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Abstract— The aim of this paper is to provide a com-
prehensive overview of the MICCAI 2020 AutoImplant Chal-
lenge1. The approaches and publications submitted and
accepted within the challenge will be summarized and re-
ported, highlighting common algorithmic trends and algo-
rithmic diversity. Furthermore, the evaluation results will
be presented, compared and discussed in regard to the
challenge aim: seeking for low cost, fast and fully auto-
mated solutions for cranial implant design. Based on feed-
back from collaborating neurosurgeons, this paper con-
cludes by stating open issues and post-challenge require-
ments for intra-operative use. The codes can be found at
https://github.com/Jianningli/tmi.

Index Terms— Volumetric shape completion, Shape in-
painting, Skull reconstruction, Shape prior, Statistical
shape model, Deep learning, Cranioplasty.

I. INTRODUCTION

CRANIOPLASTY is a reconstructive surgery to repair
skull damages resulting from brain tumor surgeries or

head trauma, where a part of the skull bone (mainly in
the neurocranium area) has to be removed. Increased use of
decompressive craniectomies resulted in more reconstructions
of cranial defects in the past 15 years, around 25 patients
per one million inhabitants per year for Europe, the Middle
East and Africa [1], [2]. However, complications, like brain
swelling and infections after decompressive craniectomies and
cranioplasties, are frequent and can even be life-threatening
events [3]. A systematic review revealed that one in 10
patients undergoing a decompressive craniectomy suffers a
complication, which makes an additional medical or surgi-
cal intervention necessary [4]. Hence, a tailor-made patient-
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specific implant (PSI) of the cranium is needed in such surgery
to optimally restore the protective, mechanical and anatomical
functions of the human skull [5]. The design of a PSI remains a
bottleneck [6] for cranioplasty, since the reconstructive surgery
can be performed only after the implant has been designed,
manufactured and delivered to the hospital, which may take
weeks or even months. If cranioplasty could be performed
immediately after the primary surgery that removes the skull
bone, the overall duration of surgery can be reduced substan-
tially. To achieve this goal, a fast, fully automatic and in-
operating-room (in-OR) manufacturing of PSI is required. Ad-
ditive manufacturing or 3D printing enables fast manufacturing
of 3D medical implants directly in the surgery room, given
the corresponding 3D models. Currently, the patient’s head is
scanned by computed tomography (CT) after primary surgery.
The bone structures are extracted from the CT, converted into a
3D model and used to guide the computer-aided design (CAD)
of the implant [7]–[10]. Symmetry is often assumed in CAD
procedures, which use a mirrored copy of the healthy skull
side as a template. However, symmetry cannot be used when
the skull is deformed or when the defect crosses the symmetry
plane.

Inspired by the clinical practice of relying on a post-
operative head CT for cranial implant design, the AutoImplant
2020 challenge encouraged the development of automated im-
plant design by providing both pre- and post-operative skulls
for supervised training and evaluation. Unlike the clinical
practice, which models implants as meshes, the challenge
encouraged participants to predict the binary implant masks
directly from binary skull images (voxel grids). Ten full papers
were accepted by the challenge. They cover a variety of data-
driven methods, including classical statistical approaches, such
as statistical shape models (SSM) [11], and deep learning ap-
proaches, such as generative adversarial networks (GAN) [12],
variational auto-encoders (VAE) [13] and variants of U-Net
[14], which are novel in neurosurgery. From a technical
perspective, the processing of high-dimensional skull data and
the generalization to varied skull defects are key considerations
for the development and evaluation of the algorithms.
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TABLE I: Quantitative results (mean DSC and HD) of the participating algorithms on Dtest100 and Dtest10.

Metrics\Alg A1 A2. A3 A3 (s) A4 A5 A6 A7 A8 A8 (re) A9 (r) A9 (p) A10 (r) A10 (bbox)

DSC (100) 0.917 0.931 0.913 0.845 0.944 0.920 0.907 0.896 0.887 0.891 0.735 0.889 0.810 0.856
DSC (10) 0.919 0.924 0.769 0.816 0.932 0.910 0.870 − 0.351 0.473 − − − −
HD (100) 4.336 3.660 4.067 6.414 3.564 4.137 4.180 4.602 7.017 6.909 7.243 5.534 5.440 5.183
HD (10) 3.987 4.090 8.585 5.952 3.934 4.707 4.760 − 29.476 21.049 − − − −

II. RELATED WORK

Prior to the challenge, automatic cranial implant design has
been an under-researched area, especially concerning data-
driven approaches, due to a lack of public datasets suitable
for the task. This section summarizes the algorithms published
online prior to the conclusion of the challenge, which have
been used for automatic reconstruction of medical implants,
including cranial implants. A review of general shape comple-
tion algorithms will also be covered in this section. An early
study casts cranial implant design as a surface interpolation
problem, smoothly interpolating the missing surface using
radial basis functions [15].

A. Statistical Shape Model
Prior to the challenge, SSM is among the most widely used

methods for reconstructing skull bones, including the facial
area [16], [17], the cranium area [18] and other bone structures
on the skull [19], [20]. A statistical model of the skull S(w)
represents the average shape S ∈ R3m (m is the number of
vertices of the skull mesh) as well as a set of shape variations
pi ∈ R3m of a given skull population:

S(w) = S +
∑
i=1

wipi (1)

Here, wi is the shape weight of each mode of shape variation
pi, and its value is confined to the scope of the training skull
population. Reconstructing a complete skull given a defective
skull D is the task of finding the set of weight parameters w∗

such that S(w∗) best matches the shape of D, except in the
defective region. The cranial implant can then be obtained by
taking the difference (logical XOR) of the reconstructed skull
and D. Finding S(w∗) is usually an iterative process.

B. Deep Learning
Recently, deep learning solutions have emerged. Morais

et al. [21] were the first to demonstrate a denoising auto-
encoder for skull shape completion on very coarse skulls
(dimension: 303, 603 and 1203) with simple holes. Li et
al. [6], [22] extended the concept of skull shape completion
to high-resolution data, i.e., 5122 × Z with much irregular
synthetic defects. Their approach showed potential for clinical
use according to the evaluation results on real defective skulls
from craniotomy. Their dataset is not yet public. Kodym et
al. [23] trained a cascade of convolutional neural networks
to predict the implants directly from synthetically defective
skulls, using a publicly available dataset 2. The trained model
can also be generalized well to real head trauma-related

2https://www.fit.vut.cz/person/ikodym/skullbreak

defects, as the synthetic defects the authors created are closely
mimicking real ones. The real defects used in this study are
not publicly available. Matzkin et al. [24] focused on cranial
implant design for decompressive craniectomy. The authors
explored the possibility of both skull shape completion and
predicting the implant directly from defective skulls using a U-
Net style network. Similar to the studies described above, only
synthetic defects are used for training, while, for evaluation,
real cases are included. However, the dataset is not yet publicly
accessible. These prior studies reveal that the algorithms, if
carefully designed, can be generalized to real clinical defects,
even if only synthetic defects are used during training. These
prior algorithms also accept as input the 3D binary skull
images (voxel grids) and produce the implants in the same
format. However, the implants need to be converted to meshes
in order to be 3D printed. The deep learning method by Zhang
et al. [25] is focused on the maxilla area of the skull.

C. Shape Completion

As earlier studies discussed in Section II. RELATED
WORK (B) cast automatic cranial implant design as a vol-
umetric shape completion problem, this section reviews the
general shape completion algorithms used for various data
modalities (points, meshes and voxel grids).

1) Voxel Grid Completion: Classical shape completion al-
gorithms [26], [27] deal with volumetric data, which are
voxelized from a point representation using a signed distance
function. Voxel grid methods have been prevalent in recent
studies using convolutional neural networks (CNN) on volu-
metric images. Both works employ an encoder-decoder style
network, which is however restricted to accept as input coarse
voxel grids (e.g., 323). Meshes can be extracted from the final
completed grids.

2) Point/Mesh Completion: Recent development in deep
learning enable a CNN to learn from unstructured point clouds
efficiently. An encoder-decoder can be used to perform shape
completion directly on the raw point data [28], [29] derived
from Shapenet [30], which is often used as a benchmark
dataset for both the voxel grid and point-based shape com-
pletion studies. Liu et al. [31] propose a two-step approach
to complete dense point clouds. The first step predicts a
completed but coarse point cloud using an encoder-decoder
style network. In the second step, a residual network is used
to produce a dense (high-fidelity) version of the completed
point cloud, given as input a combination of the coarse output
from the previous step and the partial point cloud. Early
studies from Liepa (2003) [32] and Kraevoy et al. (2005) [33]
perform shape completion directly on triangular meshes using
classical geometry processing and mesh editing techniques.
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Fig. 1: DSC and HD Rankings of the Algorithms A1-A10, on Dtest100, Dtest10 and the overall test set.

Shape completion on triangular meshes tend to be much
more complicated than on binary voxel grids, as the former
data structure can carry much richer information (e.g, texture,
color) of an object compared to the latter.

3) Medical Images: Shape completion has also been applied
to medical images3. Prutsch et al. [34] used a GAN to
complete 2D aortic dissection (AD) images (CT), in order
to generate the healthy aorta images prior to dissection.
Armanious et al. [35] trained a GAN style network to complete
arbitrarily shaped regions on 2D brain images. Gapon et al.
[36] adopted a patch similarity matching method to remove
metal artifacts on 2D CT and MRI images. A multi-layer
perceptron (MLP) was trained to search the best matching
patches to the missing region across an image. Manjón et al.
[37] used a 3D U-Net to remove lesions on brain MRI images.
The trained network can complete the missing region without
requiring manual delineation of the lesions, while other studies
all require explicit definition of the region of interest (usually
done manually) before completion.

It should be noted that these medical shape completion
applications require the restoration of not only the shape
but also the voxel/pixel intensities of the missing region, as
medical images are usually gray-scale. However, for the skull
shape completion task in our challenge, we consider primarily
the restoration of the missing shapes as the skull data are
binary, containing only 0 and 1.

III. THE AUTOIMPLANT CHALLENGE

A. Organization, Evaluation and Ranking
The challenge was organized as a satellite event in MICCAI

2020, held virtually due to the COVID-19 pandemic. To our
knowledge, this is also the first public challenge targeting the
automatic design of cranial implants. Ten teams submitted
their prediction results valid for evaluation, along with ten
full papers. For ease of reference, the algorithms in the ten
papers are denoted as A1 [38], A2 [39], A3 [40], A3 (s)
[40], A4 [41], A5 [42], A6 [43], A7 [44], A8 [45], A8 (re)
[45], A9 (r) [46], A9 (p) [46], A10 (r) [47] and A10 (bbox)
[47], respectively. Among the algorithms, some [40], [45] have
reported an enhanced version of their algorithm, denoted as A3
(s) and A8 (re), besides the base implementation A3 and A8.
Two papers [46], [47] reported approaches for comparison,
denoted as A9 (r), A9 (p) and A10 (r), A10 (bbox).

Two metrics, Dice Similarity Coefficient (DSC) and sym-
metric Hausdorff distance (HD, measured in millimeter) are

3In these studies, inpainting is more commonly used than completion.

used for quantitative evaluation of the results. DSC and HD
are first ranked separately in descending order and ascending
order, respectively, and the final ranking is obtained by taking
the average of the two rankings, as shown in Figure 1. For
[40], [45], [46] and [47], A3 (s), A8 (re), A9 (p) and A10
(bbox) are used for ranking. Table I shows the quantitative
results (mean DCS and HD) of each algorithm. To get the
results, participants needed to submit the predicted implants
to the organizers, and a .csv file containing the DSC and
HD of each test case is returned to them. It was required
that the predicted implants are of the same dimension as the
corresponding defective skulls, i.e., 5122×Z to be considered
as valid submissions.

Table II shows the t-test for DSC and HD on the entire
test set (Dtest100 and Dtest10 combined together) among the
leading methods (A4, A2, A1, A5, A6, A3 (s)). We can
see that most of the p values are far smaller than 0.05,
indicating that the differences among these leading methods
are statistically significant. In particular, the winning method
(A4) can beat its followers by a large margin, statistically
speaking. In contrast, the difference between A1 and A5 is
not significant for both DSC and HD. We also show the t-test
between some network variants, i.e., A3 (s)↔ A3, A8 (re)↔
A8, A9 (p) ↔ A9 (r) and A10 (bbox) ↔ A10 (r) in Table II.
Except A9 (p)↔ A9 (r) and A10 (bbox)↔ A10 (r), the t-test
is run on the entire test set.

B. Challenge Dataset

We included a data descriptor [48] of the challenge dataset
in the challenge proceedings, which detailed the origin, cre-
ation and statistics of the challenge dataset. However, a brief
description of the training set and test set is provided in
this section to make the contribution self-contained. We use
the term complete skull to refer to the undamaged skull and
defective skull to refer to a skull with a defect. The complete
skulls in the challenge dataset are segmented from a public
head CT collection CQ500 (http://headctstudy.qure.ai/dataset),
using a thresholding technique (150 Hounsfield Units). The
defective skulls are created automatically by removing part of
the skull bone from the complete skulls.

1) Training Set: The training set contains 100 complete
skulls from different head CT scans and their corresponding
synthetic defective skulls and implants. An implant is simply
the logical XOR of the corresponding complete skull and
defective skull. The defects in the training set follow a similar
pattern as illustrated in Figure 2 (A), regarding the size, shape
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Fig. 2: Illustration of the skull defects in Dtest100 and Dtest10. The defect in (A) is representative of the defects in the training
set and Dtest100, where the defects are similar in terms of shape, size and position. (B)-(K) show the defects in Dtest10, where
there are three types of defects: spherical (B,I), cubic (C, D, G) and cubic with cylinders on the corners (E, F, H, J, K).

TABLE II: t-test between the top ranking methods (A4, A2,
A1, A5, A6, A3 (s)) and some network variants for DSC and
HD. p values larger than 0.05 (5e−2) are highlighted.

DSC HD

A4 ↔ A2 3.1e−4 5.8e−1

A4 ↔ A1 2.4e−10 3.0e−3

A4 ↔ A5 6.7e−8 1.2e−2

A4 ↔ A6 9.6e−13 2.3e−3

A4 ↔ A3 (s) 1.4e−16 1.3e−3

A2 ↔ A1 2.3e−3 9.5e−3

A2 ↔ A5 1.5e−2 3.4e−2

A2 ↔ A6 1.2e−6 8.5e−3

A2 ↔ A3 (s) 1.3e−13 1.8e−3

A1 ↔ A5 7.4e−1 6.7e−1

A1 ↔ A6 1.2e−2 7.8e−1

A1 ↔ A3 (s) 9.7e−11 1.7e−2

A5 ↔ A6 8.0e−3 8.6e−1

A5 ↔ A3 (s) 6.4e−11 1.1e−2

A6 ↔ A3 (s) 1.8e−7 1.3e−2

A3 (s) ↔ A3 3.4e−6 3.0e−2

A8 (re) ↔ A8 5.3e−1 7.3e−1

A9 (p) ↔ A9 (r) 1.7e−47 1.2e−3

A10 (bbox) ↔ A10 (r) 5.9e−8 4.5e−1

and position. Participants were free to create and use additional
defects on the complete skulls provided for training.

2) Test Set: Two independent test sets, denoted as Dtest100

and Dtest10, were created for evaluation of the submissions.
Dtest100 contains 100 defective skulls (created out of 100
skulls different from those in the training set), with defects
in Dtest100 similar to those in the training set (Figure 2 (A)).
Dtest10 contains 10 defective skulls with varying defects, as
shown in Figure 2 (B)-(K). Figures 1, 5 and 7 denote the
two test sets as (100) and (10). We created the two test
sets to evaluate the generalization performance of participants’
algorithms. Considering that the skull shape is patient-specific
and the shape of the defects from craniotomy also depends on
the specific pathological conditions e.g., the size and position
of the brain tumor, of the patients, we expect the partici-
pants’ algorithms to generalize well across different skulls
and defects, which are desired in cranioplasty. According to
[48], the defect variation in Dtest10 is much greater than

that in Dtest100, which is primarily used to evaluate how
well the algorithms can generalize across varied skull shapes,
while Dtest10 evaluates whether the algorithms can generalize
to randomly shaped, sized and positioned defects, especially
when trained only on the training set with a fixed defect pattern
shown in Figure 2 (A).

Algorithms A1 - A6 succeeded on both test sets, while
A7 - A10 failed on Dtest10, and thus A7 - A10 are not
included in the ranking on Dtest10, as shown in Figure 1.
We also calculated the ranking of A1 - A6 on the entire test
set (Dtest100 and Dtest10 combined together).

All the images in the challenge dataset have dimension
5122 × Z. The ground truth of the test set, i.e., the corre-
sponding complete skulls and implants, were kept secret by
the organizers.

3) Rationale: As introduced above, synthetic defective
skulls are used in both the training and evaluation phase of
our challenge. However, the synthetic defects, as shown in
Figure 2 (A), are created to resemble the real craniotomy
defects by including the drilling holes on the defect borders.
In craniotomy, a cranial drill is used by neurosurgeons for
drilling small roundish holes on human skulls in order to
create an opening in the skull. A craniotome is further used
to remove a bone flap to access the brain underneath. This
course of action can result in a skull defect with small roundish
corners, similar to the artificial ones used in our challenge.
The drilling holes are also important for the insertion and
fixation of a cranial implant in cranioplasty. However, real
craniotomy defects tend to have rough boundaries, as the
skull is cut manually using the craniotome, in contrast to the
synthetic defects which have smooth and straight boundaries.
The rationale for using synthetic defects in our challenge is
twofold: First, as discussed in Section II. RELATED WORK
(B), the algorithms can generalize to real craniotomy defects
even if only synthetic defects are involved in the training
phase. Second, using real defects in our current challenge
is neither practical (not enough data and privacy restrictions)
nor efficient (expert evaluations are needed due to a lack of
ground truth for the real defects) especially when dozens of
submissions are to be expected.
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TABLE III: Summary and comparison of the algorithms.

Algorithm Architecture Input Dim Hardware Skull
Preprocessing

Defect
Augmentation

Use of
Shape Prior Output Dtest10 # Param

A1 [38] SSM + 2D GAN 256× 256 4× RTX 6000 yes no yes skull yes 229.18M
A2 [39] ED + SE block 512× 512 GTX 1080+GTX 960 yes yes no implant yes 3.17M
A3 [40] U-Net 304× 304× 224 TITAN Xp yes yes no implant yes 6.77M

A3 (s) [40] U-Net + shape prior 304× 304× 224 TITAN Xp yes yes yes implant yes 5.19M
A4 [41] U-Net with residual block 176× 224× 144 2× V100 yes yes no skull yes 68.56M
A5 [42] Cascade U-Net 128× 128× 128 Titan Xp yes yes no implant yes 5.96M
A6 [43] U-Net 192× 256× 128 RTX Titan yes yes no skull yes 6.49M
A7 [44] ED with residual block 180× 180× 180 Quadro P6000 no no no skull no 1.49M
A8 [45] RDU-Net 128× 128× 64 3× RTX 2080 Ti no no no skull no 2.51M

A8 (re) [45] RDU-Net + VAE 128× 128× 64 3× RTX 2080 Ti no no yes skull partially 25.46M
A9 (r) [46] V-Net + resizing 256× 256× 64 RTX Titan no no no skull no 45.60M
A9 (p) [46] V-Net + patch 256× 256× 64 RTX Titan no no no implant no 45.60M
A10 (r) [47] ED + resizing 128× 128× 64 GTX 1070 Ti no no no implant no 82.08M

A10 (bbox) [47] ED + boundingbox 256× 256× 128 GTX 1070 Ti no no no implant no 0.65M

Fig. 3: Two types of problem formulation used among the
submitted algorithms. The blue arrow indicates that the algo-
rithms reconstruct a complete skull first, and then the implant
is obtained through the subtraction of the defective skull from
the reconstructed skull, which defines a shape completion
problem. The orange arrow indicates that the algorithms
reconstruct the implant directly from a defective skull.

IV. SUMMARY AND COMPARISON OF THE ALGORITHMS

This section summarizes the algorithms from the perspective
of problem formulation, skull pre-processing, defect augmen-
tation, network architecture, post-processing and skull dimen-
sion. Emphasis will be placed on how the submitted algorithms
deal with high-dimensional skull data and on the generaliza-
tion performance of these algorithms to highly varied skull
defects. Table III provides a summary. Specific details of the
algorithms can be found in the proceedings [49].

A. Problem formulation

As illustrated in Figure 3, two types of problem formulation
are used among the algorithms: (1) Some participants formu-
lated the problem of cranial implant design as a volumetric
shape completion task. In this formulation, a complete skull
is first reconstructed from a defective skull, and the implant
is viewed as the difference between the complete skull and
the defective skull. (2) Others view the problem as a shape
learning task, and the shape of a implant is learned directly
from the shape of a defective skull. The Output column in
Table III shows the formulation adopted by each algorithm.

Fig. 4: Illustration of the skull preprocessing methods. (A)
Aligning the skulls to a common skull atlas (A3). (B) Image
background cropping (A2, A4, A6) and (C) Aligning the four
anatomical landmarks on each skull onto a common axial
plane (A5).

B. Preprocessing of the Skull

Preprocessing the skulls by removing the rotation, transla-
tion and other image-related variations helps the deep neural
networks to focus on learning the shape variations of the skulls
and defects, which is the primary concern of the challenge.
This course of action also reduces the difference between the
training and test set and thus can potentially help improve
the final results. The commonly used techniques for this
purpose include image background cropping [39], [41], [43]
and skull alignment via registration [40], [42]. Table IV shows
a description of the skull preprocessing techniques (if used)
per algorithm.

1) Background Cropping: Zero-valued background voxels
outside the skull’s bounding box provide no useful information
for shape learning. Cropping the background reduces image
size and thus the memory consumption. In practice, instead
of cropping the entire background, some margins are usually
kept (Figure 4, B). After cropping, A2 further resized the
cropped images to 5123 so that the 2D slices of axial, sagittal
and coronal planes have the same size (5122). A6 cropped
bone structures below the skull base irrelevant to the task,
e.g., mandibles (Figure 4, B, A6). The cropped images were
then downsampled to 192 × 256 × 128 to get a fixed input
size for the shape completion network. A4 downsampled the
cropped images to 176× 224× 144. Note that downsampling
the original image volume (5122×Z) directly to such low size



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Fig. 5: DSC and HD of algorithms A1-A10 on Dtest100 (100) and Dtest10 (10). Among the algorithms, A7-A10 failed on
Dtest10 (10).

(a) Implant predictions from A1, A2, A4, A5 and A6 on Dtest10.

(b) Comparison between the implant produced by A8 and A8 (re), A3 and A3 (s) on Dtest10.

Fig. 6: Implant predictions on Dtest10. (a) First to last column: the input, ground truth, predictions from A1, A2, A4, A5 and
A6. (b) The first and fifth column show the input. The second and sixth column show the ground truth. The third and seventh
column show the predictions from A8 (re) and A3 (s). The fourth and eighth column show the predictions from A8 and A3.
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TABLE IV: Description of the skull preprocessing methods
used by participants.

Algorithms Preprocessing Methods

A2 [39] Image background cropping and resizing the skull region to
5123, so that the axial, sagittal and coronal slices have
the same dimension 5122.

A3 [40] Align the training/test set to a common skull atlas via
rigid registration.

A4 [41] Image background cropping and image re-orientation

A5 [42] Align the skull (on the x/y plane) based on four skull
landmarks using rigid registration.

A6 [43] Crop the image background and the area below the skull base
and re-scale all images to 192×256×128 non-isotropically
(different scaling factors in the x−, y− and z− direction).

tends to lead to considerable degradation of image quality and
compromises the algorithmic performance. Cropping before
downsampling can mitigate such adverse effects.

2) Skull Alignment: To reduce the rotational and translation
variations, A3 and A3 (s) aligned all the skulls in the training
and test set to a common skull atlas using rigid registration,
as shown in Figure 4 (A). The skull atlas is constructed
by averaging the shapes of several complete skulls. Such
transformation also resamples the images to an intermediate
size of 3042×224. In A5, instead of using a pre-defined skull
atlas, the alignment is based on four anatomical landmarks on
the skulls, i.e., the left and right auditory meatus and left and
right supraorbital notch. These landmarks are aligned onto the
same axial plane using a rigid transformation. A U-Net style
network is trained to detect the four landmarks automatically
on the test set. Another benefit of such a transformation is
that the unwanted bone structures below the alignment plane
(e.g., midface, mandibles) can be discarded automatically
(Figure 4, C). The Skull Preprocessing column in Table III
shows whether the algorithms used a preprocessing step. As
shown in Figure 5, algorithms that used skull preprocessing
generally outperform those that did not. An ablation study
performed for [42] demonstrated that using skull alignment
improved the quantitative results on a validation set. However,
this course of action adds another dimension of complexity.
For example, in order to obtain the final prediction y given
a test case x, A3 needs to consider the transformation matrix
from registration T and its inverse T−1,

y = T−1 · f(T · x), (2)

where f represents the deep neural network. Furthermore,
such transformation can usually resample the images to a
smaller size [40], which reduces the memory needed to process
the skull data. Note that A4 re-oriented all the images to
Right, Anterior, Superior (RAS), which has a similar effect
to aligning the skulls in that the data are submitted to the U-
Net in the same orientation. As a bonus, re-orientation can be
done at runtime and does not require a registration.

C. Defect Augmentation
Among the submitted algorithms, augmentation of skull de-

fects was a dominant factor contributing to the generalization
of the algorithms to highly varied defects in Dtest10. The
defects in the training set have limited variations regarding the
shape, size, and position, while the defects in the Dtest10 are
of much greater irregularity. It is therefore challenging for the
algorithms to generalize well to Dtest10 without the creation
and use of additional defects during training, if a standard
network configuration is used. In Table III, the Defect Aug-
mentation column shows whether the algorithms have created
and used additional defects for training besides those provided
in the original challenge dataset. The Dtest10 column shows
whether the algorithms can generalize to Dtest10. We can see
that algorithms that generalize to Dtest10 generally also used
defect augmentation, with the exception of A1, which used a
strong shape prior to guide the skull reconstruction process.
Table V summarizes the defect augmentation techniques (if
any) of the algorithms, which can be classified into three
groups: (1) Create defects similar to those in Dtest100 and
Dtest10 shown in Figure 2 (A2, A3, and A6), (2) create
random defects without resemblance of the defects in the test
sets (A5), (3) create additional defective skulls using pair-wise
registration and warping (A4).

1) Creating Defects Resembling the Test Set: A2 generated
additional defects using a rectangular mask in axial, sagittal
and coronal slices. To generate defects similar to Dtest100

and Dtest10, the rectangular mask was tailored according to
the defect distributions in the respective test set. A3 and A6
generate defects directly on 3D volumes using 3D spherical
and cubic masks. A3 created a mask combining cubes with
cylinders to generate defects similar to the defects illustrated
in Figure 2 (E, F, H, J, K). These augmentation strategies seek
to create similar defect distributions on the training set to those
of Dtest10, which further allows the algorithms to generalize
to Dtest10. As introduced in Section III B. Challenge Dataset,
for evaluation, only synthetic defects were used, which were
similar but simplified compared to real craniotomy defects.
The success of these augmentation strategies implies that
creating synthetic defects that are closely resembling the
real defects (craniotomy, traumatic brain injury or TBI, etc.)
for training might help to increase the success rates of the
algorithms in clinical scenarios.

2) Creating Random Defects: As shown in Figure 4 (C),
instead of trying to generate defects similar to those of the
test set, A5 created five defects with random shape, size and
position on each skull, resulting in a total of 90 × 5 = 450
training pairs (10 skulls in the training set were reserved as a
validation set). An ablation study revealed that the algorithm
A5 can generalize to these random defects only if these
augmented defects are also involved in the training phase.

3) Augmentation via Registration and Space Warping: D. G.
Ellis et al. [41] augment the dataset by registering each skull in
the training set with the remaining 99 skulls. For each registra-
tion, each skull can be warped into the space of the remaining
99 skulls using the corresponding transformation, yielding 99
uniquely warped skulls. This course of action substantially
increases the number of training pairs to 99 × 100 = 9900,
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TABLE V: Description of the data augmentation methods used
by participants.

Algorithms Augmentation Methods

A2 [39] Creating defects on 2D slices in axial, sagittal and coronal
planes using a rectangular mask.

A3 [40] Creating 3D defects using random sized masks similar
to the defects in Dtest10 (spherical, cubic, cube-cylinder).

A4 [41] Permutation, scaling, translation and pair-wise non-linear
registration and warping.

A5 [42] Random lateral flipping and creating five random defects
per skull.

A6 [43] Creating defects using spherical and cubic masks.

excluding the defective skulls in the challenge dataset. A4 used
a total of 9803 pairs for training (197 registrations failed).

The three defect augmentation strategies all have proven
to be effective in improving the generalization performance
of the algorithms on Dtest10, as illustrated in Figure 6. For
training, two algorithms [39], [40] intentionally created defects
similar to the test sets, so that the algorithms can naturally
generalize well to both of the test sets. However, even if
A6 only augmented spherical and cubic defects, it can still
generalize well to the defect pattern shown in the second row
of Figure 6 (a). Similarly, A5 augmented random defects,
but can generalize to other defect patterns (e.g., spherical
defects), according to the first two rows in Figure 6 (a). The
third row shows that A5 and A6 tend to perform worse on
large defects. For A4, the good generalization performance
can be largely attributed to the massive augmentation enabled
by warping each training skull into the space of the remaining
training cases. Unlike other augmentation techniques, which
only try to increase the variations of the defects, while the
shape variations of the skull are limited to the original training
set, this course of action essentially created new skulls.

D. Architecture and Network Configurations

The Architecture column in Table III lists the deep learning
models upon which the algorithms are built. We can see that
most algorithms, A2, A7, A10 (r) and A10 (bbox), are based
on an encoder-decoder (ED) architecture or ED with skip
connections, i.e., U-Net for A3, A3 (s), A4, A5, A6 and
A8. For A1, the primary part of the algorithm is based on a
statistical shape model (SSM), which reconstructs a complete
skull given a defective skull. A generative adversarial network
(GAN) is further used to refine the output of the SSM. The
GAN is trained using 2D slices from complete skulls from the
training set. The generator component of the GAN is an auto-
encoder network, which is trained to generate refined 2D skull
slices. During the inference stage, the generator takes as input
a combination of 2D slices from the test case (defective skull)
and the complete skull reconstructed by the previous SSM,
and produces the completed 2D slices, which are aggregated
to form the final complete skull in 3D. The corresponding
implant is obtained by subtracting the test case from the
final reconstructed 3D complete skull. A3, A6, A9 and Li

et al. [47] used standard U-Net, V-Net or ED configurations,
while variants of ED and U-Net were explored by the other
algorithms.

A2 uses a Squeeze-and-Excitation (SE) block [50], which
introduces channel attention mechanisms, and an auxiliary
path formed by several convolutional layers, to connect the
encoder and decoder part of the network. A2 uses a standard
U-Net to directly predict the implants from defective skulls.
However, A3 proposed a way to incorporate shape prior
of the skull into the network, which aims to improve the
generalization ability of the network. The base algorithm and
the shape-prior-enhanced version are denoted as A3 and A3
(s), respectively. A4 used a U-Net with residual blocks [51] in
each level of the convolutional and deconvolutional layers. A5
used two U-Nets in a cascaded fashion; the first U-Net was
responsible for producing a coarse implant of low resolution
(1283) given a downsampled defective skull as input, and
the second U-Net was used as a super-resolution network
to upsample the low-resolution prediction to high resolution,
given as input a patch (1283) of the prediction concatenated
with the corresponding patch of the original high-resolution
defective skull. Similar to A5, A7 also followed a two-step
process to generate high-resolution predictions. First, a 3D ED
was used to generate a low-resolution prediction of dimension
1803. In the ED, residual blocks were used to connect the
encoder part of the network with the decoder part. Second,
a 2D decoder consisting of several convolutional layers with
residual blocks and SE blocks was used to super-resolve the
predictions to the original high resolution in a slice-wise
manner. A8 used a Residual Dense U-Net (RDU-Net) [52]
as the base implementation. The loss function of the network
was enhanced using a shape regularization term derived from a
pretrained variational auto-encoder network (VAE). We denote
the network trained with and without the regularization term
in the loss function as A8 and A8 (re). A9 (r) and A9
(p) were based on a V-Net architecture [53]. A9 (r) used a
downsampled version of the skulls for training and produced
low-resolution implants (2562 × 64), which were upsampled
to the original dimension using simple image resizing. A9 (p)
used a patch-based method to train on the original skull data
using a V-Net. The base implementation of Li et al. [47] is
A10 (r), which used a standard encoder-decoder to predict
implant in low resolution (1282 × 64). Simple image resizing
was used to upsample the implants to the original dimension.
A10 (bbox) was built upon the output of A10 (r), which
was used to extract a bounding box (bbox) on the original
high-dimensional defective skulls. A10 (bbox) used another
encoder-decoder network to predict high-resolution implants
directly from the bounding box, which has a much smaller
size than the original skulls. Most of the networks use DSC
loss or a combination of DSC loss and cross-entropy loss as
the objective function for this task.

The last column (# Param) of Table III shows the number
of trainable parameters of the deep learning components of
the algorithms. For A1, the number refers to the GAN. Note
that the top-ranking algorithm A4 has significantly more
parameters (68.56M) than its followers A2, which has only
3.17M parameters and A5, which has 5.96M parameters. A10
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Fig. 7: Comparison between A3 and A3 (s), A8 and A8 (re), A9 (r) and A9 (p), A10 (r) and A10 (bbox) on Dtest100 and
Dtest10.

(r), A9 (r) and A9 (p) have the second and fourth largest
number of parameters, while their performances are ranked
the last in our challenge.

E. Shape Priors
Besides defect augmentation, the exploitation of skull shape

priors proves to be another effective measure to improve the
generalization performance to varied defect patterns. The Use
of Shape Prior column in Table III shows whether the skull
shape priors is used by each algorithm. We see that even if
algorithms A1 and A8 (re) used no augmented defects for
training, skull shape priors let them still (partially) generalize
to Dtest10. Both quantitative and qualitative comparisons
(Figure 7, Figure 6, b) demonstrate the advantages of shape
priors, especially when it comes to defects different from the
ones in the training set. The shape prior can be introduced
either on-the-fly during the reconstruction process or during
the learning process, using shape constraints or contextual
information. Among the algorithms submitted, there are three
different strategies for using the shape of a complete skull
as prior knowledge: (1) Building a statistical model of the
complete skulls (A1), (2) using the shape prior as contextual
information during learning (A3), (3) using the shape prior as
shape constraints in the loss function (A8).

1) Statistical Shape Model: A statistical shape model of the
skull represents the average shape as well as principal shape
variations of human skulls. The shape representation ability of
a SSM is decided largely by the size and diversity of the skull
dataset on which the SSM is built. A1 created a 3D skull SSM
using the complete skulls from the training set, using principal
component analysis (PCA). In the test phase, a defective skull
is fitted to the SSM to find the shape variations that best
match the shape of the given test case, during which the SSM
acts as a strong shape prior to guide the skull reconstruction.
The fitted shape serves as an initial approximation of the
reconstructed complete skull corresponding to the test case
and is further refined using a GAN. Note that, unlike other
algorithms that used both defective skulls and complete skulls
or the implant for training, the construction of the skull SSM

and the training of the GAN only requires the complete
skulls. Such unsupervised learning enables the algorithm to be
independent from the defect patterns, and thus its performance
is not affected by the shape, size and position of the defects.
We can see from Figure 5 that it performs almost equally well
on Dtest100 and Dtest10, even without augmenting the defects.
Figure 6 (a) shows an illustration of the reconstruction results
of A1.

2) Shape Prior as Contextual Information: A3 and A3 (s) are
used to evaluate how the incorporation of shape prior affects
the performance of the algorithm on Dtest10. Both algorithm
variants follow the same network and training configuration,
except that A3 (s) uses a skull atlas as an additional input
channel for the network during training. The atlas is the same
as used for alignment in A3, which represents the average
shape of several complete skulls. By doing so, the skull
atlas can provide the contextual information beneficial for the
learning process, which distracts the model from overfitting
to the defect patterns in the training set and consequently
improves robustness of the model. The ablation study of A3
shows that the algorithm performs better on Dtest10 when
a shape prior is incorporated into the network, i.e., A3 (s)
performs better than A3 regarding DSC and HD, as can be
seen from the boxplot in Figure 7. According to Table II,
the improvement of DSC and HD on the test set due to
the introduction of the shape prior is statistically significant.
Qualitatively, we can also see from Figure 6 (b) that A3 failed
partially, whereas A3 (s) can succeed on some of the test cases
from Dtest10.

3) Shape Constraints in the Loss Function: B. Wang et al.
[45] reported a comparison of a deep neural network trained
with and without shape prior, denoted as A8 (re) and A8. In A8
(re), the shape prior is implemented as a regularization term
in the loss function, which tries to minimize the Euclidean
distance between the prediction and the ground truth in a
latent feature space learned using a VAE. The VAE was
trained end-to-end using the complete skulls in the training
set to learn a compact and latent shape representation of
the complete skulls. A RDU-Net was then used for skull
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Fig. 8: Illustration of the implants (dimension 5122 × Z) predicted by the algorithms. Left: the input defective skull and the
corresponding ground truth implant. Right: the predictions for the algorithms.

shape completion. During training, the output of the RDU-
Net and the corresponding ground truth is encoded into the
latent feature space using the encoder part of the pre-trained
VAE, and their distance in the latent space is used as a
constraint in the learning process, which forces the network
to produces anatomically and geometrically plausible skulls.
Applying the shape constraint during the training process is
similar to the shape fitting stage of the SSM method, where
the prior knowledge about the shape of complete skulls is
exploited on-the-fly. Besides, this course of action also diverts
the attention of the network from the defects to the shape of
the skull and thus eases the overfitting to defect patterns. The
qualitative and quantitative comparison of A8 and A8 (re),
according to Figure 6 (b) and Figure 7, shows the advantages
of using the shape constraints. However, the t-test reported
in Table II reveals that the improvement is not statistically
significant regarding the quantitative metrics.

F. Post-Processing

Post-processing refers to the final steps taken in order to
refine the output, including noise removal, hole filling, etc.
These steps are closely related to the choice of problem
formulation illustrated in Figure 3.

If the implant is obtained by subtracting the defective skull
from a reconstructed complete skull, the resulting implant
tends to contain both noise at the implant boundaries and
isolated noise, which comes from the mismatch between
the two skulls outside of the defective area. Morphological
opening can be used to remove the noise attached to the
implant boundaries. The isolated noise can be removed by
keeping only the largest component, i.e., the implant, identified
via connected component analysis (CCA). A1 and A4 applied
morphological opening and CCA to the implant sequentially.
For A6, after selecting the largest component using CCA,
a spherical topological filter [54] was used to remove the
attached noise non-destructively; a morphological closing and
anti-aliasing filter was used to fill holes interior of the implant.

Direct implant prediction leads to isolated and attached
noise as well. Unlike implants obtained from subtraction,
directy predicted implants suffer mainly from attached noise.
As before, isolated noise can be removed using CCA, and mor-
phological opening can be used to remove attached noise [44].

However, morphological opening tends to remove not only
noise but also fine details of the implant. Thus, A5 used a
detail-preserving strategy to suppress such over-smoothing. An
additional morphological dilation operation is applied to the
implant after opening, which makes the implant slightly larger
than the original implant. A clean implant preserving the fine
details can be obtained by masking the original implant with
the dilated implant using a logical AND operation.

G. Skull Dimension

The high dimensionality of the skull data posed a major
challenge, as it was required that the predicted implants should
be of the same dimension as the corresponding skulls. Direct
processing of high-dimensional skulls is, in many situations,
not feasible due to hardware limitations (see the Hardware
column in Table III). Therefore, most of the algorithms down-
sampled the skulls to a smaller size before submitting them
into the network, as can be seen from the Input dim column
in Table III. However, downsampling can cause loss of image
quality, and learning from low-quality images yields coarse
output (e.g., Figure 8, A8 (re)). Comparing these predictions
with the ground truth, we can see that the surface of the
implants produced by A8 (re), A9 (r) and A10 (r) is severely
degraded with terracing artifacts, which is undesirable for this
task. These algorithms used standard image resizing (inter-
polation) techniques to upsample the output to the original
dimension for submission and cannot restore surface details.

To produce both high-dimensional and high-quality im-
plants, three different strategies were explored: (1) A3, A4
and A6 reduce the image size before downsampling, as already
discussed in Section IV (B) and Table IV. (2) A5 and A9 use
patch-based training. (3) A5, A7, and A10 (bbox) apply a
coarse-to-fine framework.

1) Patch-based Training: Dividing an image volume into
several smaller patches and using these patches to train the
network is a commonly applied strategy to deal with high-
dimensional data [22]. Using a patch-based training method
can lead to substantial improvement of the implant quality,
as demonstrated by the comparison of A9 (r) and A9 (p) in
Figure 8. We can see that there are obvious terracing artifacts
on the surface of the implant from A9 (r) while the implant
surface of A9 (p) is much smoother. Quantitatively, Figure 7
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Fig. 9: An illustration of the reconstructed skulls by A4, A6, A7, A8 (re) and A9 (r), given as input a defected skull shown
on the top left. The second row shows the ground truth skull in 3D and an overlay of the reconstructed skull (dark gray) onto
the defective skull (light gray) in sagittal view.

and Table II also show that A9 (p) outperforms A9 (r) in terms
of DSC and HD by a large margin (statistically significant).

2) Coarse-to-fine Framework: A5, A7 and A10 (bbox)
adopted a coarse-to-fine framework to produce the desirable
implants in two steps; each step is based on a deep neural
network. The initial network is trained on downsampled skulls
and therefore produces coarse implants. The second network
produces fine implants based on the initial coarse prediction.
For A5 and A7, upsampling a coarse implant, while at the
same time restoring the geometric details on the implant
surface is cast as a volumetric super-resolution task. For A10
(bbox), the coarse implant from the first network is used to
extract the defective region (2562×128) on the original high-
dimensional skull, and the second network predicts the fine
implant directly from the extracted region, which is much
smaller than the original volume. Figure 8 shows a comparison
of the implants produced by A10 (r), which used standard
interpolation for upsampling, and A10 (bbox). We can see
that the implant from A10 (r) looks coarse and blurred on
the surface while the implant from A10 (bbox) is of much
higher quality. A10 (bbox) also beats A10 (r) regarding DSC
and HD according to Figure 7. For DSC, the improvement of
A10 (bbox) over A10 (r) is statistically significant according
to Table II. Despite A10 (bbox) having better performance
than A10 (r), its model is significantly more lightweight than
that of A10 (r) as can be seen in Table III (# Param).

V. DISCUSSIONS

A. Desired Algorithms Characteristics
From both a technical and application perspective, good

generalization performance for various cranial defects and
the ability to produce high-resolution and high-quality im-
plants with affordable hardware (e.g., a desktop GPU) are
among the most desirable characteristics of the algorithms
for this challenge. For deep learning methods, the use of
shape priors and defect augmentation can effectively increase
the robustness. Besides, a statistical shape model (SSM) of
the skull, which represents the general shape of a skull
population and is independent from the defects, theoretically

has the best generalization ability in this regard. However,
the disadvantage of SSM methods is that inference tends to
take much longer than with deep learning methods, up to
7-12 minutes per case [38]. The robustness of both deep
learning and SSM to highly-deformed skulls is restricted to
the training samples and can only be increased effectively by
including representative deformed cases in the training phase.
Processing high-dimensional 3D data, such as the skull data
in this challenge, requires ample memory, often exceeding the
capacity of commodity hardware. Downsampling the data as a
workaround results in severe degradation of image quality. A
two-step coarse-to-fine strategy, as used by A5, A7 and A10
(bbox) proves to be a solution to this problem.

For the algorithm produced implants, another desired char-
acteristic is that the implants should be in congruency with the
skulls in terms of shape and boundary for cosmetic and func-
tional considerations. Figure 9 shows in 3D the reconstructed
skulls by A4, A6, A7, A8 (re) and A9 (r), given as input
a defective skull shown on the top left. It shows that these
algorithms can successfully complete the defective skull and
restore the missing skull bone, while the surface quality of the
reconstructed skulls differs, similar to the implants shown in
Figure 8. The reconstructed skulls are further overlaid onto the
defective skull to examine how well they overlap in 2D sagittal
views. On the defected region shows the difference between
the reconstructed and defective skulls, i.e., the implant that can
be obtained via a subtraction process illustrated in Figure 3.
Ideally, a reconstructed skull should have a 100% overlap
with the defective skull except on the defected region, and the
implant should fit the skull in terms of shape (e.g., the surface
curvature) and bone thickness on the edges. Figure 10 shows
an implant created by the winning algorithm (A4) overlaid
onto the corresponding defective skull. From the 3D view, we
can see that the shape of the implant is compatible with its
surrounding skull structures in terms of shape and boundary,
so that the skull aesthetics can be restored. From the 2D views,
we can see that the implant fits tightly against the defect edges
on both the interior and exterior skull surfaces. We consider
the tight edge contact a desirable characteristic for the implants
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Fig. 10: An overlay of the implant from the winning algorithm (A4) onto a defective skull, viewed in 3D, axial, sagittal and
coronal plane. The implanted area is zoomed in for the 2D views. To differentiate, skull and implant are in different colors.

produced by participants’ algorithms 4.
Extrapolating from the findings of our MICCAI challenge,

we see the following directions worthy of future study:
• Expand the training population for SSM and deep learn-

ing models, curate collections of head CT (normal, patho-
logical, pediatric etc.) as training datasets [48].

• Explore alternative ways to create and incorporate shape
priors or constraints of the skull into deep learning.

• Develop tools to generate synthetic defects from healthy
skulls so that they closely resemble the defects from
craniotomy, craniectomy and trauma.

• Preprocess the skulls before training to increase the
learning efficiency.

• Extend current deep learning methods to data structures
other than a voxel grid representation, such as a point
cloud or mesh.

B. Limitations of the 1st AutoImplant Challenge
1) Dataset: The synthetic defects provided for training and

evaluation in AutoImplant 2020 challenge are realistic, but
simplified compared to real clinical defects from craniotomy
and trauma. Defective skulls are hard to obtain clinically,
let alone make public to participants, due to both the rar-
ity of such operations and privacy restrictions. Even if de-
fective skulls from clinical routine could be provided for
evaluation, there often lack ground truth (implants), making
quantitative evaluations impractical. It is therefore hard to
judge the performance of the submitted algorithms on real
defects. However, even if only synthetic defects were used,
this challenge tried to encourage participants to improve the
generalization performance of their algorithms to varied skull
defects through either defect augmentation or the incorporation
of skull shape priors, which have been proven effective to
obtain top rankings in the challenge. For this reason, two test
sets, Dtest100 and Dtest10, were used during the evaluation
stage. A1 [38] is one of the representative algorithms with
excellent generalization performance regarding skull defects,
as the algorithm is built only upon healthy skulls and thus is
independent from defective pattern.

Another limitation is the small number of unique skulls
provided for training. While participants could create indefinite

4Note that, in cranioplasty, as the cranial implant is made of non-elastic
materials. If necessary, neurosurgeons need to manually rasp the implant
borders to enable the insertion of the implant onto the patient’s skull.

synthetic defects per skull to enlarge the training set and
increase the defect variations, shape variations of the skulls
were limited to the original 100 skulls provided. No algorithms
had data to generalize to pathologically deformed skulls. This
limitation can only be overcome by including more skulls in
the training set. Hence, we have devised and open-sourced a
pipeline [48] to convert collections of head CT, which are
much easier to acquire than clinical defective skulls, into
trainable datasets for the purpose of cranial implant design. At
the core of the pipeline lies the creation of defective skulls out
of complete skulls through the injection of synthetic defects.
The pipeline can be extended to inject more realistic defects,
or even allow multiple defects at once. Such a pipeline can
also encourage the incorporation of skull data from different
scanners, protocols, or populations into training.

2) Evaluation Metrics: Two quantitative metrics, DSC and
HD, were used for the evaluation and ranking of the algo-
rithms. The predicted implant that matches exactly with the
ground truth (highest DSC and lowest HD) fits precisely with
the defective area on the skull. However, instead of fitting
exactly with the defect on the defect boundary, clinically
usable implants should be minimally fault-tolerant in case of
bone growth (ossification), the presence of scar tissues and
osteolysis at the edge of the defects. Furthermore, cranial
implant design is an ill-posed problem: An infinite variety of
implants can serve the purpose of restoring the mechanical,
protective and aesthetic functions. In other words, the ground
truth used in the challenge is just one of the many possible
solutions. However, current quantitative metrics constrain the
solution to the ground truth, and other implants that are
equally clinical usable, are penalized during scoring. More
work will be needed to formalize the subjective judgement of
neurosurgeons based on their professional experience. Besides,
the implant boundaries are considered to be critical in cranio-
plasty and therefore should be given more emphasis compared
to other parts of the implant during the evaluation phase.
Current metrics, however, treat the implant as a whole and
the boundary areas are not distinguished. Boundary-specific
evaluation metrics are therefore highly desired in a future
edition of the challenge.
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C. Commercially Designed Versus Algorithm Produced
Implants

In this section, we discuss how far the implants generated by
the participants’ algorithms are to the commercially designed
implants, which are currently the clinical standard. According
to our collaborating neurosurgeons, the actual cranial implants
used in cranioplasty are usually thinner than the skull bone
on the defected region, so that the interior surface of the
implants will not apply pressure to the brain (more precisely,
to the dura mater). Besides, a clinically usable implant does
not necessarily have a tight contact with the skull on the
edges. Instead, smalls gaps (in the order of one millimeter)
around the borders of the implant and the skull defect are
allowed and sometimes preferred, taking into consideration the
bone regeneration over time. Therefore, when necessary, even
the commercially designed and manufactured implants require
some manual post-processing (e.g., rasping) by neurosurgeons
before they can be used, especially when the design and
manufacturing of the cranial implant takes a long time [5].

However, our challenge was designed to generate implants
that can tightly fit the skull defects, as can be seen from
Figure 9 and Figure 10. By doing so, the implants produced
by the participants’ algorithms can be further post-processed
and rasped where necessary. Conversely, a too small implant
is neither usable nor remediable via post-processing.

VI. CONCLUSIONS

This paper is aimed at giving a comprehensive overview
of the first AutoImplant challenge hosted at MICCAI 2020.
Contributions, approaches, evaluation results and algorithmic
trends have been presented and discussed. We also included
a critical judgement of current limitations for practical us-
age from clinical partners. With numerous participants and
contributions from academia and industry around the world,
the challenge provided a strong stimulus for automatic cranial
implant design. To date, the challenge website remains open
for post-challenge registrations and submissions, which has
been accepted by the community as demonstrated by dozens
of new registrations since the official end of the first challenge
deadline. Should there be a future edition of the AutoImplant
challenge, real defective skulls from craniotomy should be
provided and the neurosurgeons’ judgement on the clinical
usability of the predicted implants should be involved in the
evaluation phase. The scope could also be expanded to other
medical scenarios involving computer-aided implant design,
such as the lower jawbone [55] or ribs [56].
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schäfer are with the Department of Neurosurgery, Medical
University of Graz, Auenbruggerplatz 29, Graz, Austria (e-
mail: gord.von-campe@medunigraz.at).

Victor Alves is with the Center Algoritmi, University of
Minho, Braga, Portugal (e-mail: valves@di.uminho.pt).

Pedro Pimentel, Angelika Szengel, Moritz Ehlke,
Hans Lamecker, Stefan Zachow and Heiko Ramm
are with 1000shapes GmbH, Berlin, Germany (e-mail:
info@1000shapes.com).

Stefan Zachow is with Zuse Institute Berlin (ZIB), Germany.
Laura Estacio is with San Pablo Catholic University, Are-

quipa, Peru.
Christian Doenitz is with the Department of Neurosurgery,

University Medical Center Regensburg, Regensburg, Germany.
Haochen Shi is with the School of Electronic Information

and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China (e-mail: jcsyshc@sjtu.edu.cn).

Xiaojun Chen is with the School of Mechanical Engineer-
ing, Shanghai Jiao Tong University, Shanghai, China (e-mail:
xiaojunchen@sjtu.edu.cn)

Franco Matzkin and Enzo Ferrante are with the Research
Institute for Signals, Systems and Computational Intelligence,
sinc(i), CONICET, FICH-UNL, Santa Fe, Argentina (e-mail:
fmatzkin@sinc.unl.edu.ar).

Virginia Newcombe is with the University Division of
Anaesthesia, University of Cambridge, Box 93, Addenbrooke’s
Hospital, Hills Road, Cambridge CB2 0QQ, UK.

Ben Glocker is with the Biomedical Image Analysis Group,
Department of Computing, Imperial College London, UK.

David G. Ellis and Michele R. Aizenberg are with the
Department of Neurosurgery, University of Nebraska
Medical Center, Omaha, NE 68198 USA (e-mail:
david.ellis@unmc.edu).

Oldřich Kodym, Michal Španěl and Adam Herout are with
the Department of Computer Graphics and Multimedia, Brno
University of Technology, Božetěchova 2, 612 66 Brno, Czech
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