Steinberger, and D. Schmalstieg. Interactive
disassembly planning for complex objects. Computer Graphics Forum,
34(2):287–297, may 2015. doi: 10.1111/cgf.12560

[18] A. J. Lambert. Disassembly sequencing: a survey. International Journal
of Production Research, 41(16):3721–3759, 2003.

[19] E. Langer, T. Patten, and M. Vincze. Robust and efficient object change
detection by combining global semantic information and local geometric
verification. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 8453–8460. IEEE, 2020.

[20] S. Makris, G. Pintzos, L. Rentzos, and G. Chryssolouris. Assembly support
using ar technology based on automatic sequence generation. CIRP Annals,
62(1):9–12, 2013.

[21] A. Miller, B. White, E. Charbonneau, Z. Kanzler, and J. J. LaViola Jr.
Interactive 3d model acquisition and tracking of building block structures.
IEEE Transactions on Visualization and Computer Graphics, 18(4):651–
659, 2012.

[22] P. Mohr, S. Mori, T. Langlotz, B. H. Thomas, D. Schmalstieg, and

D. Kalkofen. Mixed reality light fields for interactive remote assistance. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, p. 1–12. Association for Computing Machinery, 2020.

[23] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In 2011 10th IEEE Inter-
national Symposium on Mixed and Augmented Reality, pp. 127–136, 2011.
doi: 10.1109/ISMAR.2011.6092378

[24] E. Palazzolo, J. Behley, P. Lottes, P. Giguère, and C. Stachniss. Refusion:
3d reconstruction in dynamic environments for rgb-d cameras exploit-
ing residuals. IEEE International Conference on Intelligent Robots and
Systems, pp. 7855–7862, 5 2019.

[25] E. Palazzolo and C. Stachniss. Fast image-based geometric change de-
tection given a 3d model. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6308–6315. IEEE, 2018.

[26] J. Park, Q.-Y. Zhou, and V. Koltun. Colored point cloud registration revis-
ited. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 143–152, 2017.

[27] N. Petersen, A. Pagani, and D. Stricker. Real-time modeling and tracking
manual workflows from first-person vision. In 2013 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 117–124. IEEE,
2013.

[28] V. A. Prisacariu and I. D. Reid. Pwp3d: Real-time segmentation and track-
ing of 3d objects. International Journal of Computer Vision, 98(3):335–
354, 2012.

[29] D. Reiners, D. Stricker, G. Klinker, and S. Müller. Augmented reality
for construction tasks: Doorlock assembly. In Proc. of the International
Workshop on AR: Placing artificial objects in real scenes: placing artificial
objects in real scenes, pp. 31–46. AK Peters, Ltd., 1999.

[30] M. Runz, M. Buffier, and L. Agapito. Maskfusion: Real-time recognition,
tracking and reconstruction of multiple moving objects. In 2018 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp.
10–20. IEEE, 2018.

[31] M. Rünz and L. Agapito. Co-fusion: Real-time segmentation, tracking
and fusion of multiple objects. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4471–4478, 2017. doi: 10.1109/
ICRA.2017.7989518

[32] M. Rünz, M. Buffier, and L. Agapito. Maskfusion: Real-time recognition,
tracking and reconstruction of multiple moving objects. Proceedings of
the 2018 IEEE International Symposium on Mixed and Augmented Reality,
ISMAR 2018, pp. 10–20, 1 2019. doi: 10.1109/ISMAR.2018.00024

[33] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers. Staticfu-
sion: Background reconstruction for dense rgb-d slam in dynamic envi-
ronments. Proceedings - IEEE International Conference on Robotics and
Automation, pp. 3849–3856, 9 2018. doi: 10.1109/ICRA.2018.8460681

[34] A. Taneja, L. Ballan, and M. Pollefeys. City-scale change detection in
cadastral 3d models using images. In Proc. CVPR, pp. 113–120, 2013.

[35] A. Tang, C. Owen, F. Biocca, and W. Mou. Comparative effectiveness
of augmented reality in object assembly. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 73–80, 2003.

[36] M. Tölgyessy, M. Dekan, L. Chovanec, and P. Hubinskỳ. Evaluation of
the azure kinect and its comparison to kinect v1 and kinect v2. Sensors,
21(2):413, 2021.

[37] A. O. Ulusoy and J. L. Mundy. Image-based 4-d reconstruction using
3-d change detection. In European Conference on Computer Vision, pp.
31–45. Springer, 2014.

[38] B. Wang, G. Wang, A. Sharf, Y. Li, F. Zhong, X. Qin, D. CohenOr, and
B. Chen. Active assembly guidance with online video parsing. In 2018
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.
459–466. IEEE, 2018.

[39] O. Wasenmüller, M. Meyer, and D. Stricker. Augmented reality 3d dis-
crepancy check in industrial applications. In Proc. ISMAR, pp. 125–134,
2016. doi: 10.1109/ISMAR.2016.15

[40] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leuteneg-
ger. Elasticfusion. Int. J. Rob. Res., 35(14):1697–1716, Dec. 2016. doi:
10.1177/0278364916669237

[41] M. Whitlock, G. Fitzmaurice, T. Grossman, and J. Matejka. Authar:
Concurrent authoring of tutorials for ar assembly guidance. In Graphics
Interface. CHCCS/SCDHM, p. 431 – 439, 2019.

[42] Y.-S. Wong, C. Li, M. Nießner, and N. J. Mitra. Rigidfusion: Rgb-d scene
reconstruction with rigidly-moving objects. In Computer Graphics Forum,
vol. 40, pp. 511–522. Wiley Online Library, 2021.

[43] L.-C. Wu, I.-C. Lin, and M.-H. Tsai. Augmented reality instruction for

object assembly based on markerless tracking. In Proceedings ACM
Symposium on Interactive 3D Graphics and Games, pp. 95–102, 2016.

[44] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and S. Leuteneg-
ger. Mid-fusion: Octree-based object-level multi-instance dynamic slam.
Proceedings - IEEE International Conference on Robotics and Automation,
2019-May:5231–5237, 5 2019. doi: 10.1109/ICRA.2019.8794371

[45] M. Yamaguchi, S. Mori, P. Mohr, M. Tatzgern, A. Stanescu, H. Saito,
and D. Kalkofen. Video-annotated augmented reality assembly tutorials.
In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology, pp. 1010–1022, 2020.

[46] J. Zauner, M. Haller, A. Brandl, and W. Hartman. Authoring of a mixed
reality assembly instructor for hierarchical structures. In Proc. ISMAR, pp.
237–246, 2003. doi: 10.1109/ISMAR.2003.1240707

[47] B. Zhou and S. Güven. Fine-grained visual recognition in mobile aug-

mented reality for technical support. IEEE Transactions on Visualization
and Computer Graphics, 26(12):3514–3523, 2020.

[48] Q.-Y. Zhou, J. Park, and V. Koltun. Fast global registration. In European
Conference on Computer Vision, pp. 766–782. Springer, 2016.

[49] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D
data processing. arXiv:1801.09847, 2018.

[50] V. Zogopoulos, E. Geurts, D. Gors, and S. Kauffmann. Authoring tool
for automatic generation of augmented reality instruction sequence for
manual operations. Procedia CIRP, 106:84–89, 2022.

[51] S. Zollmann, D. Kalkofen, C. Hoppe, S. Kluckner, H. Bischof, and G. Re-
itmayr. Interactive 4d overview and detail visualization in augmented
reality. In Proc. ISMAR, pp. 167–176. IEEE, 2012.

