Creating loT-ready XR-WebApps with Unity3D

Philipp Fleck
Graz University of Technology
philipp.fleck@icg.tugraz.at

ABSTRACT

The rise of IoT-ready devices is supported through well-established
web concepts for communication and analytics, but interaction yet
remains in the world of web browsers and screen-based 2D inter-
action during times of tablet and smartphone popularity. Trans-
forming IoT interaction concepts into 3D for future exploitation
with head-worn XR devices is a difficult task due to the lack of
support and continued disengagement of game engines used in XR
development.

In this work, we present an approach to overcome this limitation,
tightly including web technology into a 3D game engine. Our work
leverages the versatility of web concepts to create immersive and
scalable web applications in XR, without the need for deep-tech
know-how about XR concepts or tiring customization work. We
describe the methodology and tools in detail and provide some
exemplary XR applications.

CCS CONCEPTS

« Software and its engineering — Software creation and man-
agement; - Computer systems organization — Embedded and
cyber-physical systems; Sensor networks; -« Human-centered

computing — Mixed / augmented reality; Virtual reality; Graph-

ical user interfaces.

KEYWORDS
XR, IoT, 3D Engines, Web browser, Web app

ACM Reference Format:

Philipp Fleck, Dieter Schmalstieg, and Clemens Arth. 2020. Creating IoT-
ready XR-WebApps with Unity3D. In The 25th International Conference on
3D Web Technology (Web3D °20), November 9-13, 2020, Virtual Event, Republic
of Korea. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3424616.
3424691

1 INTRODUCTION

Fast growing Internet of Things (IoT) and industrial sensor systems
become more and more difficult to interact, explore and maintain.
Furthermore, information is more likely to be cross-referenced
among various domains (sensors, machinery, factories and others)
to enable supportive applications like in-situ data discovery, train-
ing, maintenance and repair. Within an application the user has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Web3D °20, November 9-13, 2020, Virtual Event, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8169-7/20/11...$15.00
https://doi.org/10.1145/3424616.3424691

Dieter Schmalstieg
Graz University of Technology
schmalstieg@tugraz.at

Clemens Arth
AR4 Gmbh
clemens@ar4.io

often to explore and consume data from different sources e.g., in-
specting faulty machinery in terms of both physical components
and virtual sensor data or documentation.

Collecting (sensor) data for analysis has a long tradition where
all sorts of applications, libraries and technologies have been imple-
mented, tested and strongly used. Nowadays and for the near future
most systems are build around web technologies, especially visual-
izations. Tools like Grafana (grafana.com), Prometheus (prometheus.
io) and Graphite (graphiteapp.org) utilize libraries like Chartjs
(chartjs.org) and D3js (d3js.org) for rendering and styling. Common
to all of them is their runtime in the web browser, mostly on a
JavaScript (JS) foundation, and their highly compatible nature and
portability to almost any hardware.

Emerging technologies like eXtended Reality (XR)! bring a new
level of immersive interaction and information consumption to the
user, not only in industries but also to consumers. They are perfect
to convey virtual information to users in a comprehensive and ac-
cessible way beyond the borders of desktop monitors. Nevertheless
creating XR applications leveraging all this existing technology and
modern IoT concepts is not a straight forward task. Besides the
understanding of web and IoT technologies, it requires expertise in
fe., 3D Engines, Software Architecture and XR concepts.

In our work we propose techniques and concepts on how to
create XR web-applications to extend existing IT-infra-structure
for straight forward integration of heterogeneous virtual data. The
major aim of this work is to relieve some burden from develop-
ers, app- and content-creators. We show how to allow a Unity3D
based system to utilize web-technologies and existing content to
create WebApps (electron? alike applications, capable of running
within the browser, but also directly on the system) with 3D-Engine
support, still capable of running in the web browser.

In the remainder of this paper, we mainly focus on AR-applications
for Head Mounted Displays (HMDs, aka smart-glasses) like the
Microsoft Hololens. However, most of the principals apply to hand-
helds, VR-Headsets and XR in general as well. Our major contribu-
tions are the following:

o An easy way for creating WebApps with Unity3D and browser
support

o Accessing and Visualize (sensor) data inside Unity3D

e Automatically creating visualizations for given data

o Utilizing existing infrastructure for AR applications

o Exploiting full web browser support in Unity3D

o Fast prototyping by hot loading

2 RELATED WORK

An exhaustive overview about visualization, IoT/web and XR tech-
nologies is beyond the scope of this section. It is very difficult to

The term eXtended Reality (XR) refers to the collectivity of Augmented Reality (AR),
Mixed Reality (MR) and Virtual Reality (VR) technologies.
Zhttps://www.electronjs.org

https://doi.org/10.1145/3424616.3424691
https://doi.org/10.1145/3424616.3424691
https://doi.org/10.1145/3424616.3424691
grafana.com
prometheus.io
prometheus.io
graphiteapp.org
chartjs.org
d3js.org
https://www.electronjs.org

Web3D ’20, November 9-13, 2020, Virtual Event, Republic of Korea

group approaches based on scope and to bridge the gap between
those domains either. In order to still provide a comprehensive
overview about relevant concepts from different domains, in the
following we briefly discuss several approaches related to our work.

2.1 Web and Communication Concepts

Recent web technologies allow to build cross-platform applications,
completely running in a web browser or a web enabled system.
Many have shown how to build website running on mobiles with
HTMLS5, CSS and JS support [David 2012; GitHub Inc. 2018; Toman
et al. 2019]. Web libraries and frameworks like D3js [Bouali et al.
2016; David and J M Tauro 2015] allow real-time data handling and
the implementation of nice and interactive visualizations A core
advantage is rapid prototyping (often bypassing the build stage of
an application and utilizing in-browser evaluation like hot-loading)
as presented by Stringer et al. [Stringer et al. 2005].

The drive to automate tedious tasks and to make decisions based
on data was always a drive for new technologies and algorithms.
SCADA [Boyer 2010; VanderZee et al. 2015] have a long history
reaching back to the early 1970’s. This sensors managing systems
and standards are capable of data flow handling and control on de-
vice level. Opening standards allowed cross manufacturer commu-
nication, leading to new independent technologies. NodeRed [Lekié¢
and Gardagevi¢ 2018; Sicari et al. 2019] is a quite young open-
source tool for sensor management, automation and more. Sen-
sors and actuators ranging from buildings-infrastructure up to
production factory machine control can be easily maintained and
operated through such a system. With the rise of IoT, communica-
tion paradigms like MQ-Telemetry-Transport (MQTT , previously
Message Queing) have been developed and deployed at small and
large scales, often producing big amounts of data [Chanthakit and
Rattanapoka 2018; Dix 2017; Grgic¢ et al. 2016; Marjani et al. 2017].

2.2 3D Content in Web Browsers

Web browsers are basically 2D interfaces, but early approaches
to include 3D date back to the late 1990s. Standards like WebVR
(https://webvr.info), threejs (https://threejs.org) and others support
3D content in a 2D browser nowadays. Often, device support on a
low level is required and, therefore, it is not plausible to run full 3D
applications inside a browser on an AR-enabled device. Software
projects like Dom2Frame by Marx et al. [Marx et al. 2017] tackle
such problems by rendering the DOM into an interactive texture.
Speiginer et al. [Speiginer and Macintyre 2019] described how to an-
notate existing 2D web content for immersive representation in 3D
by manipulating an existing sample application. Furthermore, ex-
isting Dom-To-Texture techniques (Dom2Texture, Html2Canvas®)
were shown to be sufficient for an immersive and fluid experience.

Use cases like city exploration and navigation benefit most from
AR support in the browser to provide immersive experiences. The
Argon web browser by MacIntyre et al. [Maclntyre et al. 2011;
Speiginer et al. 2015] implements, amongs other things, KARML, an
extension of Googles KML* (a geographical markup language) for
geo-located information and enables the use exiting web technolo-
gies. More recently, Speiginer et al. [Speiginer and Maclntyre 2019]

3https://html2canvas.hertzen.com
“https://developers.google.com/kml

Philipp Fleck, Dieter Schmalstieg, and Clemens Arth

depict the layered reality model describing an independent software
architecture to implement so called layers of reality. Those realities
are decoupled and independently loadable similar to separated ap-
plications. Key proposed concept is write once, adapt everywhere
and react continually.

2.3 Data Exploration in XR

XR lives by 3D virtual content. Often this refers to 3D models for
either entertainment or productivity purposes in the first place
(i.e., virtual twins). However, this paradigm even more applies to in-
formation of simpler nature, i.e., 2D data, potentially single numbers
or sensor readings, but at a large scale with a plurality of data mean-
ings and temporal and spatial dependencies. This is particularly
important for professional applications in industry.

Grubert et al. [Grubert et al. 2017] describe the taxonomy and
importance of sensing users context and adapting the AR system ac-
cordingly based on given constraints. This is coined context-aware
XR with in-situ data visualization and exploration. Funk et al. [Funk
et al. 2017] presented and evaluated an assisting system to support
workers with repeating tasks, leveraging camera-projector systems.
In order to generalize user interfaces for connected devices, Nichols
et al. [Nichols et al. 2004] use parameterized templates to specify
things like look and feel, button placement and size, situational
behavior. Digital hardware with physical controls (e.g., music com-
position hardware, industrial machines) have haptic feedback but
lack visual feedback. ControllAR by Jones et al. [Jones and Berthaut
2016] remixes graphical interfaces and creates an immersive visual-
ization for such controls.

Building immersive data visualizations allows to exploration and
understanding in new dimensions. Butcher and Ritsos [Butcher and
Ritsos 2017] build and evaluate VR visualizations utilizing existing
web frameworks. By the example of spatial bar-chart an interac-
tive prototype is showcased based on WebVr, A-Frame, WebGl and
threejs. Bach et al. [Bach et al. 2018] examine effects of interac-
tions in immersive AR applications by comparing desktop-AR vs.
tablet-AR vs. HMD-AR (Hololens). Their study reveals that smart
glasses show high potential and usability in the future, but undergo
hardware limitations like small field-of-view, battery-lifetime and
computational performance. Sicat et al. [Sicat et al. 2019] created
an immersive analytics framework based on Unity3D with DXR
and a grammar inspired by Vega®. Overcoming complex low level
programming with descriptive grammar opens the door for more
applications. Re-useable templates and graphical marks allow for
rapid prototyping. Due to its underlying structure DXR is perfor-
mance hungry and does not scale well, which is unimportant for
in-lab use but crucial for in-field use.

The increased complexity of connected digital systems raised
the need of understanding such networks, particularly important
in maintenance of real assemblies and data analytics. Ivy [Ens et al.
2017] provides an interactive visualization of such networks, specif-
ically depicting data-sources, data-sinks and data-flows. XR devices
enable the application of such spatially situated visual programming
tools for real-time usage.

Shttps://vega.github.io/vega/

https://webvr.info
https://threejs.org
https://html2canvas.hertzen.com
https://developers.google.com/kml
https://vega.github.io/vega/

Creating loT-ready XR-WebApps with Unity3D

philipp =, o o 12:55
-~ -

Pdf Viewer. %A M

L P SR X

HOME Contacts call

[@ S

BSTEST AppSnap R

Figure 1: Sample WebApp running on Android having the
application logic fully implemented in JS with native fea-
ture support e.g., camera access and ARCore (developers.
google.com/ar).

2.4 Bringing Web and 3D Engines together

Immersive XR applications are 3D heavy by nature, not manda-
tory content wise, but spatially e.g., location of the camera (Device)
relative to the scene (Environment). 3D engines like Unity3D or
Unreal (unrealengine.com) are therefore heavily used for XR devel-
opment. However, as 3D engines originate from game development
in the first place, they almost entirely lack the support of browser
technology or well known 2D web content handling.

At the time of writing, the Hololens is the AR device of choice
running Windows Holographic (at subset of Windows 10). A com-
mon approach is to deploy a Unity3D application as Universal
Windows Platform (UWP) App in 3D mode. The XAML-2D mode
is also supported and often a better fit for non-immersive 2D-
Applications [Freeman and Freeman 2010; James et al. 2015]. Liu et
al. [Liu et al. 2018] performed a hardware evaluation of the Hololens
proofing good enough tracking and visualization capabilities for
immersive AR applications.

The bottom line is that despite the availability of plenty of tools
and even suitable hardware nowadays, getting the best of both
worlds, i.e., 2D web and real 3D immersion, at the same time at
scale is prohibitive. The only known approach tightly integrating
2D web technology into XR in game engines was recently proposed
by Fleck et al. [Fleck et al. 2020]. They demonstrate an application
for remote collaboration based on presented workflows and con-
cepts, however, only briefly referring to the relevance of 2D web
technology. In contrast, in the remainder of this paper we elaborate
in detail on how to bridge different domains of data retrieval, data-
visualization and application-design to enable rapid prototyping
and, most importantly, webapp-style application creation through
the integration of 2D web technology into a 3D game engine.

3 WORKFLOW AND TECHNICAL DETAILS

Current WebApps use a wide range of well established techniques
for development and deployment e.g., Grunt, Gulp, WebPack and
others®. Best practices are already commonly used across indus-
tries and developers. Such WebApps are the foundation of our daily
web-life and tools for almost everything exist. In this work we try
to leverage this potential within immersive XR applications. 3D

Sgruntjs.com, gulpjs.com, webpack js.org

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

<body>
<div class="wrap">
<p> Hello World<p>
<button class="mb" type="button" onclick="window.
location.href="http://www.tugraz.at'">click!</button
>
</div>
</body>

Algorithm 1: <body> of a simple webapp implementing a button and
using inline JS to launch tugraz.at

Hello World
click!

Hello world
click!

Figure 2: Rendering of the simple WebApp (Algorithm 1).
(left) is running inside the web browser and (right) runs in-
side Unity3D on the Hololens.

engines like often implement their own User-Interface-Description-
Languages for User-Interface (UI) creation and lack web-support.
Such approaches have a high learning curve and require and pro-
found skillset. Recently, Unity3D applies web principles to its Uls by
introducing UlEImenets’, to ease the creation of Uls in a web-style
manner.

Our approach, tries to fill the gap of missing web-support in
Unity3D, allowing for fast prototyping and strongly decoupled Uls
from compiled and published applications. The created WebApp
can run in the web browser without Unity3D, allowing high code re-
use since we can extend an existing (2D) WebApp to support AR on
the Hololens. We utilize and extend PowerUI® (a leightweight and
fast JS interpreter and HTML, CSS renderer) to create meaningful
and easy maintaineable 3D applications with web support based on
Unity3D. Other assets like Webview for Android® often lack support
UWP, especially the Hololens. We choose Unity3D over other 3D
engies because of it’s wide hardware support starting from mobiles
phones and desktop computers up to AR and VR headsets.

HTML, CSS and]S are used to stylize and implement applica-
tions, similar to best practices for web development. An example
application capable to run on desktop, mobiles or smart glasses with
Unity3D support is depicted in Figure 1, Figure 2 and Algorithm 1.
The fairly simple application has one click-able button to open
a web-site using JS for the click-event. Furthermore in-browser
rendering and in-app rendering look alike. We have the following
options to load the WebApp inside Unity3D:

e compiled storage: StreamingAssets or Resources

o file system: file path or persistant data depending on the
Platform (slightly different for iOS, Android, UWP)

e URL like a web browser

"blogs.unity3d.com/2019/04/23/whats-new-with-uielements-in-2019-1
8 github.com/Kulestar/powerui, github.com/philfleck/powerui
“https://assetstore.unity.com/packages/tools/gui/3d-webview-for-android- 137030

developers.google.com/ar
developers.google.com/ar
unrealengine.com
gruntjs.com
gulpjs.com
webpack.js.org
blogs.unity3d.com/2019/04/23/whats-new-with-uielements-in-2019-1
github.com/Kulestar/powerui
github.com/philfleck/powerui
https://assetstore.unity.com/packages/tools/gui/3d-webview-for-android-137030

Web3D ’20, November 9-13, 2020, Virtual Event, Republic of Korea

Producer Backend / Clients / Consumer
Infrastructure
Sensor 1 Subscriber 1
"Topic A" I I "Topic B"
Sensor 2 N MQTT Subscriber 2
"Topic B" Broker "Topic A"
Sensor 3 I I > Subscriber 3
"Topic B" "Topic B"

Figure 3: Common MQTT message flow: (blue) depicts three
sensors publishing data to the topics A and B. (purple) shows
the MQTT -broker, the core unit, handling message distribu-
tion and quality-of-service (e.g., message can be temporally
cached to server the last message to new consumers). (or-
ange) indicates the clients (aka consumers or subscribers)
retrieving messages (in real-time) for their subscriptions.

All methods lead to the same result, where loading from file
holds a small performance gain on the Hololens for complex Uls
e.g., lots of nested <div> tags.

Tools like electron, a cross-platform desktop framework for We-
bApps, are used to create web-based desktop apps providing bind-
ings from native (python/C++) to web (JS) and vice versa. With
PowerUI and Unity3D we bind from C# to JS and back. On mobiles,
the problem with web-content is not directly obvious, since in mo-
bile AR we avoid interactive user-interfaces in 3D space because
of the 2D touchscreen. A common approach is to overlay a native
web-view over the 3D surface in which Unity3D is rendering.

Whereas, HMDs allow for easier interaction in 3D due to the
immersive nature. Therefore web-content can not just be overlaid,
but has to be rendered within the 3D engine. Since the Hololens is
one of the last reaming HMDs after the fall of ODG'? and Dagqri!!
parts of our implementation are tailor towards UWP. We are limited
to the restrictions of Windows Holographic, a highly locked down
version of Windows10, disallowing easy service interaction e.g., off-
screen-rendering in an different application and forcing to complex
workarounds. Therefore we implement different techniques to allow
web-support in Unity3D.

Usually applications serve a dedicated purpose and mostly the
interaction is within the context of the application, within a set of
windows (e.g., while interacting with MS Word one stays within MS
Word). Immersive applications in XR allow interactions within the
3D world and its objects. Consequently, we need features surpassing
a web browser, but offered by 3D engines fe., supporting special
hardware (HMDs). Being able to access features like raycasting from
an 2D web browser interface enables us to depict any interaction
paradigm within Uls: 2D < 2D, 2D < 3D and 3D < 3D e.g, an
action in 3D causing an actuation(reaction) in 2D.

Ohttps://en.wikipedia.org/wiki/Ralph_Osterhout
https://en.wikipedia.org/wiki/Daqri

Philipp Fleck, Dieter Schmalstieg, and Clemens Arth

Timeseries DB

(InfluxDB)
SqiDB
Sensor 1
"Topic A" NoSql DB
Sensor 2 MQTT
. Sensor Management - q
= = Broker
'Topic B' (SCADA, S7, Appllca(t:;: Service
NodeRed)
Sensor 3
"Topic B"

Client Sensor

Subscriber 1
"Topic B"
(e.g. monitoring)

Client Application Backend'| Db

Figure 4: Exemplary infrastructure for information manage-
ment and retrieval. Publishers (Sensors) are publishing mes-
sages to the MQTT -broker who notifies subscribers: clients
(orange) or other services (purple). Timeseries-, SQL- and
NoSQL-Databases (green) are used to store different kinds
of data e.g., sensor-data, user-data and documentation. The
application service interfaces databases, other services and
is the endpoint (API) for clients.

3.1 MQTT and IoT connectivity

Interconnected services are a crucial part when it comes to in-
formation availability, information discovery and infrastructure
complexity. With MQTT on-site, service discovery and services
maintenance has become much simpler. MQTT is a lightweight
and scale-able, TCP based standard with many applications to it.
Centered around a message-broker, clients can register to topics
to receive and publish data as shown in Figure 3. Key concepts
are asynchronous notifications and lightweight messaging. Most
common use-cases are pinging (event notification) and small-data-
delivery. Compared to RESTful over HTTP, MQTT allows polling
free implementations, which is especially beneficial for IoT (sensor-
telemetry) data, due to the performance savings. However, low
power HMDs benefit most, resulting in highly responsible applica-
tions. Since MQTT is not designed for large payloads, we can utilize
the strength of both (RESTful and MQTT) to ship a lot of data by
notification (see Figure 5). Furthermore we can decouple devices
from applications and drastically increase code reuse-ability and
code-complexity.

Before going into details of such implementations, we have to
clarify how such an infrastructure (backend) should look like. Non
invasive extensions to existing infrastructure are a set necessity
to existing and stable running infrastructures. Usually services,
endpoints and (IoT)devices which should be discover-able, are of-
ten implement as HTTP based API e.g., RESTful, GrathL12 and
similar. An application receives MQTT -topics over RESTful and
directly connects to selected sensors over MQTT for real-time data
streaming. Further API endpoints provide historic data for data
analysis. Such backend designs, as shown in Figure 4, allow us to
implement meaningful, easy-to-write and easy-to-use WebApps.

2graphql.org

https://en.wikipedia.org/wiki/Ralph_Osterhout
https://en.wikipedia.org/wiki/Daqri
graphql.org

Creating loT-ready XR-WebApps with Unity3D

function MyWebGameObject () {
try {
var UE = importNamespace("UnityEngine");
var myGo = new UE.GameObject ("mywebgo");
var newPos = new UE.Vector3(1,-2,3);
myGo.transform.position = newPos;
} catch(err) {/*"Not supported in Browser!"x/}

Algorithm 2: Calling Unity3D functions from JS

3.2 Client-side WebApp in Unity3D

The current state of the art in industries uses dedicated, mostly
custom written, WebApps for data-visualization. -inspection and
-retrieval. Single page views (e.g., showing current production num-
bers) are often visualized in hallways, offices or on certain locations
close to the production area within a factory. Having the infras-
tructure and services in place, we can now explore and access
such data. Using lightweight template engines like json2html'3 we
create data-driven, JSON-based templates for rich and interactive
web-views (visualizations). Figure 6 and Algorithm 3 show how to
create such an interactive visualization based on a JSON-transform.
Transforms are transformed to HTML when feed to json2html.
JSON-lists and other data-structures (e.g., lists of sensor-values) can
be automatically processed by using markups within transforms
(e.g., ${MYVALUE}). Libraries like jQuery'* can be used accordingly.
Unfortunetly, PowerUI’s JS-interpreter is not feature-complete and
therefore lacks full support of some special JS-libraries like ChartJs,
D3js. In the latter of the section we provide a solution to this short-
coming.

3.3 Interoperability

Running a 3D Engines as app foundation allows us leverage spe-
cific functionality like raycasting, texture rendering and access
to tracking data. Since PowerUI exposes and maps accessible C#
functionality to JS we can implement independent code for such ap-
plications. The limitations of that approach are runtime-reflections
and runtime-object-extensions. Furthermore, we can fully access
Unity3Ds API and directly modify GameObjects, spawn Prefabs
and more. As shown in Algorithm 2, we can enclose the interop-
code in a try-catch-block maintaining browser compatibility,
otherwise a Function not found is thrown. A common workflow
is to use application related content within JS and only execute
necessary calls to C#.

Callbacks. are a strong tool to implement asynchronous behavior,
especially when designing interactive web-views. In C# callbacks
are usually implemented via EventHandler or lambda functions,
therefore it is easy use them. However, in JS we can use functions
or lambda functions inside JS, but have to take care when receiving
a callback from C#. Within the WebApp we have three possibilities:

(1) passing a defined function by name with a fixed set of pa-
rameters

(2) passing a lambda function

(3) passing a function by value (e.g., its name)

Bjson2html.com
4jquery.com

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

Since the C#-layer can access any present DOM, we can set which DOM
will receive the callback, allowing us to perform inter-DOM-callbacks
e.g., having a loose main-view to control a separate graph-view.

3.4 Hot loading content and functionality

From application maintenance perspective the concept of updating
without shipping new app-versions (new compilations) is highly
interesting. Since the whole application logic and Uls can be loaded
anytime it opens a lot of possibilities. Updating and bug-fixing
app-behavior becomes very easy. The proposed infrastructure with
MOQTT in place, allows for notify-and-pull concepts. Patches can
easily be distributed, even at run-time. Furthermore, specialized
implementation like new protocols, data-stream interpretation can
be added at any time. Even sensors can add functionality to the
application after connection fle., adding new virtual controls. An
implementation and user based evaluation of the hot loading con-
cept was presented by Fleck et al. [Fleck et al. 2020]. Similar to a
web browser content is streamed or loaded at run-time from web
(or other) sources.

3.5 Spatial (Web)UlIs in 3D

Hence we apply Dom-to-Texture techniques, we can map a texture
of the rendered web-view on any object or structure in 3D (e.g., on
a 2D-Plane). Usually we have one DOM per texture, which allows
us to render any web-content next to each other. As mentioned in
section 3.3 we can cross-call among DOMs to easily implement menus
or control interfaces. Placing 2D web-content in 3D we can adjust
the depth layer separation. A bigger displacement will cause HTML-
layers to spatially separate in the normal direction of the surface.
Furthermore, known concepts like billboarding and spatially regis-
tration are applicable to enable immersive experiences. Raycasting
through the 3D scene is used to enable point-and-click interac-
tion e.g., by gaze direction or hand movement. Actual clicks are
registered by transforming the hitpoits texture-coordinates to DOM-
coordinates. Lastly, we have to determine the size of our rendered
view, since we are mapping pixels to spatial measurements:

P

ppw
Dividing the amount of horizontal pixels p by the spatial resolution
(pixels per world unit) ppw we obtained its size in 3D in world units
m (a width of 1000px and a spatial resolution of 1000ppw results
in a 1m wide area).

=m

3.6 XAML based WebView (web browser
support)

In certain cases, full web browser support is required e.g., online
video playback, handling specialized libraries or similar uses which
go beyond the capabilities of PowerUI The current version of Win-
dows on the Hololens makes it hard to run software like headless
render deamons when running a Unity3D UWP application in
3D mode. Usually UWP applications are paused when another
one is started in Windows Holographic. Instead of deploying from
Unity3D to an 3D app, we deploy it as an 2D XAML application
and exploit the ability to switch between 2D and 3D mode. In a
preparation step we add an additional XAML-page containing an

json2html.com
jquery.com

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

MQTT MQTT MQTT__,
E Subscribe Broker Notify
MQTT [
Publish

W _Http/Rest_) Application API — Http
request Response

Philipp Fleck, Dieter Schmalstieg, and Clemens Arth

_)

Figure 5: Replacing RESTful polling with MQTT signaling: One method to get upates over a RESTful API without websockets
is to do polling (e.g., for updating arbitrary status information). Enforcing two bad things: unnecessary connections and bad
code. Using MQTT for signalling and to transfer the RESTful API endpoint via a message, we can still update huge amounts
of data when needed, freeing client side resources (RAM usage, CPU time and bandwith).

WebView!® (Algorithm 4), an extra library holding the WeView’s
instance and code to auto-switch to 3D. Using the saved instance,
we can access the WebView from Unity3D while running the 3D
mode (D3D). Utilizing the screenshot function of the WebView
(CapturePreviewToStreamAsync) we can snapshot and render the
loaded web-page to a texture. Figure 7 depicts a cube running the
live-stream of a local tv-station. The tricky part is getting interac-
tions to work properly. Hence only a small set of the WebView is
exposed, we use JS code injection to perform clicking. By knowing
the WebView’s XAML resolution and the texture resolution, we
can raycast the texture (applied on a 3D Object) and transform the
hit into WebView-coordinates representing the DOM, as shown in
Algorithm 4. To actually click, we execute an JS-eval call and try to
find an element at given location. Once found, Click() is executed
on the element to perform the click (see Algorithm 5). The biggest
bottleneck when running on the Hololens is a slow texture update
(approx running at 15fps) related to the mid-range hardware and
the rather high idle-load of the CPU.

Shttps://docs.microsoft.com/en-us/uwp/api/windows.uixaml.controls.webview

function VZTemplate_GetBarchart2Html (chartData) {
VZTemplate_UpdateData(chartData);
var t = VZTemplate_GetBarchart2Transform(chartData);
return json2html.transform({
"md": chartData }, t.main);

Algorithm 3: Data-driven webview creation: barchart

Barchart Test

all longer info Sub title area of Barchart

Figure 6: Bar-charts created from Algorithm 3 as seen from
the Hololens: (left) visualization using static sample data.
(right) streaming real-time data from our in-office fake sen-
sor (Marinator). Transparency encodes the age of the data.

<WebView x:Name="wvf" Source="https://www.orf.at" Height
="480" Width="640" CacheMode="BitmapCache"
HorizontalAlignment="Left"/>

Algorithm 4: WebView element within XAML definition

//Mapping Texture coords to DOM

var clickXY = textureCoords;
clickXY.x = width - width * clickXY.x;
clickXY.y height * clickXY.y;

//Invoking a click-event

await xamlWebView.InvokeScriptAsync("eval",new string[]{
"document.elementFromPoint ("+ clickXY.x+", "+clickXY
Ly+").click (05"

Algorithm 5: Hitpoint of a raycast on a texture mapped to DOM-
coordinates and click-event invocation

Figure 7: View form Hololens. The cube on the left show a
live-stream from local tv station. The Login-panel on the
right shows the actual app (implemented in JS) rendered
with PowerUI’s Unity3D asset.

4 CONCLUSION AND OUTLOOK

In this work we presented workflows and concepts on creating
IoT-ready WebApps. Furthermore, we showed pitfalls and provided
solutions on how to get real web-support in Unity3D powered
applications for XR. By allowing rapid prototyping through hot
loading, we can provide a more web-a-like feeling on application
creation. Applications can be fully written in web-languages like
HTML, CSS and JS lowering the entry bar for developers and con-
tent creators. The presented extensions to existing infrastructures
bring IoT connectivity and easy integration for XR apps. However,
showing real-time patch- and update-able WebApps powered by
Unity3D drastically eases application maintenance and reduces

https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.controls.webview

Creating loT-ready XR-WebApps with Unity3D

code complexity. Additionally, existing techniques for deployment
like Jenkins (https://jenkins.io) can be leveraged. Our concepts of
inter-system-communication allow for high scale-ability and sus-
tainability improving the overall quality of such services.
Problems with lesser supported web-technologies in 3D engines
will vanish in future, since a new trend started with the introduction
of Unity3Ds UlElements. Furthermore, hardware makers have to put
more thoughts in how their hard is used and allow to loosen some
of the hard restrictions (e.g., configurable application sandboxing).

ACKNOWLEDGMENTS
This work was supported by FFG grant 859208.

REFERENCES

Benjamin Bach, Ronell Sicat, Johanna Beyer, Maxime Cordeil, and Hanspeter Pfister.
2018. The Hologram in My Hand: How Effective is Interactive Exploration of 3D
Visualizations in Immersive Tangible Augmented Reality? IEEE Transactions on
Visualization and Computer Graphics (2018). https://doi.org/10.1109/TVCG.2017.
2745941

Fatma Bouali, Abdelheq Guettala, and Gilles Venturini. 2016. VizAssist: an interactive
user assistant for visual data mining. Visual Computer (2016). https://doi.org/10.
1007/s00371-015-1132-9

Stuart A. Boyer. 2010. SCADA : supervisory control and data acquisition. International
Society of Automation.

Peter W.S. Butcher and Panagiotis D. Ritsos. 2017. Building immersive data visu-
alizations for the web. In Proceedings - 2017 International Conference on Cyber-
worlds, CW 2017 - in cooperation with: Eurographics Association International Fed-
eration for Information Processing ACM SIGGRAPH, Vol. 2017-January. 142-145.
https://doi.org/10.1109/CW.2017.11

Somphop Chanthakit and Choopan Rattanapoka. 2018. Mgtt based air quality moni-
toring system using node MCU and node-red. In Proceeding of 2018 7th ICT Inter-
national Student Project Conference, ICT-ISPC 2018. https://doi.org/10.1109/ICT-
ISPC.2018.8523891

Alferd David and Clarence] M Tauro. 2015. Web 3D Data Visualization of Spatio Tem-
poral Data using Data Driven Document (D3js). International Journal of Computer
Applications (2015). https://doi.org/10.5120/19529-1169

Matthew David. 2012. Building Websites With HTML5 to Work With Mobile Phones.
In HTML5 Mobile Websites. https://doi.org/10.1016/b978-0-240-81813-9.00007-0

Paul Dix. 2017. InfluxData (InfluxDB) | Time Series Database Monitoring & Analytics.

Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani, and
George Fitzmaurice. 2017. Ivy: Exploring spatially situated visual programming for
authoring and understanding intelligent environments. In Proceedings - Graphics
Interface.

Philipp Fleck, Fernando Reyes-Aviles, Christian Pirchheim, Clemens Arth, and Dieter
Schmalstieg. 2020. MAUI: Tele-Assistence for Maintenance of Cyber-Physical
Systems. In VISAPP. —.

Adam Freeman and Adam Freeman. 2010. Windows Presentation Foundation. In
Introducing Visual C# 2010. https://doi.org/10.1007/978-1-4302-3172-1_33

Markus Funk, Andreas Bichler, Liane Bichler, Thomas Kosch, Thomas Heidenreich,
and Albrecht Schmidt. 2017. Working with Augmented Reality?. In Proceedings
of the 10th International Conference on PErvasive Technologies Related to Assistive
Environments - PETRA ’17 (PETRA ’17). ACM Press, New York, New York, USA,
222-229. https://doi.org/10.1145/3056540.3056548

GitHub Inc. 2018. Electron - Build cross platform desktop apps with JavaScript, HTML,
and CSS.

Kresimir Grgié, Ivan Speh, and Ivan Hedi. 2016. A web-based IoT solution for moni-
toring data using MQTT protocol. In Proceedings of 2016 International Conference
on Smart Systems and Technologies, SST 2016. Institute of Electrical and Electronics
Engineers Inc., 249-253. https://doi.org/10.1109/SST.2016.7765668

Jens Grubert, Tobias Langlotz, Stefanie Zollmann, and Holger Regenbrecht. 2017.
Towards pervasive augmented reality: Context-awareness in augmented reality.
IEEE Transactions on Visualization and Computer Graphics 23, 6 (2017). https:
//doi.org/10.1109/TVCG.2016.2543720

Buddy James, Lori Lalonde, Buddy James, and Lori Lalonde. 2015. What Is XAML? In
Pro XAML with C#. https://doi.org/10.1007/978-1-4302-6775-1_1

Alex Jones and Florent Berthaut. 2016. ControllAR. In Proceedings of the 2016 ACM
on Interactive Surfaces and Spaces - ISS "16. ACM Press, New York, New York, USA,
465-468. https://doi.org/10.1145/2992154.2998580

Milica Leki¢ and Gordana Gardasevi¢. 2018. IoT sensor integration to Node-RED
platform. In 2018 17th International Symposium on INFOTEH-JAHORINA, INFOTEH
2018 - Proceedings. https://doi.org/10.1109/INFOTEH.2018.8345544

Web3D 20, November 9-13, 2020, Virtual Event, Republic of Korea

Yang Liu, Haiwei Dong, Longyu Zhang, and Abdulmotaleb El Saddik. 2018. Technical
evaluation of HoloLens for multimedia: A first look. IEEE Multimedia (2018).
https://doi.org/10.1109/MMUL.2018.2873473

Blair MacIntyre, Alex Hill, Hafez Rouzati, Maribeth Gandy, and Brian Davidson. 2011.
The Argon AR Web Browser and standards-based AR application environment. In
2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR
2011. 65-74. https://doi.org/10.1109/ISMAR.2011.6092371

Mohsen Marjani, Fariza Nasaruddin, Abdullah Gani, Ahmad Karim, Ibrahim
Abaker Targio Hashem, Aisha Siddiqa, and Ibrar Yaqoob. 2017. Big IoT Data
Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access
5(2017), 5247-5261. https://doi.org/10.1109/ACCESS.2017.2689040

Robin Marx, Sander Vanhove, Wouter Vanmontfort, Peter Quax, and Wim Lamotte.
2017. DOM2AFRAME: Putting the web back in WebVR. In 2017 International
Conference on 3D Immersion, IC3D 2017 - Proceedings, Vol. 2018-January. Institute of
Electrical and Electronics Engineers Inc., 1-8. https://doi.org/10.1109/IC3D.2017.
8251892

Jeffrey Nichols, Brad A Myers, and Kevin Litwack. 2004. Improving automatic interface
generation with smart templates. In Proceedings of the 9th international conference
on Intelligent user interface - IUI '04. ACM Press, New York, New York, USA, 286.
https://doi.org/10.1145/964442.964507

Sabrina Sicari, Alessandra Rizzardi, and Alberto Coen-Porisini. 2019. Smart transport
and logistics: A Node-RED implementation. Internet Technology Letters (2019).
https://doi.org/10.1002/it12.88

Ronell Sicat, Jiabao Li, Junyoung Choi, Maxime Cordeil, Won Ki Jeong, Benjamin
Bach, and Hanspeter Pfister. 2019. DXR: A Toolkit for Building Immersive Data
Visualizations. IEEE Transactions on Visualization and Computer Graphics (2019).
https://doi.org/10.1109/TVCG.2018.2865152

Gheric Speiginer and Blair Macintyre. 2019. A Practical Approach to Integrating Live
2D Web Content with the Immersive Web. Association for Computing Machinery
(ACM), 1-10. https://doi.org/10.1145/3329714.3338136

Gheric Speiginer, Blair Maclntyre, Jay Bolter, Hafez Rouzati, Amy Lambeth, Laura
Levy, Laurie Baird, Maribeth Gandy, Matt Sanders, Brian Davidson, Maria Engberg,
Russ Clark, and Elizabeth Mynatt. 2015. The evolution of the argon web framework
through its use creating cultural heritage and community—-based augmented reality
applications. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9171. Springer
Verlag, 112-124. https://doi.org/10.1007/978-3-319-21006-3_12

Gheric Speiginer and Blair Maclntyre. 2019. Rethinking Reality: A Layered Model of
Reality for Immersive Systems. In Adjunct Proceedings - 2018 IEEE International
Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2018. Institute of
Electrical and Electronics Engineers Inc., 328-332. https://doi.org/10.1109/ISMAR-
Adjunct.2018.00097

Mark Stringer, J.A. Rode, E.F. Toye, A.F. Blackwell, and A.R. Simpson. 2005. The Webkit
Tangible User Interface: A Case Study of Iterative Prototyping. IEEE Pervasive
Computing 4, 4 (oct 2005), 35-41. https://doi.org/10.1109/MPRV.2005.89

Zinah Hussein Toman, Sarah Hussein Toman, and Manar Joundy Hazar. 2019. An In-
Depth Comparison Of Software Frameworks For Developing Desktop Applications
Using Web Technologies. Journal of Southwest Jiaotong University (2019). https:
//doi.org/10.35741/issn.0258-2724.54.4.1

Michael VanderZee, Doug Fisher, Gail Powley, and Rumi Mohammad. 2015. SCADA:
Supervisory Control and Data Acquisition. In Oil and Gas Pipelines. John Wiley &
Sons, Inc., Hoboken, New Jersey, 13-26. https://doi.org/10.1002/9781119019213.
ch02

https://jenkins.io
https://doi.org/10.1109/TVCG.2017.2745941
https://doi.org/10.1109/TVCG.2017.2745941
https://doi.org/10.1007/s00371-015-1132-9
https://doi.org/10.1007/s00371-015-1132-9
https://doi.org/10.1109/CW.2017.11
https://doi.org/10.1109/ICT-ISPC.2018.8523891
https://doi.org/10.1109/ICT-ISPC.2018.8523891
https://doi.org/10.5120/19529-1169
https://doi.org/10.1016/b978-0-240-81813-9.00007-0
https://doi.org/10.1007/978-1-4302-3172-1_33
https://doi.org/10.1145/3056540.3056548
https://doi.org/10.1109/SST.2016.7765668
https://doi.org/10.1109/TVCG.2016.2543720
https://doi.org/10.1109/TVCG.2016.2543720
https://doi.org/10.1007/978-1-4302-6775-1_1
https://doi.org/10.1145/2992154.2998580
https://doi.org/10.1109/INFOTEH.2018.8345544
https://doi.org/10.1109/MMUL.2018.2873473
https://doi.org/10.1109/ISMAR.2011.6092371
https://doi.org/10.1109/ACCESS.2017.2689040
https://doi.org/10.1109/IC3D.2017.8251892
https://doi.org/10.1109/IC3D.2017.8251892
https://doi.org/10.1145/964442.964507
https://doi.org/10.1002/itl2.88
https://doi.org/10.1109/TVCG.2018.2865152
https://doi.org/10.1145/3329714.3338136
https://doi.org/10.1007/978-3-319-21006-3_12
https://doi.org/10.1109/ISMAR-Adjunct.2018.00097
https://doi.org/10.1109/ISMAR-Adjunct.2018.00097
https://doi.org/10.1109/MPRV.2005.89
https://doi.org/10.35741/issn.0258-2724.54.4.1
https://doi.org/10.35741/issn.0258-2724.54.4.1
https://doi.org/10.1002/9781119019213.ch02
https://doi.org/10.1002/9781119019213.ch02

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web and Communication Concepts
	2.2 3D Content in Web Browsers
	2.3 Data Exploration in XR
	2.4 Bringing Web and 3D Engines together

	3 Workflow and Technical details
	3.1 MQTT and IoT connectivity
	3.2 Client-side WebApp in Unity3D
	3.3 Interoperability
	3.4 Hot loading content and functionality
	3.5 Spatial (Web)UIs in 3D
	3.6 XAML based WebView (web browser support)

	4 Conclusion and Outlook
	Acknowledgments
	References

