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Abstract— The aim of this paper is to provide a com-
prehensive overview of the MICCAI 2020 AutoImplant Chal-
lenge1. The approaches and publications submitted and
accepted within the challenge will be summarized and re-
ported, highlighting common algorithmic trends and algo-
rithmic diversity. Furthermore, the evaluation results will
be presented, compared and discussed in regard to the
challenge aim: seeking for low cost, fast and fully auto-
mated solutions for cranial implant design. Based on feed-
back from collaborating neurosurgeons, this paper con-
cludes by stating open issues and post-challenge require-
ments for intra-operative use. The codes can be found at
https://github.com/Jianningli/tmi.

Index Terms— Volumetric shape completion, Shape in-
painting, Skull reconstruction, Shape prior, Statistical
shape model, Deep learning, Cranioplasty.

I. INTRODUCTION

CRANIOPLASTY is a reconstructive surgery to repair
skull damages resulting from brain tumor surgeries or

head trauma, where a part of the skull bone (mainly in
the neurocranium area) has to be removed. Increased use of
decompressive craniectomies resulted in more reconstructions
of cranial defects in the past 15 years, around 25 patients
per one million inhabitants per year for Europe, the Middle
East and Africa [1], [2]. However, complications, like brain
swelling and infections after decompressive craniectomies and
cranioplasties, are frequent and can even be life-threatening
events [3]. A systematic review revealed that one in 10
patients undergoing a decompressive craniectomy suffers a
complication, which makes an additional medical or surgi-
cal intervention necessary [4]. Hence, a tailor-made patient-
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specific implant (PSI) of the cranium is needed in such surgery
to optimally restore the protective, mechanical and anatomical
functions of the human skull [5]. The design of a PSI remains a
bottleneck [6] for cranioplasty, since the reconstructive surgery
can be performed only after the implant has been designed,
manufactured and delivered to the hospital, which may take
weeks or even months. If cranioplasty could be performed
immediately after the primary surgery that removes the skull
bone, the overall duration of surgery can be reduced substan-
tially. To achieve this goal, a fast, fully automatic and in-
operating-room (in-OR) manufacturing of PSI is required. Ad-
ditive manufacturing or 3D printing enables fast manufacturing
of 3D medical implants directly in the surgery room, given
the corresponding 3D models. Currently, the patient’s head is
scanned by computed tomography (CT) after primary surgery.
The bone structures are extracted from the CT, converted into a
3D model and used to guide the computer-aided design (CAD)
of the implant [7]–[10]. Symmetry is often assumed in CAD
procedures, which use a mirrored copy of the healthy skull
side as a template. However, symmetry cannot be used when
the skull is deformed or when the defect crosses the symmetry
plane.

Inspired by the clinical practice of relying on a post-
operative head CT for cranial implant design, the AutoImplant
2020 challenge encouraged the development of automated im-
plant design by providing both pre- and post-operative skulls
for supervised training and evaluation. Unlike the clinical
practice, which models implants as meshes, the challenge
encouraged participants to predict the binary implant masks
directly from binary skull images (voxel grids). Ten full papers
were accepted by the challenge. They cover a variety of data-
driven methods, including classical statistical approaches, such
as statistical shape models (SSM) [11], and deep learning ap-
proaches, such as generative adversarial networks (GAN) [12],
variational auto-encoders (VAE) [13] and variants of U-Net
[14], which are novel in neurosurgery. From a technical
perspective, the processing of high-dimensional skull data and
the generalization to varied skull defects are key considerations
for the development and evaluation of the algorithms.
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TABLE I: Quantitative results (mean DSC and HD) of the participating algorithms on Dtest100 and Dtest10.

MetricsnAlg A1 A2. A3 A3 (s) A4 A5 A6 A7 A8 A8 (re) A9 (r) A9 (p) A10 (r) A10 (bbox)

DSC (100) 0.917 0.931 0.913 0.845 0.944 0.920 0.907 0.896 0.887 0.891 0.735 0.889 0.810 0.856
DSC (10) 0.919 0.924 0.769 0.816 0.932 0.910 0.870 � 0.351 0.473 � � � �
HD (100) 4.336 3.660 4.067 6.414 3.564 4.137 4.180 4.602 7.017 6.909 7.243 5.534 5.440 5.183
HD (10) 3.987 4.090 8.585 5.952 3.934 4.707 4.760 � 29.476 21.049 � � � �

II. RELATED WORK

Prior to the challenge, automatic cranial implant design has
been an under-researched area, especially concerning data-
driven approaches, due to a lack of public datasets suitable
for the task. This section summarizes the algorithms published
online prior to the conclusion of the challenge, which have
been used for automatic reconstruction of medical implants,
including cranial implants. A review of general shape comple-
tion algorithms will also be covered in this section. An early
study casts cranial implant design as a surface interpolation
problem, smoothly interpolating the missing surface using
radial basis functions [15].

A. Statistical Shape Model
Prior to the challenge, SSM is among the most widely used

methods for reconstructing skull bones, including the facial
area [16], [17], the cranium area [18] and other bone structures
on the skull [19], [20]. A statistical model of the skull S(w)
represents the average shape S 2 R3m (m is the number of
vertices of the skull mesh) as well as a set of shape variations
pi 2 R3m of a given skull population:

S(w) = S +
∑
i=1

wipi (1)

Here, wi is the shape weight of each mode of shape variation
pi, and its value is confined to the scope of the training skull
population. Reconstructing a complete skull given a defective
skull D is the task of finding the set of weight parameters w�

such that S(w�) best matches the shape of D, except in the
defective region. The cranial implant can then be obtained by
taking the difference (logical XOR) of the reconstructed skull
and D. Finding S(w�) is usually an iterative process.

B. Deep Learning
Recently, deep learning solutions have emerged. Morais

et al. [21] were the first to demonstrate a denoising auto-
encoder for skull shape completion on very coarse skulls
(dimension: 303, 603 and 1203) with simple holes. Li et
al. [6], [22] extended the concept of skull shape completion
to high-resolution data, i.e., 5122 � Z with much irregular
synthetic defects. Their approach showed potential for clinical
use according to the evaluation results on real defective skulls
from craniotomy. Their dataset is not yet public. Kodym et
al. [23] trained a cascade of convolutional neural networks
to predict the implants directly from synthetically defective
skulls, using a publicly available dataset 2. The trained model
can also be generalized well to real head trauma-related

2https://www.fit.vut.cz/person/ikodym/skullbreak

defects, as the synthetic defects the authors created are closely
mimicking real ones. The real defects used in this study are
not publicly available. Matzkin et al. [24] focused on cranial
implant design for decompressive craniectomy. The authors
explored the possibility of both skull shape completion and
predicting the implant directly from defective skulls using a U-
Net style network. Similar to the studies described above, only
synthetic defects are used for training, while, for evaluation,
real cases are included. However, the dataset is not yet publicly
accessible. These prior studies reveal that the algorithms, if
carefully designed, can be generalized to real clinical defects,
even if only synthetic defects are used during training. These
prior algorithms also accept as input the 3D binary skull
images (voxel grids) and produce the implants in the same
format. However, the implants need to be converted to meshes
in order to be 3D printed. The deep learning method by Zhang
et al. [25] is focused on the maxilla area of the skull.

C. Shape Completion

As earlier studies discussed in Section II. RELATED
WORK (B) cast automatic cranial implant design as a vol-
umetric shape completion problem, this section reviews the
general shape completion algorithms used for various data
modalities (points, meshes and voxel grids).

1) Voxel Grid Completion: Classical shape completion al-
gorithms [26], [27] deal with volumetric data, which are
voxelized from a point representation using a signed distance
function. Voxel grid methods have been prevalent in recent
studies using convolutional neural networks (CNN) on volu-
metric images. Both works employ an encoder-decoder style
network, which is however restricted to accept as input coarse
voxel grids (e.g., 323). Meshes can be extracted from the final
completed grids.

2) Point/Mesh Completion: Recent development in deep
learning enable a CNN to learn from unstructured point clouds
efficiently. An encoder-decoder can be used to perform shape
completion directly on the raw point data [28], [29] derived
from Shapenet [30], which is often used as a benchmark
dataset for both the voxel grid and point-based shape com-
pletion studies. Liu et al. [31] propose a two-step approach
to complete dense point clouds. The first step predicts a
completed but coarse point cloud using an encoder-decoder
style network. In the second step, a residual network is used
to produce a dense (high-fidelity) version of the completed
point cloud, given as input a combination of the coarse output
from the previous step and the partial point cloud. Early
studies from Liepa (2003) [32] and Kraevoy et al. (2005) [33]
perform shape completion directly on triangular meshes using
classical geometry processing and mesh editing techniques.
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Fig. 1: DSC and HD Rankings of the Algorithms A1-A10, on Dtest100, Dtest10 and the overall test set.

Shape completion on triangular meshes tend to be much
more complicated than on binary voxel grids, as the former
data structure can carry much richer information (e.g, texture,
color) of an object compared to the latter.

3) Medical Images: Shape completion has also been applied
to medical images3. Prutsch et al. [34] used a GAN to
complete 2D aortic dissection (AD) images (CT), in order
to generate the healthy aorta images prior to dissection.
Armanious et al. [35] trained a GAN style network to complete
arbitrarily shaped regions on 2D brain images. Gapon et al.
[36] adopted a patch similarity matching method to remove
metal artifacts on 2D CT and MRI images. A multi-layer
perceptron (MLP) was trained to search the best matching
patches to the missing region across an image. Manjón et al.
[37] used a 3D U-Net to remove lesions on brain MRI images.
The trained network can complete the missing region without
requiring manual delineation of the lesions, while other studies
all require explicit definition of the region of interest (usually
done manually) before completion.

It should be noted that these medical shape completion
applications require the restoration of not only the shape
but also the voxel/pixel intensities of the missing region, as
medical images are usually gray-scale. However, for the skull
shape completion task in our challenge, we consider primarily
the restoration of the missing shapes as the skull data are
binary, containing only 0 and 1.

III. THE AUTOIMPLANT CHALLENGE

A. Organization, Evaluation and Ranking
The challenge was organized as a satellite event in MICCAI

2020, held virtually due to the COVID-19 pandemic. To our
knowledge, this is also the first public challenge targeting the
automatic design of cranial implants. Ten teams submitted
their prediction results valid for evaluation, along with ten
full papers. For ease of reference, the algorithms in the ten
papers are denoted as A1 [38], A2 [39], A3 [40], A3 (s)
[40], A4 [41], A5 [42], A6 [43], A7 [44], A8 [45], A8 (re)
[45], A9 (r) [46], A9 (p) [46], A10 (r) [47] and A10 (bbox)
[47], respectively. Among the algorithms, some [40], [45] have
reported an enhanced version of their algorithm, denoted as A3
(s) and A8 (re), besides the base implementation A3 and A8.
Two papers [46], [47] reported approaches for comparison,
denoted as A9 (r), A9 (p) and A10 (r), A10 (bbox).

Two metrics, Dice Similarity Coefficient (DSC) and sym-
metric Hausdorff distance (HD, measured in millimeter) are

3In these studies, inpainting is more commonly used than completion.

used for quantitative evaluation of the results. DSC and HD
are first ranked separately in descending order and ascending
order, respectively, and the final ranking is obtained by taking
the average of the two rankings, as shown in Figure 1. For
[40], [45], [46] and [47], A3 (s), A8 (re), A9 (p) and A10
(bbox) are used for ranking. Table I shows the quantitative
results (mean DCS and HD) of each algorithm. To get the
results, participants needed to submit the predicted implants
to the organizers, and a :csv file containing the DSC and
HD of each test case is returned to them. It was required
that the predicted implants are of the same dimension as the
corresponding defective skulls, i.e., 5122�Z to be considered
as valid submissions.

Table II shows the t-test for DSC and HD on the entire
test set (Dtest100 and Dtest10 combined together) among the
leading methods (A4, A2, A1, A5, A6, A3 (s)). We can
see that most of the p values are far smaller than 0.05,
indicating that the differences among these leading methods
are statistically significant. In particular, the winning method
(A4) can beat its followers by a large margin, statistically
speaking. In contrast, the difference between A1 and A5 is
not significant for both DSC and HD. We also show the t-test
between some network variants, i.e., A3 (s)$ A3, A8 (re)$
A8, A9 (p) $ A9 (r) and A10 (bbox) $ A10 (r) in Table II.
Except A9 (p)$ A9 (r) and A10 (bbox)$ A10 (r), the t-test
is run on the entire test set.

B. Challenge Dataset

We included a data descriptor [48] of the challenge dataset
in the challenge proceedings, which detailed the origin, cre-
ation and statistics of the challenge dataset. However, a brief
description of the training set and test set is provided in
this section to make the contribution self-contained. We use
the term complete skull to refer to the undamaged skull and
defective skull to refer to a skull with a defect. The complete
skulls in the challenge dataset are segmented from a public
head CT collection CQ500 (http://headctstudy.qure.ai/dataset),
using a thresholding technique (150 Hounsfield Units). The
defective skulls are created automatically by removing part of
the skull bone from the complete skulls.

1) Training Set: The training set contains 100 complete
skulls from different head CT scans and their corresponding
synthetic defective skulls and implants. An implant is simply
the logical XOR of the corresponding complete skull and
defective skull. The defects in the training set follow a similar
pattern as illustrated in Figure 2 (A), regarding the size, shape




