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Abstract—We present a registration method relying on geometric constraints extracted from parametric primitives contained in
3D parametric models. Our method solves the registration in closed-form from three line-to-line, line-to-plane or plane-to-plane
correspondences. The approach either works with semantically segmented RGB-D scans of the scene or with the output of plane
detection in common frameworks like ARKit and ARCore. Based on the primitives detected in the scene, we build a list of descriptors using
the normals and centroids of all the found primitives, and match them against the pre-computed list of descriptors from the model in order
to find the scene-to-model primitive correspondences. Finally, we use our closed-form solver to estimate the 6DOF transformation from
three lines and one point, which we obtain from the parametric representations of the model and scene parametric primitives. Quantitative
and qualitative experiments on synthetic and real-world data sets demonstrate the performance and robustness of our method. We show
that it can be used to create compact world anchors for indoor localization in AR applications on mobile devices leveraging commercial
SLAM capabilities.

Index Terms—Camera localization, correspondence problem, 3D registration, closed-form method, augmented reality
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1 INTRODUCTION

R EGISTRATION of 3D models is a fundamental problem in
computer vision across a wide range of applications, such as

localization in augmented reality (AR) or mesh completion in 3D
reconstruction. Given a set of correspondences from live scene data
(e.g., a 3D point cloud) to a prior reference (e.g., a 3D parametric
model), registration consists in finding the optimal transformation
T = [ R | t ] ∈ SE(3) with six degrees of freedom that minimizes
the rotational and translational error between scene and model.

Solving the registration problem in a robust fashion is crucial
in AR applications. The term world anchor (or, sometimes,
spatial anchor) denotes a model curated for the purpose of re-
localizing (i.e., registering) the camera with respect to a given
scene. World anchors are usually created to find correspondences
between keypoints and consist of heterogeneous data collections,
such as RGB keyframes, IMU data, feature descriptors, 3D point
clouds, etc. The data types making up an anchor depend on the
platform’s sensing and computational capabilities. For example,
traditional monocular SLAM [25, 26] uses keyframes and small
blurry images. In contrast, the “Azure spatial anchors” stored by
the Microsoft HoloLens use a proprietary combination of imagery
from multiple cameras with partial 3D reconstructions. In general,
the implementations of world anchors are very diverse. Not only
are they lacking interchangeability across devices and platforms,
but they also have a substantial storage footprint, ranging from a
few megabytes to tens of megabytes in size.

Registration of an anchor usually relies on the large amount
of previous research on point-to-point, point-to-line, and point-to-
plane registration methods [17, 19, 36, 50]. For instance, classical
algorithms for solving point-to-point registration problems were
proposed by Arun et al. [2], Umeyama [44] and Horn [21], the
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latter being an essential part of the widely used iterative closest
point (ICP) method [4]. Iterative methods such as ICP perform
very well with a good initialization and dense data models, but
they require partially overlapping 3D surfaces and are often slow to
converge. In contrast, closed-form algorithms [8, 45, 46] leverage
the collinearity or coplanarity of points [32, 38] or normals [10] to
find a solution in a fixed number of steps.

In this paper, we propose to raise the level of abstraction
of world anchors using parametric models, which represents a
fresh approach to the localization problem within known scenes
(see Figure 1). Our contributions are two-fold:

Compact world anchors. First, we introduce a scene represen-
tation designed to solve the correspondence problem purely from
geometric information, using matches between sparse parametric
primitives. The memory footprint of our representation is just a few
kilobytes; hence, we call it compact world anchor. Our anchors
contain pre-computed point pair feature (PPF) descriptors created
from parametric primitives (planes, cylinders, spheres) identified in
the reference data. As the anchors only consist of geometry-based
descriptors, they are exchangeable across platforms and devices,
and illumination-independent. We compute such descriptors using
the normals and centroids extracted from parametric representations
of the primitives (e.g., plane equations). To find the scene-to-model
correspondences, we search possible assignments between the PPF
set stored in the anchor and the PPF set estimated online from
primitives detected in the scene. Primitive detection in the live
scene either relies on semantic segmentation [42] or on the plane
detection in AR Foundation1. Since the plane detection tends to
struggle in defining precise boundaries, we cannot rely on finding
distinct keypoints, such as a corner of a table. This situation
precludes the use of point-to-any correspondences [7, 8, 35, 45].
Instead, we solve the registration entirely without keypoints.

1ARFoundation: https://unity.com/unity/features/arfoundation, a Unity wrapper
around ARKit and ARCore.

https://unity.com/unity/features/arfoundation


2

Fig. 1: Registration of aparametricmodel and virtual objects tosemanticscene data by leveraging correspondences from parametric
primitives. We use SLAM to scan a scene with anRGB-D camera and obtain parametric primitives (semantic data), such as planes,
from which line and point constraints are harvested. This kind of scene description, which we call a compact world anchor, can serve to
compute a 6DOF scene registration with a map from SLAM obtained at a later point. The main advantage of our scene description is its
compact format (< 100 KB), which requires little storage and computation power.

Fig. 2: We use a SLAM front-end to scan a known scene and get a real-time updated pose in the camera coordinate system. Note that we
only use SLAM to establish a consistent track of poses, while we completely ignore the 3D mapping. If the SLAM system does not have
anyplane detectioncapability (likeAR Foundation), we execute a semantic segmentation on the scene raw point clouds in order to
�nd primitives in the scene. Next, we estimate the scene-to-model correspondences between our compact world anchor and geometric
features in the scene. We use such correspondences to obtain line and point constraints from model and scene parametric primitives. We
use these constraints to build a linear equation estimate that solves the model-to-scene registration. Finally, we use the pose given by the
SLAM system and the given transformation matrix to render virtual objects in the observed environment.

Closed-form registration from sparse correspondences.
Second, we introduce a novel solver for determining the registration
of an anchor to a live scene. Because both model and live scene data
are parametric and sparse, we cannot use iterative methods [37]
to solve the correspondences and registration simultaneously.
Instead, we introduce a closed-form method leveragingline-to-line,
line-to-planeandplane-to-planecorrespondences for registration.
We choose three corresponding primitives to extract geometric
constraints and stack them in a linear equation system to solve the
model-to-scene pose.

In our experiments, we show that our method can localize
the camera accurately in room-size environments where a few
dozens of parametric primitives have been observed. With its
lightweight footprint, our localization method can work with any
SLAM + semantic segmentation framework likeAR Foundation,
in particular on mobile devices, to replace the native heavy-weight
scene descriptions. We demonstrate the utility of our approach with
examples in guidance, training, and indoor localization.

2 RELATED WORK

Our work is mainly concerned with registration, pose estimation,
camera localization, and the related topic of semantic SLAM.
The registration problem has a long history of research, with a
large number of solutions relying on keypoint correspondences.
Previous work can be divided into methods which aim to solve
correspondences and pose estimation simultaneously [11, 28, 49]
and methods that determine the registration given such correspon-
dences [21, 31, 44, 46]. Among the latter, least squares approaches
are most widely studied [2, 5, 14, 51].

2.1 Least-squares methods for pose estimation

Least-squares solvers, while conceptually simple, require careful
numerical conditioning to yield a stable solution. Some variants
use a Cayley-Gibbs-Rodriguez (CGR) parameterization of rotation
matrices [18, 27, 43] to reduce the number of unknowns, but this
increases the complexity of the methods, often compromising their
numerical stability. Consequently, a large set of correspondences
may be needed, increasing the computational complexity [20].

As rich enough data sources for solving the correspondence
problem under these circumstances, most methods rely on keypoint
descriptors [1, 8, 32, 50]. In contrast, our method trades keypoints
for parametric primitives, which are suf�cient even if the model is
sparse.

2.2 Minimal solvers

Linear and algebraic solutions are less sensitive in terms of
numerical stability, but at the cost of having to solve an equation
system with more unknown parameters. Some methods use
intermediate transformations [8, 32, 38] or pre-rotations [10, 46] to
relax the original problem and �nd the rigid-transformation matrix
in multiple steps. Unlike these methods, we leverage the properties
of 3D geometric primitives to build a linear equation system in 12
unknowns which solves the registration in a single step.

Ramalingam and Taguchi [38] developed a family of minimal
solvers relying on point-to-plane correspondences. They solve
the registration problem by building a speci�c equation system
for each minimal combination of point-to-plane correspondences.
In contrast, our method always uses the same equation system
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independent of the observed correspondences (e.g., three planes,
two planes and one line, two lines and one plane,etc.). Also, our
approach does not suffer from degeneracies or singularities when
all the planes are orthogonal.

Mateuset al. [32] proposed a minimal registration method
similar to ours. They use point-to-point and plane-to-plane corre-
spondences to register sets of overlapping point clouds, whereas we
use line-to-line, line-to-plane and plane-to-plane correspondences
to register model to scene.

Camposecoet al. [8] developed a minimal solver based on
one point-to-point and twopoint-to-raycorrespondences (i.e., one
3D-3D match and two 2D-3D matches). They obtain the 3D-3D
match by triangulating a point from two or more views. The 2D-3D
matches are used to infer the location of two other points. Once the
3D location of the three points is recovered, they use the algorithm
proposed by Umeyama [44] to estimate the camera pose. Instead
of using point-to-ray matches, we use semantic information in the
form of parametric primitives to estimate the camera pose.

The registration of lines to planes was also studied by Chen [10].
The author uses lines, the normal vector of planes and a given
point on the line to solve the problem. Chen's work also includes
a thorough study of the existence of a solution and gives �ve
theorems stating the necessary and suf�cient conditions under
which the problem can be solved. We refer the reader to his paper
for a detailed explanation of such conditions.

2.3 Model-based localization

Model-based localization within known environments plays an
important role in augmented reality. Previous methods focus either
on single-shot localization [24, 41] or robust relocalization to allow
instant recovery from tracking failure [16, 47].

Shottonet al. [41] developed the SCoRe Forest method to
estimate the pose of a camera relative to a known 3D scene from a
singleRGB-D frame. They infer the camera pose from 3D scene
points to 2D image pixels correspondences. Glockeret al. [16]
propose a randomized ferns encoding for instant recovery from
tracking failure. Their mesh-to-volume registration does not need to
�nd explicit scene-to-model correspondences; however, they need
a good initialization to use their approach for AR applications. The
user must provide such an initial solution by manually aligning the
model to the scene.

Rather than using raw point clouds from SLAM, our method
uses input data which is on a higher level of abstraction. The only
input data to our proposed method is our compact world anchor
and the parametric representations of the primitives detected in the
scene. By doing so, we decouple the localization problem within
known environments from the underlyingdevice trackingand
surface detectiontechnologies. Also, our method does not need any
user interaction; we support automatic camera localization within
known scenes.

2.4 Semantic SLAM

Volumetric integration for SLAM was pioneered by Kinect-
Fusion [33], while In�niTAMv3 [23] showed how volumetric
integration can be done rapidly even for large scenes. Even though
many re�nements exist, these approaches still represent the state of
the art for non-semantic SLAM from depth images.

One of the �rst algorithms proposed to incorporate semantic
information was SLAM++ [40]. It incorporates semantic infor-
mation on a per-object level. Its objects are meshes contributing

(a) (b)
Fig. 3: Sources of lines and points used to register 3D parametric
primitives. (a) We can obtain lines from the normal vector of a
primitive (e.g., n1;n2;n3) or the intersection of two planes (e.g., L ).
(b) A point may be obtained from the intersection of three planes
(e.g., p1), the midpoint of the axis of a cylinder (e.g., p2), etc.

error terms to the overall graph-based optimization problem. Later
approaches, such as QuadricSLAM [34] and others [9, 29, 30, 48]
are similar in that they all use speci�c complex object instances
rather than generic shapes.

While SLAM++ and its successors are indeed closely related
to our approach, there are signi�cant differences. First, we are not
aiming at reconstructing (mapping) a scene, but we are merely
interested in camera pose estimation, akin to localization in SLAM
or model-based localization. Second, our algorithm leverages
semantic information in the form of parametric primitives derived
from semantic segmentation [42] rather than from object-speci�c
(or shape-speci�c) detectors [3, 15, 22]. This choice of simple but
distinctive primitives rather than complex meshes is important, as
the cost of creating, storing, and maintaining a scene representation
is signi�cantly reduced.

3 REGISTRATION METHOD

At the core of our work lies (i) a novel closed-form method for
the six degrees of freedom (6DOF) registration based on three
correspondences between model and scene, and (ii) the compact
world anchor we use to �nd such correspondences. In the remainder
of this section, we assume that the correspondences are already
known. Our compact world anchors and the method we use for
computing the correspondences is explained in Section 4.

We use the parametric representations from both, scene
and model primitives, to obtain line-to-line, line-to-plane or
plane-to-planecorrespondences, where lines and planes are treated
as in�nite. We must extract three lines and one point from three
scene-to-model correspondences to solve the registration problem.
For instance, a line can be obtained from the axis of a cylinder or
the intersection of two non-parallel planes (see Figure 3). Similarly,
a point can be obtained from the intersection of three planes, of
two coplanar lines, or the geometric center of a cylinder.

Our closed-form method is robust and determines a unique
solution forT = [ R j t ] 2 SE(3) from a linear system of equations
with 12 unknowns,i.e., we use nine unknowns for rotation to
avoid problems caused by input data with numerically poorly
conditioning. Consequently, it is not guaranteed that the solution
we obtain is a valid rotation matrixR 2 SO(3), and we must
re-orthogonalize the estimated rotation matrix after solving.

The resulting registration is unique up to scale, because three
planes (or lines) that intersect in a single point do not reveal the
scale. Resolving scale needs more information, which we obtain
from the radius, height, width or location of another 3D geometric
primitive.
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Fig. 4: Geometric interpretation of the Plücker lineL . The vector
d gives the direction of the line.M is a point onL , andn is the
normal of the plane spawned byL and the origin.

In the following sections, we explain how to �nd lines
from plane intersections (Section 3.1) and points from line
intersections (Section 3.2). Then, we describe how to set up the
linear equation system (Section 3.3) and how to disambiguate the
solutions (Section 3.4).

3.1 Intersection of planes

A line in 3-space can be represented with Plücker line coordinates
as a pair of 3-vectorsd andn, whered> n = 0, i.e., d is orthogonal
to n. As shown in Figure 4, the Plücker line coordinates of the line
L = [ d;n]> reveal the directiond of the line and the normaln of
the plane spawned by the lineL and the origin of the coordinate
system. A Pl̈ucker lineL remains unchanged when undergoing a
rotation aboutd or a translation alongd.

Plücker coordinates provide a convenient representation of the
intersection of two planes. We can �nd the dual lineL � , a 4� 4
skew-symmetric matrix, formed by the intersection of the planes
P = [ P1;P2;P3;P4]> andQ = [ Q1;Q2;Q3;Q4]> as

L � = PQ> � QP> ; (1)

with P and Q being the 4-vector coef�cients of the parametric
representation of the planes

P1x+ P2y+ P3z+ P4 = 0 and Q1x+ Q2y+ Q3z+ Q4 = 0: (2)

As we mentioned before, the boundaries of planes detected with
front-ends likeAR Foundationmight not be precise. Nevertheless,
their parametric equations are always well de�ned. By using
Plücker coordinates, we can obtain stable and precise lines (from
intersections of planes) without the need to use points on the lines
to represent them.

3.2 Intersection of lines

Let a andb be direction vectors, and letpa andpb be points on two
coplanar lines (see Figure 5a). Withc = pb � pa, the intersection
point I of the two lines is given by

I = pa + s�
kb � ck
kb � ak

a; wheres=

(
+ 1; if (b � c)> (b � a) > 0;

� 1; otherwise.
(3)

3.3 Linear equation system

Given three Pl̈ucker linesL i in model coordinates and their corre-
sponding three Plücker linesL 0

i in camera coordinates, such that

L 0
i =

"
R 0

� [t]� R R

#

L i ; (4)

we can construct a linear equation systemAx = b to solve the
unknown 6DOF transformation formed by the rotation matrixR
and the translation vectort that relatesL i to L 0

i . The rotationR
only affects the direction vector ofL i = [ d;n]> :

d0 = Rd =

2

4
R11 R12 R13
R21 R22 R23
R31 R32 R33

3

5

2

4
d1
d2
d3

3

5 : (5)

Therefore, given the three linesL i , where

L 1 =
�
a1; a2; a3; ea1; ea2; ea3

� > ;

L 2 =
�
b1; b2; b3; eb1; eb2; eb3

� > ;

L 3 =
�
c1; c2; c3; ec1; ec2; ec3

� > ; (6)

we construct the following linear equation systemAx = b using
a pointp = [ px; py; pz]

> , which can be obtained from intersecting
three planes:

A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

a1 a2 a3 0 0 0 0 0 0 0 0 0
0 0 0 a1 a2 a3 0 0 0 0 0 0
0 0 0 0 0 0 a1 a2 a3 0 0 0
b1 b2 b3 0 0 0 0 0 0 0 0 0
0 0 0 b1 b2 b3 0 0 0 0 0 0
0 0 0 0 0 0 b1 b2 b3 0 0 0
c1 c2 c3 0 0 0 0 0 0 0 0 0
0 0 0 c1 c2 c3 0 0 0 0 0 0
0 0 0 0 0 0 c1 c2 c3 0 0 0
px py pz 0 0 0 0 0 0 1 0 0
0 0 0 px py pz 0 0 0 0 1 0
0 0 0 0 0 0 px py pz 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

x =
h

R11 R12 R13 R21 R22 R23 R31 R32 R33 tx ty tz
i >

;

b =
h

a0
1 a0

2 a0
3 b0

1 b0
2 b0

3 c0
1 c0

2 c0
3 p0

x p0
y p0

z

i >
: (7)

The matrixA has a unique solution as long as the three lines are
not in a degenerate con�guration [10]. If, for example, all lines are
coplanar, or two of them are parallel, the matrixA will become
singular, and there will be no solution.

3.4 Direction of lines

The calculation of a line as the intersection of two planes yields
two solutions, since the sign of the line direction is undetermined.
Consequently, with three lines as input, we obtain23 = 8 solutions,
which are identical up to a permutation of the axes. A common
approach for closed-form registration resolves this ambiguity by
verifying which of the permutations is correct with the help of
additional points [18, 38]. However, we enforce a consistent
orientation between the corresponding lines from scene and model
to avoid an explicit veri�cation step after solving the equation
system. This approach is preferred if additional points may not be
available or not reliable.

To ensure consistent line orientation, we prescribe that all
direction vectorsdi should point in the same direction as the
surface normals. For example, given the planesP1 andP2, and
their intersection lined3 (see Figure 5b), we letd3 point in the
same direction as the surface normal of the planeP3. If the line
forming the intersection of the planes points away from the normal,
we invert the line's direction.
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