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A B S T R A C T

A fast and fully automatic design of 3D printed patient-specific cranial implants is
highly desired in cranioplasty − the process to restore a defect on the skull. We
formulate skull defect restoration as a 3D volumetric shape completion task, where a
partial skull volume is completed automatically. The difference between the completed
skull and the partial skull is the restored defect; in other words, the implant that can
be used in cranioplasty. To fulfill the task of volumetric shape completion, a fully
data-driven approach is proposed. Supervised skull shape learning is performed on
a database containing 167 high-resolution healthy skulls. In these skulls, synthetic
defects are injected to create training and evaluation data pairs. We propose a patch-
based training scheme tailored for dealing with high-resolution and spatially sparse
data, which overcomes the disadvantages of conventional patch-based training methods
in high-resolution volumetric shape completion tasks. In particular, the conventional
patch-based training is applied to images of high resolution and proves to be effective in
tasks such as segmentation. However, we demonstrate the limitations of conventional
patch-based training for shape completion tasks, where the overall shape distribution
of the target has to be learnt, since it cannot be captured efficiently by a sub-
volume cropped from the target. Additionally, the standard dense implementation of
a convolutional neural network tends to perform poorly on sparse data, such as the
skull, which has a low voxel occupancy rate. Our proposed training scheme encourages
a convolutional neural network to learn from the high-resolution and spatially sparse
data. In our study, we show that our deep learning models, trained on healthy skulls
with synthetic defects, can be transferred directly to craniotomy skulls with real defects
of greater irregularity, and the results show promise for clinical use. Project page:
https://github.com/Jianningli/MIA.

© 2021 Elsevier B. V. All rights reserved.
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1. Introduction

Cranioplasty is the surgical process where a skull defect,
caused in a brain tumor surgery or by trauma, is repaired
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using a cranial implant, which precisely replaces the missing
cranial bone. Currently, after removal of the defective bone
parts, computed tomography (CT) scans are obtained, and 3D
implants are designed manually using computer-aided design
(CAD) software, using the scans as reference. Often, this
step requires access to expensive commercial CAD software.
Even if free software alternatives are available, manual implant
design is still time-consuming and requires trained specialists.
The implant is manufactured by an external supplier based on
the CAD model, which can take days or even weeks. In the
meantime, the patient will require temporary protection of the
brain, and later a second surgery – including repeated anesthesia
– for the replacement of the implant.

The advent of bio-compatible 3D printing (Bose et al. (2019);
Rengier et al. (2010); Park et al. (2019); Chia and Wu (2015);
Friebe et al. (2018)) creates an opportunity to streamline this
procedure and reduce the wait time: Theoretically, the implant
could be manufactured during a single intervention, directly in
the operation room (in-OR). However, to avoid undue extension
of the surgical procedure, manual design of the implant is not
practical, since it would take too long.

Therefore, this paper explores the option of automatic
generation of an implant model from a CT scan using deep
learning. Our contributions can be summarized as follows:

• We demonstrate that automatic cranial implant design can
be accomplished in a fully data-driven manner without
requiring shape constraints or priors. For this purpose, we
formulated the problem as a volumetric shape completion
task using a convolutional neural network (CNN).

• We construct a large skull database and show how data
pairs can be generated automatically for supervised 3D
shape learning without human annotation.

• We propose a patch-based training strategy which supports
the learning of high-resolution and spatially sparse
volumetric shapes.

• We investigate how skip connections can be used in an
encoder-decoder network to improve 3D shape completion
and propose a model ensembling technique to benefit from
skip connections, while avoiding its adverse effects.

2. Related Work

Several CAD approaches exist for skull defect restoration
and cranial implant reconstruction, which all exploit the
apparent symmetry of the human skulls or rely on skull shape
priors (Gall et al. (2016); Chen et al. (2017); Marzola et al.
(2019); Egger et al. (2017); Kung et al. (2013); Fuessinger
et al. (2017)). These approaches are however not optimal,
considering that human skulls are not strictly symmetric.
Moreover, these approaches are still time-consuming, limiting
the applicability for instant manufacturing.

The work of Morais et al. (2019) is the closest to our study
in that they also try to automate the design of cranial implant

using deep learning. Compared to this work, our current study
explores the following three major areas of improvement:

First, Morais et al. (2019) used low-resolution skull data
(303, 603 and 1203) for both training and evaluation of an
autoencoder style network. However, real-life head CT scans
used in clinical routines or for cranial implant design typically
have a size of 512 × 512 × Z, where Z is the number of
axial slices. Training and testing a deep neural network on
high resolution 3D images is challenging, as the memory
requirement grows in a cubic manner. Our method trains a deep
learning model on large 3D images of the skull with a standard
desktop computer, which makes it easy and affordable to deploy
the model at medical institutions.

Second, unlike most medical images, the skull images are
binary and sparse, i.e., the valid (occupied) voxels, which
represent the inner and outer skull surfaces, are sparsely
distributed across the image volume. Therefore, conventional
deep learning based methods, which proved successful in other
medical images and tasks, may not be effective or efficient
for our shape completion task. The high dimensionality and
sparsity are not addressed in the work of Morais et al. (2019).

Third, the generalization ability of the deep learning models
on various shapes and defect patterns is often the key
considerations for shape completion tasks. For the cranial
implant design task, the generalization ability is very relevant,
as the skull defects can have various shapes, sizes and positions,
depending on the specific underlying pathology (e.g., the size
and location of a brain tumor) of a patient. In the work of
Morais et al. (2019), simple synthetic defects with a cubic
pattern were used for the evaluation of their method. We
address the problem by injecting random defects for each
healthy skull − a data augmentation technique that enables our
deep learning models to generalize well to varied synthetic skull
defects as well as to real craniotomy defects.

Skull defect restoration can be formulated as 3D volumetric
shape completion, aiming at predicting the missing structures
of the defected skull volume. In computer graphics, 3D shape
completion has been intensively studied. Related approaches
include classical mesh processing methods that directly operate
on shapes represented as 3D triangular meshes (Kazhdan et al.
(2006); Kazhdan and Hoppe (2013); Zhao et al. (2007); Ngo
and Lee (2011); Sakr et al. (2018)). Some approaches complete
the shape by exploiting the symmetry of 3D point clouds
(Schiebener et al. (2016); Sung et al. (2015); Mitra et al.
(2006)). The exploitation of symmetry for shape completion
is similar to some of the interactive approaches for skull defect
restoration (Angelo et al. (2019); Marzola et al. (2019); Gall
et al. (2016); Egger et al. (2017); Chen et al. (2017)).

Data-driven approaches, especially deep learning
approaches, also play an important role for 3D shape
completion, facilitated by publicly available 3D shape datasets
such as ShapeNet (Chang et al. (2015)). These approaches
usually train a 3D CNN on a volumetric representation of a 3D
point cloud of various objects such as cars, chairs, airplanes,
etc. Most approaches use an encoder-decoder architecture for
this purpose (Dai et al. (2016); Stutz and Geiger (2018); Han
et al. (2017); Li et al. (2017); Litany et al. (2017)), operating
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Fig. 1. Data preprocessing pipeline. From left to right: skull denoising using 3D connected component analysis; defect (hole) injection into the denoised
skull in the neurocranium; skull cropping to keep only the neurocranial area, which is the region of interest (ROI) for cranial implant design.

on a binary voxel grid obtained from the 3D point cloud.
The binary voxel grid supports regular 3D convolution, but

its high memory cost (compared to the sparse 3D point data)
prohibits learning at high resolutions. For instance, the encoder-
decoder network (Dai et al. (2016)) takes as input a voxel
grid of only 323 voxels and produces a prediction of the same
dimension, which is synthesized to a final output of 1283. Han
et al. (2017) uses voxel grids of 2563. However, instead of
directly processing the high-resolution voxel grid, they down-
sample the voxel grid to 323 and feed the low-resolution voxel
grid into an encoder-decoder network to learn a global shape
structure. In an additional step, they train another network using
3D patches (323) extracted around the defected area of the high-
resolution voxel grid for shape refinement. These methods start
from small point clouds, so a low-resolution voxel grid suffices
to preserve the shape of the point cloud.

Other recent methods, which apply convolutional operations
directly to point clouds for 3D shape classification and
segmentation (Qi et al. (2016, 2017); Li et al. (2018a); Yang
et al. (2017b); Li et al. (2018c); Liu et al. (2019)) are limited to
small point clouds as well (Wu et al. (2014)).

Generative adversarial networks (GAN) also play a role
in 3D shape completion (Wang et al. (2017); Wu et al.
(2020); Sarmad et al. (2019)). Similar to the previously
mentioned studies, GAN solutions are evaluated on small
shapes from ShapeNet (Chang et al. (2015)). Specifically,
Wang et al. (2017) build their methods primarily on a 3D
Encoder-Decoder Generative Adversarial Network (3D-ED-
GAN), which takes as input a coarse and corrupted voxel grid
(323) and outputs a completed grid of the same dimension. A
recurrent convolutional network is further adopted to increase
the resolution of the completed grid to 1283. Wu et al. (2020)
and Sarmad et al. (2019) propose to perform shape completion
directly on 3D point clouds, considering that point clouds
represent the raw data structure of various scanning devices.

However, implant generation is a volumetric shape
completion task on high-resolution volumes segmented from
high-quality head CT scans (5122×128). At this scale, we found
that going through an intermediate low-resolution step, as the
voxel grid methods discussed above do, is neither efficient (too

slow) nor effective (low quality results). A similar restriction
applies to the point-based methods mentioned above, which
are not able to deal with millions of points, as would be
required when converting high-resolution CT scans to a point
representation. Another issue derived from the high resolution
is the spatial sparsity of the skull data: The skull can be seen as
a two-dimensional manifold embedded in a three-dimensional
volumetric space, where most of the voxels in the image volume
are unoccupied (Figure 1). Therefore, unlike previous methods,
our method performs 3D shape completion directly on the
sparse regions of the high-resolution volumetric data.

3. Materials

3.1. Datasets

We constructed a database containing 167 healthy skulls.
The skulls are segmented manually by neurosurgeons from
head CT scans, which are acquired in clinical routine at a
high resolution of 512 × 512 × Z (Z ranges from 255 to
480). As bone density changes with age, an individualized
Hounsfield units segmentation threshold was used for each
skull, to ensure that the complete skull anatomy was preserved
after the segmentation process. The resulting datasets thus have
the complete bone structures of each skull without a defect.

3.2. Preprocessing and Data Pair Creation

The overall data preprocessing pipeline (Figure 1) consists
of three main steps: denoising, hole injection and cropping.
The denoising step removes the noise and artifacts (e.g., the
head holder of the CT table) by using 3D connected component
analysis. We create training pairs out of the skull data by
injecting defects (holes) into the neurocranial area of the
healthy skulls. The process is to simulate defects resulting from
a craniotomy surgery, where holes are drilled in the corners
of the bone flap to be removed. Afterwards, the data driven
approach will learn to refill the defects based on these data
pairs (i.e., the skull with a hole injected and the corresponding
healthy skull). This course of action has two main advantages:
(1) When injecting a hole into a healthy skull, the ground truth
(i.e., the healthy skull) for reconstruction is known. (2) We
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Fig. 2. Method Overview: (a) the network configurations of M1 and M2, (b) the training strategy − non-overlapping cropping (top), overlapping cropping
(middle), random cropping (bottom), (c) model ensembling based on bounding box for cranial implant generation.

can create multiple data pairs out of a single healthy skull by
injecting holes with different positions, sizes and shapes.

In order to create realistic defects in the healthy skulls, we
refer to the real morphology of skull defects that are manually
created by neurosurgeons in a craniotomy, according to a
published craniotomy dataset (Gall et al. (2019)). As is shown
in Figure 1, the artificially injected defects used in the datasets
are simplified, but represent the overall morphology of real
defects after a craniotomy (the real defects have rougher borders
compared to the artificial ones). For each healthy skull, we
injected nine random defects with different positions, sizes and
shapes, resulting in a total of 167 × 9 = 1503 data pairs (nine
defected skulls per one healthy skull). The defected skull in
Figure 1 is just one of the nine random situations where the
defect is injected around the middle. The data pairs are further
split into a training set of 765 (85 × 9) pairs and a test set of
738 (82× 9) pairs. Since the region of interest (ROI) for cranial
implant design in neurosurgery is the neurocranial area, the last
data preprocessing step is to crop the skull and discard the facial
area. The cropping results in a uniform skull dimension of
512× 512× 128 1. Besides the 167 healthy skulls with artificial
defects, we also collected one head CT from a craniotomy case
for the evaluation of the approach in a clinical setting.

4. Method

4.1. Problem Formulation and Network Architecture

Restoring defects in the skull can be formulated as a 3D
volumetric shape completion task, where the input skull S d is
represented as a 3D volume with a missing part, and the output

1We selected the upper 128 axial slices of the skull, which approximately
represents the neurocranium.

S c is the completed skull with the missing bone restored. Both
S d and S c are binary, where 1 represents voxels belonging to
the skull and 0 represents unoccupied voxels (the background
and the empty space inside the skull) in the image volume.
Intuitively, the cranial implant Imp can be expressed as the
subtraction of S d from the completed skull S c:

Img = S c − S d (1)

Equation (1) can be rewritten as:

S c = S d + Img (2)

According to Equation (2), skull shape completion can be
divided into two subtasks, the reconstruction of the original
structure of the skull (i.e., the input S d) and the restoration
of the missing skull bone Imp, which should be fulfilled
simultaneously by a CNN. In our study, two encoder-decoder
style networks, shown in Figure 2 (a) are employed, which are
referred to as M1 (left, without skip connections) and M2 (right,
with skip connections), respectively. For M1, the encoder is
comprised of four convolutional layers with a stride of two for
down-sampling and two additional convolutional layers with a
stride of one for feature embedding (i.e., Conv5 and Conv6).
The decoder is comprised of four deconvolutional layers for
up-sampling, and the output layer is a convolutional layer with
a stride of one. The total number of trainable parameters of
M1 is 82.076 million. For M2, max-pooling is used in the
down-sampling path, and skip connections are added between
corresponding down-sampling and up-sampling layers. The
number of trainable parameters of M2 is 41.024 million. To
simplify notation, the input of M1 and M2 is denoted as I, and
their output is denoted as S M1 and S M2, as in Figure 2 (a).
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For the training of both networks, a Dice based loss function
(Yang et al. (2017a)) is used:

L(yp, yg) = −2
1∑

i=0

∑
yi

p ◦ yi
g∑

yi
p ◦ yi

p +
∑

yi
g ◦ yi

g
, (3)

where ◦ denotes the Hadamard product (element-wise
multiplication) of two 3D matrices.

∑
denotes the summation

of matrix elements. yp is the softmax output of the network,
and yg is the one-hot representation of the ground truth skull.
Both yi

p and yi
g have a dimension 128 × 128 × 128, which is

the input/output size of the networks, as will be discussed in
Section 4.3. As the final output is binary, y0

p and y0
g represent

the background and y1
p and y1

g represent the foreground.

4.2. Model Ensembling for Cranial Implant Generation

According to Equation (1), the implant from M1 and M2 can
be expressed as Imp1 = S M1 − I and Imp2 = S M2 − I. We
further propose an ensembling technique based on bounding
boxes to combine the implants from each individual model into
the final cranial implant. The bounding box is calculated using
the implant from M2, which is applied to the implant from M1.
The process is illustrated in Figure 2 (c). The bounding box

B(x, y, z) =

{
1, if x ∈ [x1, x2], y ∈ [y1, y2], z ∈ [z1, z2]
0, otherwise (4)

is calculated according to the criteria (5) − (7).
Xp(x1) , 0, Xp(x1 − 1) = 0
Xp(x2) , 0, Xp(x2 + 1) = 0

Xp =
∑Y

y=1
∑Z

z=1 Imp2

(5)


Yp(y1) , 0,Yp(y1 − 1) = 0
Yp(y2) , 0,Yp(y2 + 1) = 0

Yp =
∑X

x=1
∑Z

z=1 Imp2

(6)


Zp(z1) , 0,Zp(z1 − 1) = 0
Zp(z2) , 0,Zp(z2 + 1) = 0

Zp =
∑Y

y=1
∑X

x=1 Imp2

(7)

where X, Y , Z are the numbers of axial, sagittal and coronal
slices in Imp1, Imp2, and B ∈ RX×Y×Z (X = Y = 512, Z = 128).
The final implant is given by:

Imp = B · Imp1 (8)

4.3. Training Strategy

M1 and M2 are trained separately, since they are designed to
be complementary and not adversarial. The strategy for training
the two networks is designed specifically for a volumetric shape
completion task on high dimensional, spatially sparse data.

High Dimensionality. Patch-based training is a widely used
strategy in deep learning when the data dimensionality is high
(Yang et al. (2017a); Wang et al. (2019); Heinrich et al. (2019);
Dou et al. (2017); Li et al. (2018b); Kamnitsas et al. (2017)). In
a conventional patch-based training scheme, the deep learning
model trains on a sub-volume randomly cropped from the data
for each training epoch, which makes it difficult for the model
to capture the overall characteristics of the complete volume.
This disadvantage is tolerable when the overall shape of the
target is not the primary concern. For instance, in tasks such
as segmentation, the model only needs to learn to differentiate
between voxels in the target and voxels in the background.
However, the disadvantage becomes less tolerable for tasks
where the primary goal is to learn the overall shape of the target,
such as 3D shape completion, as a small patch does not carry
enough information about the overall shape in the volume. In
skull shape completion, increasing the patch size could lead
to improvements, but it is not a practical solution when the
computational resources are limited.
As an alternative, we propose that training on patches
sequentially cropped from the same data for consecutive epochs
can encourage the network to learn the overall skull shape,
compared to the random cropping method. In Figure 2 (b) top,
the skull shape is divided into 4 × 4 = 16 equally-sized patches
of dimension 1283, and the patches are sequentially fed into the
network for 16 consecutive epochs 2. When another skull is
selected, the same procedure is repeated.

By doing so, the whole skull shape can be involved in the
optimization, before another skull is selected, so that the overall
shape distribution of the skull can be captured by the deep
learning model. The training strategy imposes a virtual skull
shape prior in the shape learning process by telling the network,
in an implicit manner, what each particular skull shape is like.

Spatial Sparsity. Another issue is the sparsity. The skull data
are spatially sparse and can be seen as a two-dimensional
manifold embedded in three-dimensional volumetric space
(512 × 512 × 128). The overall voxel occupancy rate of a skull
in the volumetric space is usually no more than 10 percent.
While processing sparse data, most of the time, the convolution
is operating on empty space, which causes inefficient usage
of computational resources and difficulties for feature learning.
Based on the fact that the level of sparsity is negatively related
to the patch size, we propose that the learning difficulty posed
by sparsity could be overcome by cropping more patches from
the same skull, e.g., cropping patches in an overlapping manner,
so that the relative patch size can be reduced 3. In Figure 2 (b)
middle, we crop 7 × 7 = 49 patches of dimensional 1283 from
a skull, and the patches are overlapped in the middle.

For ease of reference, we denote the model trained using
non-overlapping cropping (−n), overlapping cropping (−o) and
random cropping (−r) strategy as M − n, M − o and M −
r. For example, M1 − n denotes the M1 trained using the

2Limited by the current GPU memory, the batch size is set to 1.
3The relative patch size is the size of the whole volume divided by the

number of patches.
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Table 1. Mean values of the Dice Similarity Score (DSC), the Jaccard Similarity Coefficient (JSC), Precision and Recall of the 82 × 9 = 738 test cases for
the skulls and implants.

methods skull implant

DS C JS C Precision Recall DS C JS C Precision Recall
M1 − n 0.8861 0.7971 0.9023 0.8726 0.7276 0.5830 0.7042 0.7739
M1 − o 0.8931 0.8086 0.9020 0.8863 0.7267 0.5810 0.6888 0.7838
M1 − r 0.8598 0.7559 0.8573 0.8655 0.6080 0.4457 0.5437 0.7210
M2 − n 0.9508 0.9075 0.9622 0.9403 0.7633 0.6257 0.8059 0.7346

ensembling - - - - 0.7725 0.6396 0.7847 0.7736

Fig. 3. Boxplot of the metrics for the skulls and implants by non-overlapping cropping (M1 − n), random cropping (M1 − r), overlapping cropping (M1 − o),
skip connection (M2 − n) and ensembling (M1 − n and M2 − n).

non-overlapping strategy. We will demonstrate that different
training strategies can lead to significant differences in the
maximum learning capacity a deep learning model can reach,
when trained to their full convergence, for shape learning
problems such as volumetric shape completion.

5. Experiments

5.1. Implementation

We implemented M1 and M2 using Tensorflow, on a machine
with an Intel(R) Core(TM) i5-6600K CPU and a Nvidia
GeForce GTX 1070Ti GPU. The dice loss function is defined
in Equation (3), and the optimizer is Adam. The training
(85 × 9 = 765) and testing (82 × 9 = 738) sets are described
in Section 3. For the experiments, we train M1 using the
non-overlapping cropping, overlapping cropping and random
cropping strategy and obtain the trained models M1 − n, M1 − o
and M1 − r. M2 is trained using non-overlapping cropping, and
the trained model is M2 − n. Each training takes approximately
150h for the model to fully converge (i.e., reach their maximum
learning capacity). The purpose of the experimental design is to
compare the training strategies (based on M1−n, M1−o, M1−r)
and evaluate the two models (based on M1 − n and M2 − n)

separately. For a fair comparison, all the models are trained
from scratch (weights initialized from normal distribution) with
exactly the same settings until full convergence, as monitored
from the training loss/epoch curve. Full convergence means
that the models have been trained to their full learning capacity
on the training set. After training the models, the skull shape
completion is also done in a patch-wise manner. After skull
shape completion, each trained model generates the implants
according to Equation (1). To evaluate the ensembling based
method, M1 − n and M2 − n are selected to jointly produce an
implant for each test case based on Equation (8).

5.2. Evaluation Metrics

We evaluated the trained models in terms of Dice Similarity
Score (DSC) and Jaccard Similarity Coefficient (JSC, also
known as Intersection Over Union (IOU)):

DS C = 2|G ∩ P|/(|G| + |P|) (9)

JS C = |P ∩G| /(|P| + |G| − |P ∩G|) (10)

where P represents the prediction, and G represents the ground
truth. These metrics are commonly used to measure the
similarity between two binary volumetric shapes.
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For voxel-level evaluation, the performance of the models
to distinguish between unoccupied voxels (the background and
the empty space inside the skull) and occupied voxels (voxels
belonging to the skull) is measured using precision (also known
as PPV, positive predictive value) and recall (also known as
sensitivity, true positive rate):

PPV = T P/(T P + FP) (11)

Recall = T P/(T P + FN) (12)

where T P, FP, FN represent true positive, false positive and
false negative, respectively. From this perspective, the models
are considered as binary classifiers. For a more advanced
evaluation, we extracted the surface model (triangular mesh)
from some selected test cases and calculated the signed distance
between the prediction and the ground truth. The signed
distance is depicted using a 3D colormap. For a qualitative
evaluation and comparison, we also give illustrations of some
reconstructed skulls and implants in both 2D and 3D.

5.3. Results

We first performed skull reconstructions on the 82 × 9 = 738
test cases using the trained models M1 − n, M1 − o, M1 − r
and M2 − n. For each test case, we obtained the implant
by subtracting the defected skull from the reconstructed skull
according to Equation (1). We calculate the above mentioned
metrics for both the skull (the reconstructed skull produced by
M1 and M2 against the ground truth skull) and the implant
(the implant obtained by each individual model as well as by
ensembling against the ground truth implant). The results are
shown in Table 1.

We observe from Table 1 that M1 − n and M1 − o outperform
M1 − r regarding all the metrics for both the skull and implant,
showing the superiority of the proposed training strategy (−n
and −o) compared to the conventional random cropping (−r)
with respect to our shape completion task. M2 − n has the
best performance compared to each individual model, and all
the metrics regarding skull reconstruction exceed 0.90 (DSC:
0.9508, Precision: 0.9622, Recall: 0.9403, JSC: 0.9075), which
is a significant improvement compared to M1, even if M2 is
only half the size of M1 in terms of the number of trainable
parameters. However, despite the high accuracy for skull
reconstructions, the scores for the implants remain mediocre,
which could imply that the improvement is mainly due to the
enhanced ability of M2 to reconstruct the original (defective)
structure of the skull rather than to restore the missing part,
i.e., the implant, thanks to the use of skip connections. We
will further discuss the effects skip connections have in our
skull shape completion task in Section 5.5 and 5.6, where the
reconstructed skulls and implants are visualized.

For all the models, the implant accuracy is lower than
that of the skull, which can be attributed to three factors.
First, the failure of the deep learning models when the defect
is very large, in particular if the defect is created close to
the lower border of the cropped skull and the contextual
information is missing. Second, the implant is obtained through
subtraction according to Equation (1), so that the errors from

skull reconstruction are accumulated in the implants. Third,
and most importantly, most of the errors are located in uncritical
regions, while the clinically relevant parts of the implant, i.e.,
implant boundaries, shape and curvatures, are of a relatively
high standard.

The implants obtained from the ensembling of M1 − n and
M2 − n according to Equation (8) are also quantitatively
evaluated against the ground truth. The scores are shown in
Table 1 (last row). Regarding DSC and JSC, we can see that
the implants produced by the ensembling based method are
superior to the implants produced by M1 − n or M2 − n alone.
The improved implant quality due to ensembling can be better
observed from qualitative illustrations (Section 5.6).

The scores of the test cases are also given as boxplots in
Figure 3. Unlike the accuracy values in Table 1, which are
calculated by taking the average of the 82 × 9 = 738 test scores
for each metric, each boxplot shows the accuracy values of the
82 test cases. As we have considered nine different defects for
each skull in the test set, we take the average of the nine test
scores as the final score for each of the 82 skulls and implants
for the boxplots.

5.4. Statistical Significance Analysis

Via t-tests, we further analysed whether the improvement
of using skip connections (M2 − n) and the proposed training
strategy (−n, −o) is statistically significant regarding all the
metrics for both the skull and the implant. We calculated:

t =
X̄1 − X̄2

sp
√

2/n
(13)

where sp = 1
2

√
s2

X1
+ s2

X2
and X̄1, X̄2,s2

X1
,s2

X2
are the mean and

the estimated variance with respect to a metric from two trained
models. n is the number of test cases. Table 2 shows the results.

We adopt the commonly used PT = 0.05 as the threshold to
categorize the difference as significant or insignificant. Table 2
shows that M2 − n performs significantly better than M1 − o,
M1 − n and M1 − r for both the skull and the implant regarding
most of the metrics. The proposed training strategy (M1−n and
M1 − o) also achieves significant improvements compared to a
conventional training strategy (M1 − r).

5.5. Visualizations

The skull shape completion results of different skulls with
defects of different shapes, positions and sizes are shown in
3D and 2D in Figure 4 and Figure 5, respectively. The first to
last columns of Figure 4 show the input, ground truth and skull
shape completion results of M1 − o, M1 − n, M1 − r and M2 − n,
respectively. Judging from the 3D illustration in Figure 4, it
is evident that the reconstruction by M1 − r is of the worst
quality both in terms of reconstructing the original structure and
of restoring the missing part. M1−o and M1−n can reconstruct
a complete skull with sufficient quality, but the shape of the
reconstructed skull still shows some distortion from that of the
ground truth. Due to the mismatch, the implant obtained by
subtracting the input from the reconstruction will contain some
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Table 2. P values (PT = 0.05) among the evaluation metrics of the four approaches for statistical significance analysis.

skull implant

DS C Precision Recall JS C DS C Precision Recall JS C
M2 − n↔ M1 − o 1.518e−34 3.730e−35 2.280e−18 1.686e−38 5.000e−4 1.011e−18 8.486e−5 3.000e−4

M2 − n↔ M1 − n 4.511e−40 7.456e−30 5.481e−26 4.330e−44 1.400e−3 2.240e−12 2.300e−3 1.100e−3

M2 − n↔ M1 − r 4.796e−55 6.802e−48 1.015e−28 2.888e−60 4.770e−30 2.112e−50 3.464e−1 4.848e−34

M1 − n↔ M1 − r 6.645e−08 1.164e−11 2.902e−1 1.294e−08 2.308e−17 9.265e−20 6.000e−4 2.380e−19

M1 − o↔ M1 − r 2.986e−11 1.596e−12 2.700e−3 2.127e − 12 1.860e−18 1.079e−19 3.650e−05 1.659e−20

M1 − o↔ M1 − n 1.221e−1 9.448e−1 4.380e−2 9.720e−2 9.411e−1 3.116e−1 4.484e−1 8.839e−1

Fig. 4. 3D Visualization of skull shape completion results. Columns from left to right: the input, the ground truth, the completion results from M1 − o,
M1 − n, M1 − r, and M2 − n.

noise around the borders (e.g., first row, Figure 7), which is one
of the causes of the mediocre scores for the implant in Table 1.

The reconstruction results of M2 are quite different from
those of M1 in that M2 can reconstruct the original (defective)
structure of the skull well. At the same time, we observe a non-
closed restoration of the missing part, as can be seen from the
last column of Figure 4. Note that, even if such failures can also
be seen in the results of some random cases from M1 − r (fifth
column, Figure 4), they are mainly caused by the reconstruction
errors of the deep learning models. Nonetheless, the non-closed
skull reconstruction is prevalent across all the test set for M2,
which could be attributed to the use of skip connections.

Note that the stitching effect on the surface of the skulls
produced by M1 is caused by the patch-wise training and
inference scheme, where the output 3D patches are stitched
together to form a complete skull during inference. It shows
that the contacting borders of the output patches for a skull are
not fully in congruency. However, the stitching effect is less
noticeable on the surface of the skulls reconstructed by M2.

Besides the 3D visualizations, we show in Figure 5 an
overlay of the completed skull onto the original defected skull
in the 2D sagittal and axial views to better illustrate how the
restored missing part of the skull can match with the defected
area. Matching shape and boundary is the primary concern
when assessing the clinical usability of a cranial implant in
cranioplasty. For cosmetic and aesthetic considerations, the
implant is required to restore the original/normal shape of the
patient’s skull. In particular, the inner and outer curvatures and
contact points of the implant should be largely in agreement
with the original defected skull, so that the skull surface appears
continuous around the implanted area. From Figure 5, we can
see that the restored skull bone from M1−o, M1−n, M1−r, and
M2−n can connect with the original skull structure smoothly on
both inner and outer surfaces. For M1 − r, some discontinuities
can be seen on the axial view of the restored skull bone (third
column, Figure 5).

We can observe from Figure 5 that the restored part (i.e.,
the implant) can fit precisely against the borders of the skull
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Fig. 5. A visual inspection of the completed skull overlaid onto the original defected skull in 2D sagittal (top row) and axial (bottom row) view, where the
contacting parts (boundaries) between the defected area and the restored bone are zoomed in. From left to right: the completion results from M1 − o,
M1 − n, M1 − r, and M2 − n

defect. However, a clinically usable cranial implant does not
necessarily need to fit tightly in such a way. Instead, tiny
gaps are allowed, since the borders of the defect are usually
not sharp due to bone generation and scarring (von Campe
and Pistracher (2020)). Even commercially designed and
manufactured cranial implants are sometimes subject to manual
intra-operative post-processing of the boundaries to make them
fit. In our study, however, we considered the tight boundary
contact, as shown in Figure 5, to be a desirable characteristic of
our automatic cranial implant design algorithm, since a slightly
too large (non-metal) implant can be further post-processed by
the neurosurgeons when necessary, whereas no correction is
possible if the automatically generated implant is too small.

5.6. Model Ensembling for Implant Generation
In this section, we will further illustrate how skip connections

in an encoder-decoder network affect the volumetric shape
completion task, and how the proposed model ensembling
technique can take the advantages of M2, while avoiding its
adverse effects for implant generation. Besides M2 − n, a
trained model from M1 is needed to generate implants via
model ensembling according to Equation (8). Here, we chose
M1 − n. From the four reconstructed skulls of M2 − n and
M1 − n as well as from the ground truth skulls in Figure 4,
we extract the mesh models and calculate the signed distance
field between the reconstruction and the ground truth meshes.
The signed distance fields are represented by the 3D colormaps,
as shown in Figure 6, which illustrate how the reconstruction
errors are distributed across a skull. For all the colormaps in
Figure 6, the color ranges are adjusted to [-7, 11], where the
color center is set to 0 (green). By examining the 3D distance
colormaps in the first row, we see that there is a mismatch (non-
zero distance) between the reconstruction of M1 − n and the

ground truth throughout the skull. The mismatch is the cause
of noise in the implant obtained through subtraction, as can be
seen from the first row of Figure 7.

The distance colormap of M2 − n (in the second row) has
properties distinct from that of M1−n. First, the distance is close
to zero (shown as green), except in the restored region, which
means that M2 − n achieves high accuracy in reconstructing the
original skull structure, and the reconstructed skull can match
precisely with the ground truth and the input, except in the
missing part. The precise match can lead to an implant with
clean borders, as can be seen from the second row of Figure 7.
Second, the implant from M2 − n is non-closed on the surface,
despite having clean borders.

The above mentioned distinct behaviors of M1 and M2 have
been observed in all the 738 test cases, which we attribute to
the use of skip connections. In our skull shape completion task,
skip connections can enhance the ability of an encoder-decoder
network to reconstruct the original defective skull structure, but
the ability to restore the missing part may be undermined.

Figure 7, last row, shows the implants obtained from the
ensembling of the two models based on the method described
in Section 4.2. We can see that the ensembled implants have
both closed surfaces and clean borders and the visual quality is
superior to implants obtained from M1 or M2 alone.

Figure 8 shows the 3D signed distance colormaps for the
implants obtained from M1 − n (left), M2 − n (middle) and the
ensembling of M1−n and M2−n (right). From these colormaps,
we can see that the boundaries as well as the small roundish
corners of the implant have the smallest errors (the distance to
the ground truth is close to 0) compared to other parts of the
implant. The implant can fit precisely against the borders of the
missing region on the input skull, which is a desirable property
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Fig. 6. 3D signed distance colormap between the meshes extracted from the ground truth skulls and the reconstructed skulls by M1 − n (first row) and
M2 − n (second row). The color ranges for all the colormaps are adjusted to [-7, 11]. Green denotes that the distance is 0. The colormaps are created using
3DMeshMetric (https://www.nitrc.org/projects/meshmetric3d/).

for the automatic cranial implant design task. In the middle
parts of the implant, the high errors (e.g., yellow or blue) are
distributed more sparsely for the ensembled implant than for
the implant produced by M2 − n, showing the advantages of
implant generation via ensembling. Moreover, we can also see
from the distributions of the signed distances (positive/negative)
how the curvatures and thickness of the ground truth and the
automatically generated implant match.

6. Clinical Applicability

In this section, we discuss the clinical applicability of
the proposed automatic implant generation method from the
following two aspects: a) how the deep learning models trained
only on skulls with synthetic defects can also be used for the
completion of real-life (craniotomy) defects, b) how a cranial
implant is assessed for clinical usability and how the quality
of the algorithm-produced implants is compared to the present
clinical standard. We included the completion result of a
craniotomy skull for discussion.

First, as outlined in Section 3, only synthetic skull defects
were involved in training the deep learning models. The
reasons for not using the craniotomy data directly for training
are twofold: 1) Craniotomy data are much rarer than data of
healthy skulls; it is difficult to collect enough craniotomies
for training. 2) Craniotomy cases often lack a pre-operative
head CT scan, so that the ground truth of the craniotomy
data is unavailable. However, as craniotomy and traumatic
defects tend to be much more irregular and complex than the
synthetic defects, the deep learning models must be designed
and trained to ensure the ability to generalize, which is the key
consideration for a deep learning model to function properly
in clinical scenarios. To address the challenge, we augmented
the skull dataset by creating several random synthetic defects
for each healthy skull, and the deep learn models are thereafter
trained to complete randomly shaped, positioned and sized
defects and consequently craniotomy or traumatic defects.

Second, as our deep learning models are trained to precisely
reconstruct a healthy skull prior to the damage (e.g., caused by
a brain tumor surgery or head trauma), the resulting implants
tend to fit tightly against the boundaries of the defected area, as
shown in Figure 5 and Figure 10. However, a tight boundary
contact between the implant and the skull is often not necessary
and could even be undesirable in cranioplasty procedures, as the
defect boundaries might have undergone some remodeling over
time through bone regeneration and scarring. We nevertheless
considered the tight boundary contact a desirable property, as
neurosurgeons can always manually post-process the tightly
fitting implants where necessary. In that sense, the goal of our
current method is not to automatically generate an implant that
is immediately ready for manufacturing and implantation, but
to focus on increasing the level of automation for the cranial
implant design process using deep learning.

Another positive aspect about the precise reconstruction of
the original healthy skull is that a satisfactory cosmetic outcome
can be achieved, due to the shape and curvature consistency
between the skull and implant, as shown in Figure 5. Besides
the implant boundaries, the shape and curvature consistency
is of equal importance when assessing the quality of a cranial
implant, as one of the primary goals of cranioplasty is to restore
a normal skull appearance for the patient.

To evaluate the applicability of the methods to real clinical
scenarios, one head CT from a craniotomy case was also
processed. In that particular instance, the defect was covered
intra-operatively by a titanium mesh for protective purposes.
The first column of Figure 9 shows a 3D and axial plane view
of the CT scan after segmentation, where the mesh covering the
defect is visible. It can be seen that the manually created defect
during craniotomy is of greater complexity (e.g., the boundary
is not cut straight, and the shape is irregular) than the artificial
defects used in training our models, and the existence of the
metal mesh on the defected area can also potentially affect the
models’ performance.

https://www.nitrc.org/projects/meshmetric3d/
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Fig. 7. From first to last row: cranial implants obtained from M1 − n, M2 − n and the ensembling of M1 − n and M2 − n, respectively.

Table 3. Mesh distance (measured in millimeters) between the predicted and ground truth implant (pred → gt), the predicted and manually designed
implant (pred→ manual), the manually designed and ground truth implant (manual→ gt).

caseID pred→ gt pred→ manual manual→ gt

max mean RMS max mean RMS max mean RMS

1 11.3589 0.6995 1.1312 20.8776 0.9422 1.4940 5.8875 1.0419 1.4944
2 5.0173 0.7710 1.0552 7.2673 2.3752 2.9988 6.1991 1.6621 2.2205
3 4.5117 0.6907 0.9956 7.3029 1.9127 2.3855 5.6454 1.5951 2.0507
4 7.0757 0.8466 1.3275 12.0077 1.7596 2.5000 8.6992 1.5536 2.2943

However, the models are still able to perform a satisfactory
skull shape completion in such a case, despite the complexity.
The second to fourth column of Figure 9 show the completion
results produced by M1 − n, M1 − o and M1 − r, respectively,
viewed in 3D and the axial plane. On each 2D plane, the
restored areas are highlighted and zoomed in. Based on these
limited results, it appears that, even if our models are trained
only on healthy skulls with synthetic defects, the models show a
promising generalization ability towards real clinical cases with
complex defects.

7. Comparison with Commercial Software in Cranial
Implant Design

In this section, we compare our fully automatic method (the
ensembling of M1−n and M2−n) for cranial implant design with
a commercial software solution (Geomagic Studio https://

www.3dsystems.com/software) (van der Meer et al. (2013)).

The cranial implant design workflow using this software is
described as follows:

(i) Convert the defective skull volume into a 3D model (.stl),
and import the model into Geomagic Studio.

(ii) Make the model watertight using the ’fill’ function.

(iii) Trim with curve: select several points alongside the
missing region on the model (3 ∼ 4 min).

(iv) Fill the missing part using the ’add bridge’ and ’fill’
functions (6 ∼ 8 min).

(v) Boolean operation between the filled model and the
original model (4 ∼ 6 min).

(vi) Post-processing: smoothing, denoising, surface curvature
adjustment, etc. (18 ∼ 25 min).

https://www.3dsystems.com/software
https://www.3dsystems.com/software
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Fig. 8. 3D signed distance colormap showing the error distributions across the implants obtained from M1 − n (left), M2 − n (middle), the ensembling of
M1 − n and M2 − n (right), respectively. For all the three colormaps, the color ranges are adjusted to [-6, 24], where the color center is set to 0 (green).

Fig. 9. Skull shape completion on a craniotomy data. The first column shows the craniotomy skull in 3D and axial view. The second to last column shows
the skull shape completion results from M1 − n, M1 − o, and M1 − r respectively.

(vii) Export the implant model as a .stl file.

Designing implants using such modeling software has two
principal challenges. First, the shape and curvature of the
implant should match that of the surrounding skull to ensure
an aesthetic outcome. Second, the thickness and boundary of
the implant must fit the defected skull area. The two implant
properties need to be manually realized using the software;
consequently, the implant quality as well as the design time
relies largely on the expertise of the user.

Our method can generate an implant ready for 3D printing
in a fully automatic manner in less than one minute, and the
implant can fit the hole on the skull with respect to the shape,
thickness and borders. In contrast, the design of the implant
using commercial software, when performed by a trained user
on a standard PC, takes approximately 40 mins, 35 mins, 42
mins, and 45 mins for case 1 ∼ 4 shown in Figure 10.

Figure 10 shows the visual comparison of implant design

between our fully automatic method and the software for four
cases with large synthetic defects. The second and third
row of Figure 10 show the automatically generated (through
ensembling) and the manually designed implants, respectively.
We can see that the implants obtained from both approaches can
fit with the skull defects, while the manually designed implants
have smoother surfaces, as the implants are smoothed via a
post-processing procedure using the software.

Besides, we show in Figure 11 how the implants produced
by the two approaches match with the ground truth implants
regarding shape and curvature, from different 2D views. The
implants from our algorithm and from the commercial software
are shown in red, and the ground truth implants are shown in
white. From the 2D views, we can see that the shape and
curvature of the implants from both approaches is, to some
extent, deviating from the ground truth, while the deviation of
the software-produced implant is even larger in the slice shown
in Figure 11. Designing an implant that can completely restore
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Fig. 10. From the first to last row: the defective skulls, the implants from the proposed approach (ensembling) and the implants from the software. To
differentiate, the implants are shown in gray. From left to right, the cases are numbered 1 ∼ 4.

the aesthetics of the original undamaged skull is a difficult task
even for experts.

We also quantitatively compared the two approaches. Table 3
shows the mesh distance between the algorithm-produced
implant, the software-produced implant and the ground truth
implant for the four cases in Figure 10. The mesh distance
between two meshes a1 → a2 is measured as follows: For
each sampled vertex in a1, find its closest vertex on the
target mesh a2. Table 3 shows the maximum (max), i.e., the
directed Hausdorff distance (HD), the mean and the root mean
square (RMS) of the measured closest distances. It should be
noted that the software-produced implants are originally in .stl
format. To calculate the mesh distances, we extract the meshes
from the ground truth and algorithm-produced implants, which
are originally voxel grids. Judging from the mean distances
and RMS, the automatically produced implants are closer to
the ground truth than the manually designed implants. The
results are understandable, as the user is blind to the original
undamaged skulls and therefore the shape and curvature of
the implants are adjusted manually based on the user’s own
experience. In contrast, our deep learning models are trained
on a total of 85 × 9 = 765 skull pairs to learn the shape
distributions of the original healthy skulls. Moreover, it also
shows that manual cranial implant design is an ill-posed task,
and viable implants produced by different designers do not
generally match in terms of quantitative scores. The ground

truth implant obtained by the subtraction of a defective skull
from the corresponding original healthy skull is just one of
the many possible solutions that our deep learning models
are trained to obtain. Furthermore, it should be noted that
the original healthy skulls are not always available in clinical
situations, but our method can still be used to reconstruct a
healthy skull and generate an implant through subtraction.

Table 4 shows DSC, JSC, precision and recall between the
algorithm-produced implant, the software-produced implant
and the ground truth. The software-produced implants are
voxelized for this calculation. Our algorithm beats manual
modeling in terms of the quantitative metrics. However, it must
be stressed again that the scores only show how similar the
implants are to the ground truth, which only represents one
of the possible solutions for the cranial implant design task.
Similar to the scores reported in Table 1, the scores shown in
Table 4 are mediocre even for the manually designed implants
(especially for case 2). Mediocre scores do not necessarily
indicate low implant quality, due to the ill-posed problem.

8. Discussion

Patch-based training is a widely accepted strategy in deep
learning when the data dimensionality is high. In our study, we
demonstrate that the conventional patch-based training scheme
is suboptimal for shape learning/reconstruction tasks, where the
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Fig. 11. An overlay of an implant produced by our algorithm and the software (shown in red) onto the ground truth implant (shown in white) from axial
and sagittal views. For each view, the implant on the left is from our algorithm and the right is from the software.

Table 4. DSC, JSC, precision and recall between the predicted and ground truth implant (pred ↔ gt), the manually designed and ground truth implant
(manual↔ gt).

caseID pred↔ gt manual↔ gt

DSC JSC Precision Recall DSC JSC Precision Recall

1 0.8837 0.7916 0.8515 0.9184 0.8802 0.7860 0.8274 0.9401
2 0.8524 0.7428 0.7963 0.9170 0.6446 0.4756 0.6795 0.6131
3 0.8660 0.7637 0.8628 0.8692 0.7924 0.6562 0.7956 0.7893
4 0.8690 0.7684 0.8297 0.9122 0.7951 0.6599 0.7710 0.8209

overall shape characteristics have to be captured, especially
when the shapes are of sparse nature, like the skull. By
training on randomly cropped patches from the entire training
set, the network learns without a prior knowledge of what a
particular skull shape is like. The proposed non-overlapping
and overlapping training strategies overcome the disadvantage
by extracting patches successively from each skull volume.

The training scheme tells the network in an implicit manner,
what each specific skull shape is like, which is equivalent
to imposing a virtual shape constraint or shape prior in the
learning process. Increasing the patch size might lead to
an improvement in shape learning, as a larger patch carries
more information about the overall skull shape, but this is not
practical, as the memory resources are limited. Furthermore, if
the hole in the skull is much larger than the patch size, the model
is expected to fail. For example, when the hole is very large, and
a patch cropped from the hole area contains no occupied voxels,
the model cannot make a prediction given the empty patch.

The rationale behind using overlapping patches is that
reduced patch sparsity can benefit the learning process of
deep learning networks, as discussed in Section 4.3 (from the
quantitative results in Table 1, M1−o performs better than M1−n
in skull reconstruction). Increasing the overlapping (current
overlapping ratio is 0.5) between two patches can further reduce
relative patch size, but at the expense of increased computation.

The use of skip connections in an encoder-decoder network
for volumetric shape completion tasks can have dual effects,
as can be observed from the quantitative and qualitative results.
While skip connections have known to be effective in improving
model performance for many tasks (e.g., classification), they
have presented both beneficial and adverse effects in the skull
shape completion task. Using skip connections can weaken

the hole-filling ability of the encoder-decoder network and lead
to a non-closed reconstruction of the implant. The positive
role skip connections play in our shape completion task is that
they can strengthen the ability to reconstruct the original skull
structure. Our proposed model ensembling method can take
the advantages of skip connections, while avoiding the adverse
effects for implant generation.

9. Conclusion and Future Work

We demonstrated that the medical problem of cranial implant
design can be formulated as a high-resolution volumetric shape
completion task, which can be fulfilled in a data-driven manner
without any explicit shape constraints or priors. Even if we
only used healthy skulls with synthetic defects for training the
models, our proposed approach shows promise on craniotomy
defects. We show how a large skull database can be constructed
and then utilized for training deep learning models without the
need of human annotation for supervised 3D volumetric shape
learning. We propose a patch-based training strategy, which
can be beneficial when the data is high resolution and spatially
sparse. The proposed training strategy is general and can be
used in other applications with similar properties, especially
for 3D shape learning tasks. However, one issue associated
with the patch-wise training and inference scheme is that, as
the contacting borders between two neighboring patches are
not always in congruence, merging the patches together to
form a complete skull could lead to a bumpy surface, which
is undesirable for 3D printing of the skull and implant. Future
improvements are needed to address the issue and we will also
explore tailored data structures and convolutional operations
that can process spatially sparse data more efficiently (Graham
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and van der Maaten (2017); Graham et al. (2018)).
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Appendix A. Generative Adversarial Network

As discussed in Section 2 Related Work, Generative
Adversarial Networks (GAN) were also employed in some
3D shape completion studies. In this appendix, we show
the skull shape completion results obtained using a GAN
and compared the results with those of an auto-encoder
(AE) trained using our proposed training strategy (−n). The
generator component of the GAN is a standard auto-encoder
comprised of four two-strided convolutional layers and four
upsampling layers (number of trainable parameters: 22.86
million). The discriminator is a binary classifier consisting
of three convolutional layers and one fully connected layer
(number of trainable parameters: 5.30 million). For a fair
comparison, all the models are trained for 3000 epochs using
a mean square error (MSE) loss function, and the auto-encoder
used for comparison against the GAN is simply the generator
part of the GAN, so that the modules responsible for generating
the implants have the same complexity.

The GAN and auto-encoder are trained to predict
the implants directly, without the intermediate step of
reconstructing the complete skulls. During our experiments,
it was found that the GAN (especially the discriminator part)
is difficult to converge via a patch-wise training strategy (−r,
−n or −o). Therefore, we trained the GAN using the whole
but downsampled version of skulls and implants 4. The auto-
encoder is trained on both downsampled data and via a patch
based strategy (−n). All the experiments were carried out on
a subset of our original dataset described in Section 3. The
subset contains only 85 skull-implant pairs for training and
82 pairs for evaluation. The trained model of the GAN and
the auto-encoders can be found at https://github.com/

Jianningli/MIA.

4The skulls and implants are downsampled to 128 × 128 × 64 and the batch
size is set to 4.

Table A.1. Comparison of DSC, JSC, Precision and Recall from GAN and
Auto-encoder (AE).

Methods DSC JSC Precision Recall

GAN 0.7137 0.5646 0.8235 0.6387
AE 0.7589 0.6281 0.8576 0.7040
AE (−n) 0.7665 0.6282 0.8489 0.7045

Table A.2. p values regarding DSC among the trained models.

DSC (p value)

GAN↔ AE 2.713e−2

GAN↔ AE (−n) 8.650e−4

AE↔ AE (−n) 6.854e−1

To evaluate the predictions against the ground truth implants,
which have a size of 512 × 512 × 128, the predictions from
the GAN and AE, when trained on downsampled data, were
upsampled to the size of the ground truth. When the AE was
trained via a patch based strategy, the output patches were
stitched together to form a complete implant of size 512 ×
512 × 128. Table A.1 shows the mean scores on the evaluation
set. Figure A.1 shows the boxplots of the scores obtained
using the three trained models. Table A.2 shows the p values
among the trained models regarding DSC. The quantitative
results reveal that a standard AE tends to outperform its GAN
counterpart in the skull shape completion task by a large margin
(p < 5e−2, statistically significant). The AE trained using
our proposed strategy has the best overall scores. Figure A.2
shows a visual comparison of the predicted implants from the
three trained models, from where we can see the advantages
of our proposed training method. Due to memory restrictions,
the GAN and AE have to be trained on downsampled data.
However, downsampling the data from 512 × 512 × 128 to
128 × 128 × 64 can result in severe loss of image quality and
learning from the degraded images yields coarse output, as can
be seen from the first two columns of Figure A.2.

Fig. A.1. Boxplots of DSC, JSC, precision and recall from the GAN, AE
and AE (−n).

In contrast, a patch-wise training and inference strategy can
produce high-quality output (the third column of Figure A.2) on
the same hardware.

https://www.medunigraz.at/camed/
https://www.medunigraz.at/camed/
http://studierfenster.tugraz.at/
http://studierfenster.tugraz.at/
https://github.com/Jianningli/MIA
https://github.com/Jianningli/MIA
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Fig. A.2. A visual comparison of the predicted implants. From the left to
right column: the implant produced by GAN, AE, AE (−n) and the ground
truth. Second row: the predicted implants overlaid onto the defective skull,
viewed in sagittal plane.

Table B.1. Comparison of DSC, JSC, Precision and Recall from different
loss functions.

Loss DSC JSC Precision Recall

LDice 0.7772 0.6483 0.7843 0.7876
LMS E 0.7589 0.6281 0.8576 0.7040
Lb 0.6021 0.4413 0.5260 0.7584
Lbdice 0.7880 0.6623 0.8040 0.7868
Lbmse 0.7299 0.5947 0.8599 0.6624

Appendix B. Boundary Constrained Loss function for
Volumetric Shape Completion

In our study, we have discussed the importance of implant
boundaries for their clinical utility in cranioplasty and proposed
a fully data-driven approach that does not rely on any explicit
prior shape information about the implants. In this appendix,
we show whether incorporating a shape constraint (more
specifically an implant surface/boundary constraint) in the loss
function can yield better results compared to using a prior-
independent loss function. We used the boundary loss proposed
by Kervadec et al. (2021), which was implemented by pixel-
wise multiplication of the predicted implants and an Euclidean
Distance Transform (EDT) of the ground truth implants.

The base network used here is the same auto-encoder used
in Appendix A. For comparison, we train the network on the
downsampled subset (images are downsampled to 128 × 128 ×
64) using five loss functions i.e., the Dice loss (LDice), the MSE
loss (LMS E), the boundary loss (Lb): Lb(yp, yg) =

∑
yp◦EDT (yg)

128×128×64 ,
the boundary loss combined with Dice loss (Lbdice): Lbdice =

LDice + λbdiceLb and the boundary loss combined with MSE
loss (Lbmse): Lbmse = LMS E + λbmseLb. In our experiments,
λbdice and λbmse were set to 0.01 experimentally. With each
loss function, the auto-encoder network is trained for 3000
epochs for direct implant generation, similar to the experiments
described in Appendix A. Note that we changed the activation
function of the last auto-encoder layer from tanh to sigmoid
when training the network using Dice involved loss functions
(i.e., LDice and Lbdice). The trained models can be found at
https://github.com/Jianningli/MIA.

The quantitative comparisons are presented at Table B.1 and

Table B.2. p values regarding DSC among the trained models.

DSC (p value)

LDice ↔LMS E 3.851e−1

LDice ↔Lb 2.851e−15

LDice ↔Lbdice 5.641e−1

LDice ↔Lbmse 3.743e−2

Lbmse ↔Lb 1.617e−7

Lbmse ↔Lbdice 9.623e−3

Lbmse ↔LMS E 2.320e−1

Lb ↔LMS E 2.462e−11

Lbdice ↔LMS E 1.600e−1

Lbdice ↔Lb 3.329e−17

Figure B.1. Table B.2 shows the p values among the trained
models. It can be seen that, when trained using the boundary
loss alone, the AE network tends to have the worst performance.
However, combining the boundary loss with Dice loss during
training can improve the results compared to using Dice loss or
boundary loss alone. Nonetheless, the results seem to suggest
that the boundary loss has a negative effect on the MSE loss,
even if the influence is not statistically significant (Lbmse ↔

LMS E). The results also suggest that Dice loss might be more
suitable for this skull shape completion task than MSE loss.

Fig. B.1. Boxplots of DSC, JSC, precision and recall from the AE network
trained using Lb, LDice, Lbdice, LMS E , and Lbmse.

A visual comparison of the predicted implants is shown in
Figure B.2. From the 2D views, it can be seen that training
using the boundary loss (Lb) alone tends to result in over-
segmentation, and the boundary loss is less successful than the
Dice and MSE loss in preserving fine details, such as the small
roundish corners of the implants. In contrast, Dice and MSE
loss tend to lead to under-segmentation. More experiments are
still needed to decide an optimal coefficient (λbdice and λbmse)
for the hybrid loss function (Lbdice and Lbdice).

Appendix C. 3D Printed Cranial Implants

A surface model (triangular mesh) has to be extracted from
the algorithm’s output (binary voxel grid) in order to be 3D
printed. Figure C.1 (A, B) show a 3D printed implant and
the corresponding defective skull (cropped). It was found

https://github.com/Jianningli/MIA
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Fig. B.2. From left to right: an overlay of the implants from the network trained using LDice, LMS E , Lb, Lbdice and Lbmse (gray) onto the ground truth
(while). Second row: the corresponding implants viewed in 3D.

that, even if the implant can fit the skull perfectly in software
(e.g., Figure 5 and Figure 10 in the main manuscript), there
is problem inserting the 3D printed implant into the printed
skull. This is due to the fact that the implant is printed using
non-elastic material and has to be manually rasped (around
the borders) so that it is able to be inserted into the skull.
In cranioplasty, commercial implants sometimes also require
manual rasping before used in the surgeries. Figure C.1 (C)
shows an implant produced by our algorithm placed on top of
the corresponding manually designed implant.

Fig. C.1. (A) and (B): A 3D printed implant and the corresponding
defective skull. (C): Implant designed automatically by the proposed
method (ensembling) placed on top of a manually designed implant.
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Felsenberg, D., Zheng, G., Heng, P.A., 2018b. 3d multi-scale fcn with
random modality voxel dropout learning for intervertebral disc localization
and segmentation from multi-modality mr images. Medical Image Analysis
45, 41–54.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B., 2018c. Pointcnn: Convolution
on x-transformed points, in: NeurIPS, pp. 820–830.

Litany, O., Bronstein, A.M., Bronstein, M.M., Makadia, A., 2017. Deformable
shape completion with graph convolutional autoencoders. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition , 1886–1895.

Liu, X., Yan, M., Bohg, J., 2019. Meteornet: Deep learning on dynamic 3d
point cloud sequences. ArXiv abs/1910.09165.

Marzola, A., Governi, L., Genitori, L., Mussa, F., Volpe, Y., Furferi, R.,
2019. A semi-automatic hybrid approach for defective skulls reconstruction.
Computer-Aided Design and Applications 17, 190–204. doi:10.14733/
cadaps.2020.190-204.

van der Meer, W.J., Bos, R.R., Vissink, A., Visser, A., 2013. Digital planning
of cranial implants. The British journal of oral & maxillofacial surgery 51,
450–452. doi:https://doi.org/10.1016/j.bjoms.2012.11.012.

Mitra, N.J., Guibas, L.J., Pauly, M., 2006. Partial and approximate symmetry
detection for 3d geometry. ACM Trans. Graph. 25, 560–568.

Morais, A., Egger, J., Alves, V., 2019. Automated Computer-aided Design
of Cranial Implants Using a Deep Volumetric Convolutional Denoising
Autoencoder. pp. 151–160.

Ngo, H.T.M., Lee, W.S., 2011. Feature-first hole filling strategy for 3d meshes,
in: ICCV 2011.

Park, J.M., Son, J., An, H.J., Kim, J.H., Wu, H.G., Kim, J.I., 2019.
Bio-compatible patient-specific elastic bolus for clinical implementation.
Physics in medicine and biology 64(10), 105006.

Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2016. Pointnet: Deep learning on
point sets for 3d classification and segmentation. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) , 77–85.

Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space, in: NIPS.

Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C.M.,
Unterhinninghofen, R., Kauczor, H.U., Giesel, F.L., 2010. 3d printing based
on imaging data: review of medical applications. International Journal of
Computer Assisted Radiology and Surgery 5, 335–341.

Sakr, N.M., Youssef, B.B.A., Hassan, Y.F., Atta, E.H., 2018. An effective
method for hole filling in 3d triangular meshes. 2018 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT) ,

1–7.
Sarmad, M., Lee, H.J., Kim, Y.M., 2019. Rl-gan-net: A reinforcement learning

agent controlled gan network for real-time point cloud shape completion,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5898–5907.

Schiebener, D., Schmidt, A., Vahrenkamp, N., Asfour, T., 2016. Heuristic
3d object shape completion based on symmetry and scene context. 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) , 74–81.

Stutz, D., Geiger, A., 2018. Learning 3d shape completion from laser scan data
with weak supervision. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition , 1955–1964.

Sung, M., Kim, V.G., Angst, R., Guibas, L.J., 2015. Data-driven structural
priors for shape completion. ACM Trans. Graph. 34, 175:1–175:11.

Wang, J., Noble, J.H., Dawant, B.M., 2019. Metal artifact reduction for the
segmentation of the intra cochlear anatomy in ct images of the ear with 3d-
conditional gans. Medical image analysis 58, 101553.

Wang, W., Huang, Q., You, S., Yang, C., Neumann, U., 2017. Shape inpainting
using 3d generative adversarial network and recurrent convolutional
networks, in: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2298–2306.

Wu, R., Chen, X., Zhuang, Y., Chen, B., 2020. Multimodal shape
completion via conditional generative adversarial networks, in: The
European Conference on Computer Vision (ECCV).

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J., 2014.
3d shapenets: A deep representation for volumetric shapes. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) , 1912–
1920.

Yang, X., Bian, C., Yu, L., Ni, D., Heng, P.A., 2017a. Hybrid loss guided
convolutional networks for whole heart parsing, in: Statistical Atlases and
Computational Models of the Heart. ACDC and MMWHS ChallengesI, pp.
215–223.

Yang, Y., Feng, C., Shen, Y., Tian, D., 2017b. Foldingnet: Point cloud
auto-encoder via deep grid deformation. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition , 206–215.

Zhao, W., Gao, S., Lin, H., 2007. A robust hole-filling algorithm for triangular
mesh, pp. 22–22. doi:10.1109/CADCG.2007.4407836.

http://dx.doi.org/10.1109/ICCV.2017.19
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0074267
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0074267
http://dx.doi.org/10.14733/cadaps.2020.190-204
http://dx.doi.org/10.14733/cadaps.2020.190-204
http://dx.doi.org/https://doi.org/10.1016/j.bjoms.2012.11.012
http://dx.doi.org/10.1109/CADCG.2007.4407836

	Introduction
	Related Work
	Materials
	Datasets
	Preprocessing and Data Pair Creation

	Method
	Problem Formulation and Network Architecture
	Model Ensembling for Cranial Implant Generation
	Training Strategy

	Experiments
	Implementation
	Evaluation Metrics
	Results
	Statistical Significance Analysis
	Visualizations
	Model Ensembling for Implant Generation

	Clinical Applicability
	Comparison with Commercial Software in Cranial Implant Design
	Discussion
	Conclusion and Future Work

