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Abstract. Aortic dissection (AD) is a condition of the main artery of
the human body, resulting in the formation of a new flow channel, or
false lumen (FL). The disease is usually diagnosed with a computed
tomography angiography (CTA) scan during the acute phase. A better
understanding of the causes of AD requires knowledge of aortic geometry
prior to the event, which is available only in very rare circumstances. In
this work, we propose an approach to reconstruct the aorta before the
formation of a dissection by performing 3D inpainting with a two-stage
generative adversarial network (GAN). In the first stage of our two-stage
GAN, a network is trained on the 3D edge information of the healthy
aorta to reconstruct the aortic wall. The second stage infers the image
information of the aorta to reconstruct the entire dataset. We train our
two-stage GAN with 3D patches from 55 non-dissected aortic datasets
and evaluate it on 20 more non-dissected datasets, demonstrating that
our proposed 3D architecture outperforms its 2D counterpart. To obtain
pre-dissection aortae, we mask the entire FL in AD datasets. Finally,
we provide qualitative feedback from a renown expert on the obtained
pre-dissection cases.
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1 Introduction

The aortic dissection (AD) is an uncommon, but life-threatening condition of
the aorta (Fig. 1), caused by a diseased medial layer inside the aortic wall [9].
Characteristic is the sudden development of a so-called primary entry tear, a
defect on the luminal side of the aorta [11]. This allows blood to enter the teared
aortic wall, further dissect it, and form a new ‘false’ blood flow channel inside
the aortic wall. As the dissected aortic wall is thinner and of lower mechanical
strength, it may rupture, leading to a typically lethal event [19]. When the newly
formed blood channel reconnects with the original ‘true’ blood flow channel of
the aorta, two separate flow channels are generated, referred to as true lumen
(TL) and false lumen (FL), as the interior of a blood vessel is called lumen [11].

Fig. 1. Illustration of an AD. Left, in color: The formation of a FL with a primary
entry tear. It is clearly visible that the FL grows within the medial layer of the dissected
aortic wall, i.e. the central layer in yellow. In gray: actual CTA images of AD showing
a rendered sagittal view (center) and a cropped axial view (right). (Color figure online)

Diagnosing ADs is typically done by acquiring CTA that provides detailed
anatomic information of therapeutically relevant features, such as the anatomy
of TL and FL [5]. A more in-depth discussion is provided in two recent reviews
on the biomechanics of the aortic wall [22] and on the adopted techniques in
medical imaging [19]. Once AD has been diagnosed, patients undergo life-long
surveillance, comprising CTA scans after three months, six months and annually
thereafter to monitor the progression of the aortic growth [7,15]. Investigating
the onset of the disease remains rather unexplored, since acquiring data before
the diagnosis of AD is highly unlikely [19]. Such data would only exist from an
earlier examination that required a thorax CTA. Having such data would help
simulate and understand the causes of ADs as well as visually convey the pro-
gression over time [15]. The aortic diameter is currently used for risk assessment,
as this increases with the growth of the FL [15,19].

In this work, we address this shortage using image processing via genera-
tive adversarial networks (GANs) [6], which have found applications in differ-
ent research areas, such as image artifact reduction [24]. By using a free-form
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3D inpainting approach we are able to generate plausible pre-dissection CTA
datasets. We consider the FL of an AD as an image ‘artifact’ to be masked for
removal.

1.1 Background

A large body of recent research in image processing employs GAN, including
free-form inpainting problems [17,26]. A GAN consists of two distinguished deep
networks, a generator and a discriminator [6]. The two networks are trained in
a zero-sum game, where the generator learns to generate realistic fake data, the
discriminator, to distinguish it from real data.

Due to the availability of large databases like ImageNet [1], GAN inpainting
has been widely and intensively tested on 2D images with rectangular masks.
In the field of computer vision, Liu et al. [12] claim to be the first to address
the problem of free-form inpainting with deep learning, using partial convolution
and a U-Net as generator. Yu et al. [26] use GAN with gated convolution to deal
with free-form masks. They also introduce the idea of adding manual sketches as
guidelines to reinforce particular shapes in the inpainted images. Nazeri et al. [17]
automate the creation of these guidelines using adversarial edge learning. They
suggest a two-stage GAN with 2D inputs, which initially hallucinates the edges
inside the masked area, successively it uses this information as a guideline and
performs the actual inpainting task. Free-form inpainting approaches have been
less intensively investigated in the medical imaging community. Mirsky et al. [14]
qualitatively evaluated the effectiveness of CT inpainting using 3D GANs. The
authors used a rectangular ROI to add or remove a tumor in thoracic CT images.
In their evaluation, they show how the method can fool expert radiologists in
different cases. Armanious et al. [2] evaluated the role of perceptual losses, as
considered also by Nazeri et al. [17], in CT and MRI inpainting.

1.2 Contribution

Using a semi-supervised approach, we apply a free-form mask to exclude the
region occupied by the FL and train a two-stage 3D GAN to first hallucinate
the edges of the masked volume and then, secondly, perform an edge-guided
inpainting. Our contributions are:

– a two-stage, semi-supervised 3D GAN network for the reconstruction of cor-
rupted or missing content in CTA images,

– the virtual regression of AD via prediction of the pre-dissection aortic shape,
– the evaluation of the generated data by a clinical expert.

2 Data Acquisition and Preprocessing

Since before-AD/with-AD image pairs are unavailable, we use public datasets of
healthy aortae for training. A total of 75 CTA datasets were acquired, 40 from
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the CAD-PE challenge (www.cad-pe.org) and 35 from Masoudi et al. [13]. Both
data sources contain images of pulmonary embolism, which usually does not
affect the original shape of the aorta. For a qualitative evaluation of the virtual
AD regression, we use 52 non-public datasets with Type-B AD. Type-B indicates
that the dissection only involves the descending aorta, after the arch [4].

To contain the computational cost, the datasets were manually cropped to
a variable size of approximate 100 × 100 × D voxels, with the number of slices,
D, depending on the length of the aorta. The extent of the smallest cropped
volume is 100 × 100 × 133, whereas the extent of the largest is 104 × 104 × 473.
All images contain the descending aorta and its immediate surroundings.

3 Method

Aortic dissection (AD) can extend along the whole aorta. For this reason,
inpainting techniques can easily fail when considering single-view, 2D approches.
Extending the idea from Nazeri et al. [17], we define a 3D inpainting method
based on a two-stage GAN. Each stage consists of a 3D-GAN with spectral nor-
malization [16]. Each layer is initialized using the Xavier method [23]. A scheme
of the overall architecture is shown in Fig. 2. The network input is obtained from
a 3D slab, V, of size I = 100 × 100 × 12; this can be interpreted as a 3D sliding
window, V, which slides along the descending aorta. The sliding window with
overlap allows the information to be transmitted to the following slabs.

Fig. 2. Architecture of the two-stage 3D network. Each input volume has size I. In
yellow, the convolution and deconvolution layers. In red, the residual blocks. The layers
of the discriminators follow the Patch-GAN architecture [17]: each layer consists of a 3D
convolution (Kernel size: 3, stride: 2, channels, in order: {64, 128, 256, 512, 1}), spectral
normalization and LeakyRELU activation with threshold 0.2. For the generators, the
encoding layers consist of 3d convolution (cubic kernel size, in order: {7, 4, 4}, stride:
{1, 2, 2}, channels: {64, 128, 256}), spectral normalization, instance normalization
and ReLU activations. The residual blocks are similar to the encoding layers with 256
channels and dilation factor 2. The decoding layers mirror the encoding layers. (Color
figure online)

www.cad-pe.org
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Given the 3D slab V, its edges C = edge(V) and a mask M; we define the
following inputs and output for the first generator G1:

CM = C � (1 − M), (1)
VM = V � (1 − M), (2)
CG = G1(VM ,CM ,M), (3)

where � is the Hadamard product; CM , the masked edge volume; VM , the
masked original volume, and CG, the output of the first generator, which con-
tains the reconstructed edges. We provide both the edge volume and the original
volume as we empirically found that this reduces the training time. The output
volume CG is then used to evaluate the adversarial loss, Ladv1, and the feature
matching loss, LFM , used in the objective function. In particular, having defined
with E the expectation operator,

Ladv1 = E(C,V)

[
log D1(C,V)

]
+ E(V) log

[
1 − D1(CG,V)

]
(4)

defines a metric of the average distance between the two distributions (CG,V)
and (C,V).

LFM = E

⎡

⎣
L∑

i=1

1
Ni

∥
∥
∥D

(i)
1 (C) − D

(i)
1 (CG)

∥
∥
∥
1

⎤

⎦ (5)

defines a metric in the feature space; where L is the number of convolution layers
in the discriminators, D

(i)
1 is the activation of layer i. Similar volumes should

therefore have similar activation maps. This information is then combined in the
adversarial objective function:

min
G1

max
D1

LG1 = min
G1

[
λadv1 max

D1
(Ladv1) + λFMLFM

]
, (6)

where λadv1 and λFM are regularization parameters. We extend this evaluation
also to the second generator, G2:

CI = CM + CG � M, (7)
VG = G2(VM ,CI), (8)
VI = VM + VG � M, (9)

where CI represents the inpainting of CM ; VG, the output of the second gen-
erator, and VI , the final inpainting of VM .

Ad-hoc loss functions have been defined for 2D image outputs. These include
the style loss and the perceptual loss [10], which provide a metric based on
the activation maps of a pre-trained VGG-19 network. Practical experiments
revealed that the distances in the feature space are not significantly affected by
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the dataset used to train the network. Nonetheless, VGG-19 is trained on 2D
images; therefore we introduced an averaged perceptual loss and style loss,

Lperc,av = E

⎡

⎣
∑

i,j

1
Ni

‖φi(Ij) − φi(IGj
)‖1

⎤

⎦ , (10)

Lstyle,av = Ek,j

[
‖Gφ

k(Ij) − Gφ
k(IGj

)‖1
]
, (11)

where we compute the loss values on a per-slice level j and average them over
the volume. This considers the fact that medical experts evaluate the volume
by analyzing single 2D axial views. Each φi is the activation map of the layer i
in the VGG-19 network; Gφ

k is a Gram matrix derived from the activation map
φk [10]. Thus, we define a composite objective function:

min
G2

max
D2

LG2 = min
G2

max
D2

[
λadv2Ladv2 + λl1Ll1 + λpLperc,av + λsLstyle,av

]
(12)

where λadv2, λl1 , λp, and λs are regularization parameters; Ladv2 is the adver-
sarial loss (Eq. 4), and Ll1 is the L1 loss.

Previously, 2D networks were trained with the masks provided by Liu
et al. [12] or with rectangular masks [12,17]. In this work, we generate ran-
dom 3D masks by filling each of the 12 slices with a mask from Liu et al., a
random super-ellipse (SE), or a segmentation mask. During training, the masks
and the patch volumes are selected randomly. During testing, the patch volumes
are consecutively extracted with a sliding window, together with the relative
masks, with a pace of four slices.

Fig. 3. Example of two inpainted slices. A) A healthy aorta, F) A dissected aorta, B)
G) Segmentation of true lumen (green) and false lumen (red), C) H) masked image, D)
I) hallucinated edges (green), E) J) inpainting result on the aorta and surroundings.
(Color figure online)
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Table 1. Quantitative results of the inpainting, compared to the previous 2D ver-
sion [17]. Precision (Prec.) and Accuracy (Acc.) refer to the edge reconstruction.

Input Mask Prec Acc Ll1 Lperc,av Lstyle,av HDD PSNR MAE

2D SE 32.26 28.64 0.349 0.048 0.065 0.610 30.465 0.017

2D SE/FF 10.32 10.34 0.192 0.099 0.102 1.248 17.049 0.186

3D SE 58.89 55.44 0.261 0.045 0.020 0.082 45.898 0.003

3D SE/FF 88.67 86.53 0.201 0.049 0.027 0.168 41.81 0.005

4 Experiments and Results

To evaluate our approach, we train the network on cropped regions of interest
(ROI) from 55 non-dissected aortae, which we augment through reflections, as
the aorta can be situated on both sides of the spine. We evaluate its performance
over a separate pool of 20 images of non-dissected aortae, to be able to quan-
tify the results. Moreover, we test our approach with after-AD images and ask
medical experts to evaluate the results.

The training was performed using PyTorch v1.2 on a desktop computer
(CPU: Intel i7-8700, 64 GB RAM, GPU: NVIDIA Titan RTX 24 GB) and with
a batch size of 16. The learning rate was set to 10−4, λadv1 and λadv2 to 0.1,
λFM to 10, λs to 250, λl1 to 1 and λp to 0.1.

Initially, we only train the first stage, where the volume edges are recon-
structed. First, we train with stacks of random SE to provide the training with
more degrees of freedom than the usual rectangles. We continue training by
mixing the SE slices with the free-form masks from Liu et al. [12] and further
segmentation masks of medical images. We refer to this combination as FF.

Table 1 summarizes the measured precision and accuracy for this stage. The
3D information enhances the performances considerably, especially, for FF. Prob-
ably due to size and shape variety of masks, the 3D approach outperformed the
2D approach. Convolution in 3D can use information from adjacent slices, result-
ing in a network capable of inpainting in larger planar areas.

We repeat the same experiments for the second stage. Here, precision and
recall may not be reliable measures, as small differences are acceptable. There-
fore, we evaluate the performance of the inpainting stage using the loss metrics,
together with the peak signal-to-noise ratio (PSNR), the mean absolute error
(MAE) and the Hausdorff distance (HDD).

The measures in Table 1 show a trend comparable with the first stage. In
both the experiments, the 3D approach provides results which are visibly more
accurate. Nonetheless, a detailed comparison between the two trends shows that
there is still space for improvements in the second stage. Figure 3 provides a
visual overview of the results.

From a qualitative point of view, we further saw that the edge reconstruction
step guarantees more natural edges for the aorta reconstruction, compared to
the second-stage network trained without the edge information. The images of
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Fig. 4. Example of size change during AD regression. Values in millimeter. A) Original
image. The aorta presents a higher diameter due to the presence of the FL, B) Segmen-
tation of TL (green) and FL (red), C) Masked image, D) Reconstructed pre-dissection
state. The diameter is now lower. E) Segmentation of the pre-dissection aorta. (Color
figure online)

the resulting pre-dissection case were reviewed by a cardiovascular radiologist
with more than 20 years of experience in the interpretation of CT angiograms of
patients with aortic diseases. The expert was asked to evaluate if the virtual pre-
dissection aorta reasonably resembled the expected appearance of non-diseased
aorta. Specifically, the expert was asked to assess if the following key features of
a dissection were suppressed in the virtual pre-dissection dataset: (a) Presence
of a dissection flap, (b) difference in contrast enhancement between TL and
FL, (c) shape of the outer contour of the aorta, and (d) introduced artifacts or
unexpected findings.

(a) The dissection flap – the diagnostic hallmark of aortic dissection in CT
imaging – was successfully eliminated in almost all images.

(b) The contrast opacification of the simulated pre-dissection aorta appeared
homogeneous, with elimination of the typical attenuation difference between
TL versus FL blood. There is a contrast heterogeneity without an abrupt
transition caused by a dissection flap. The contrast heterogeneity exhibits
commonly observed mixing artifacts.

(c) The shape of the virtual pre-dissection aorta was considered remarkably sim-
ilar to the expected appearance of a normal aorta, with circular or slightly
oval cross section on transverse CT images, with coronal and sagittal refor-
mats. This is in contradiction to the typically more eccentric shape of a
dissected aorta, where the outer wall of the FL stretches and dilates due to
thinning and loss of elastic tissue.

(d) Even though, subjectively, the appearance of the virtual regression was
remarkably similar to a non-dissected aorta, the interface between the
inserted aorta and its surrounding, typically a few millimeters outside of
the aortic contour, was noticeable (see Fig. 4). However, these artifacts did
not distract from the evaluation of the important features of the aorta.

5 Conclusion

We have evaluated the potential of 3D image inpainting for visually regressing
images of aortic dissection. In particular, we define a two-stage 3D-GAN for
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medical image inpainting and train it with patch volumes containing healthy
aortae and free-form masks obtained with different approaches. We mask only
the dissected traits of the aorta and use the GAN to reconstruct their original
healthy state, before the development of AD. We obtain quantitative results by
inpainting a separate image pool of healthy aortae, and compare them with a
2D approach. Moreover, we perform a qualitative evaluation of the inpainting
operation on AD cases under the guidance of a senior radiologist specialized in
cardiovascular diseases. To the best of our knowledge, this is a unique application
of GAN and the first evaluation of AD regression leveraging the strengths of
neural networks. The results show how the suggested 3D inpainting approach
performs considerably better than the state-of-the-art 2D counterpart. Although
expected, this underlines the necessity to process the aorta as a whole or, at least,
as a union of overlapping segments. Furthermore, the network is trained with
randomly located masks, and provides enough generalization to reconstruct also
other objects near the aorta, such as the spine. The 2D version has been currently
integrated in the online open-science platform www.studierfenster.at [25] and a
video tutorial is available on YouTube1 [21]. Future work sees the extension to
the whole aorta as well as the segmentation of these pairs [20] and their use
in biomechanical simulations [3]. Additionally, we will evaluate long-short term
memory approaches to remove the need for an overlap between slabs [8].
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