
PREPRINT 1

InpaintFusion:
Incremental RGB-D Inpainting for 3D Scenes

Shohei Mori, Okan Erat, Wolfgang Broll, Member, IEEE,
Hideo Saito, Dieter Schmalstieg, Senior Member, IEEE, and Denis Kalkofen, Member, IEEE

Abstract—State-of-the-art methods for diminished reality propagate pixel information from a keyframe to subsequent frames for
real-time inpainting. However, these approaches produce artifacts, if the scene geometry is not sufficiently planar. In this paper, we
present InpaintFusion, a new real-time method that extends inpainting to non-planar scenes by considering both color and depth
information in the inpainting process. We use an RGB-D sensor for simultaneous localization and mapping, in order to both track the
camera and obtain a surfel map in addition to RGB images. We use the RGB-D information in a cost function for both the color and the
geometric appearance to derive a global optimization for simultaneous inpainting of color and depth. The inpainted depth is merged in
a global map by depth fusion. For the final rendering, we project the map model into image space, where we can use it for effects such
as relighting and stereo rendering of otherwise hidden structures. We demonstrate the capabilities of our method by comparing it to
inpainting results with methods using planar geometric proxies.

Index Terms—Diminished Reality, Inpainting, Fusion, SLAM.

F

1 INTRODUCTION

D IMINISHED reality (DR) allows removing objects from
the user’s perspective view and uncovering otherwise

hidden structure in the user’s physical environment [1], [2].
Occluded pixels in the region of interest (ROI) are restored
from either multi-view observations or by inpainting. Multi-
view approaches directly observe the background at differ-
ent points of view, either in preprocessing [3], [4] or online,
using additional cameras [5], [6]. The resulting reconstruc-
tions represent the real situation accurately, providing a high
level of confidence and high quality rendering [5], [6], [7].

However, multi-view DR cannot restore unobserved ar-
eas. Inpainting can overcome this problem. It uses pixels
in the vicinity of the ROI and, therefore, does not require
additional cameras or pre-recorded observations. If “hallu-
cinated” pixels are acceptable, inpainting has considerable
benefits over observation-based methods, in particular, for
mobile purposes, where offline preparation is not feasible.

Inpainting is easily performed in image space or in
planar neighborhoods in object space, but this can limit the
supported application cases. For example, applications that
require temporal or spatial coherence between frames, such
as the rendering of stereoscopic images or relighting of the
background, are not possible without information about the
underlying 3D structure. For this reason, some inpainting
systems assume a 3D space, for example, by estimating a
dominant plane and performing inpainting operations on
a planar embedding. If the dominant plane can be tracked
throughout a sequence of frames, the inpainted images can

• S. Mori, O. Erat, D. Schmalstieg, and D. Kalkofen are with the Institute of
Computer Vision and Graphics, Graz University of Technology, Austria.
E-mail: see http://www.michaelshell.org/contact.html

• W. Broll is with the Virtual Worlds and Digital Games Group, Ilmenau
University of Technology, Germany.

• H. Saito is with the Department of Information and Computer Science,
Keio University, Japan.

be projected back into the user’s perspective view. Such an
approach is sufficient for providing plausibly DR, but only
if the scene is flat and occlusions can be safely ignored. Even
if the inpainted result is deformed [8], such a deformation
changes only the appearance and never fits the geometry.

In this paper, we present a novel approach for aug-
mented reality (AR), InpaintFusion, which inpaints both
color and depth information in occluded regions. Given
an RGB-D frame, our method simultaneously searches in
the color and depth-gradient channel. We minimize a cost
function consisting of a color term and a spatial term in
image space [9], but extend it with a geometric term in 3D,
which analyzes depth gradients to ensure global consistency
of the inpainted geometry. Spatio-temporal consistency is
ensured by reprojecting inpainted frames into subsequent
frames and merging them using volumetric fusion.

InpaintFusion enables to change the visualization of the
physical environment in addition to adding virtual objects.
In Fig. 1, we removed the physical horse from the scene by
inpainting its color and depth values. Instead of the horse, a
car with head lights is inserted in the scene to demonstrate
the ability to relight the inpainted color and depth informa-
tion. Our work makes the following contributions.

• We introduce a novel 3D geometric term based on
depth gradient sampling, which enables consistent
color and geometry inpainting in arbitrary 3D scenes.

• We present a novel system for combining fusion
from SLAM with multi-keyframe inpainting. Our ap-
proach synthesizes a globally consistent surfel map
from depth inpainting that is applied to keyframes.

• We demonstrate how a globally consistent geometric
model enables AR rendering effects, e.g., relighting.

• We provide the results of a user evaluation showing
the superiority of the proposed approach compared
to approaches that use planar geometric proxies.

PREPRINT 2

Fig. 1. 3D diminished reality followed by augmented reality rendering. Our system, InpaintFusion, is able to remove objects and inpaint color and
depth information. While previous attempts for real-time inpainting are limited to color channel inpainting only, InpaintFusion supports arbitrary depth
channel inpainting as well. As it provides depth information, 3D augmented reality rendering in the inpainted environment becomes possible. This
example shows a real white horse in front of a set of houses (left). We inpaint the color and depth values of the horse (right). This enables us to add
a virtual car with head lights to illuminate the inpainted regions, together with white balls which can interact with the inpainted region by bouncing
of the walls.

2 RELATED WORK

The simplest form of DR, using only a single image, replaces
pixels in a target region T , T ∈ I , of an image I with
pixels from sources S ∈ I . Therefore, we need to find
the transformation f : T → S that preserves consistency
in the appearance between the target region T and the
remaining image T = I \ T . Furthermore, DR methods
need to support motion in 3D space with six degrees of
freedom (6DOF). This implies that, after inpainting, T and T
need to be consistent under arbitrary motion of the camera.
Previous DR methods mainly differ in how the function f is
defined and which sources S are considered. Therefore, in
this section, we review previous approaches (see TABLE 1).

2.1 Multi-view approaches

One direction of research has focused on rendering occluded
pixels from multiple different live video observations of the
hidden area, while another direction first captures the scene
from multiple camera positions using a single camera. An
early example of the former case is the multi-view paraper-
spective projection model proposed by Zokai et al. [6] that
uses additional calibrated cameras as S to search for back-
ground patches in T with a similar appearance. Meerits and
Saito [15] use additional RGB-D frames from a Microsoft
Kinect sensor as S to observe the background with depth
information. The work of Cosco et al. [3] creates DR from
multiple images that have been captured over time. They
propose a system recording images as S, before the object to
be diminished is placed in the scene. While Cosco et al. use
the multi-view data immediately after capturing, Li et al. [4]
use older images from Internet photo collections, registered
in 3D space as S.

The above methods assume calibrated multi-view cam-
eras to define the mapping f under epipolar constraint [16].
This enables a fast pixel search in S at the price of relying
on dense observations, which may have to be generated
in advance or at runtime using additional cameras. Either

restriction makes these approaches difficult to apply to
mobile applications.

2.2 Video inpainting
A more flexible approach for DR is inpainting, which can
be defined as the global optimization of the transformation
function f : T → S in which S ≡ T , i.e., f : T → T [9].

Inpainting for DR originates from research on video
restoration. The primary difference between image and
video inpainting is that video inpainting makes use of the
pre-recorded image sequence as an inpainting source S [17],
instead of just a single frame. Thus, it can be defined as a
global optimization problem of finding the best transforma-
tion function f : T → S where S ≡ T i at frame F (i).

Wang et al. [18] presented pioneering work in this area.
They separate the pre-recorded scene into several layers
using dominant optical flow, and showed that rendering all
layers except one results in a scene without the selected
object. Lepetit et al. [19] take pixels from T j in frame
F (j), i 6= j, to inpaint Ti by reprojection via a reconstructed
background triangle mesh. Shen et al. [20] find a linearly
moving foreground object in a geometrically aligned tem-
poral texture space and propagate non-occluded pixels in
T j to the occluded pixels in Ti. Klose et al. [21] use a point
cloud for inpainting, where point reconstructions from T j

are sampled through pre-defined filters to fill in Ti.
Although video inpainting methods generate plausible

results, they cannot be used in DR applications, since they
rely on costly global optimizations and consider both past
and future frames. DR must be able to react instantaneously
to changes in the user’s viewpoint, using only past infor-
mation, while maintaining coherent visual appearance over
time. Furthermore, usage of past frames is typically limited
to the previous frame or a small number of frames.

2.3 Image and depth inpainting
In contrast to video inpainting, image inpainting takes pixel
information only from a single image. The most popular im-
age inpainting approaches are based on the idea of searching

PREPRINT 3

TABLE 1
Qualitative comparison of literature on inpainting for DR.

Literature Scene geometry Object detection Object tracking Depth for AR
Siltanen [10] Plane Marker region 6DoF marker tracking No
Korkalo et al. [11] Plane Marker region 6DoF marker tracking No
Herling and Broll [9], [12] Plane Interactive drawing (one-view) 2D contour tracking No
Kawai et al. [13] Plane(s) User drawing (multi-views) 6DoF SLAM No
Siltanen [14] Plane(s) User drawing (one-view) 6DoF SLAM No
Kawai et al. [8] Curved plane Marker region 6DoF marker tracking No
Proposed method* 3D scene Interactive 3D labeling 6DoF SLAM Yes
*Only our proposed method uses RGB-D frame inputs for dense 3D reconstruction.

for patterns in the image which are similar to a region
placed over the boundary of T and T [22]. The creators
of the PatchMatch method [23], [24] report on two key
insights for finding a near optimal f : They use randomized
searching for corresponding patches in T , and they make
use of propagation of the searched offsets to the adjacent
pixels in T . These two insights enable generating consistent
reconstructions.

However, PatchMatch is not designed for predictable
real-time performance, and does not consider temporal
coherence over image sequences. Therefore, Herling and
Broll [12] proposed PixMix, a method relying on frame-
to-frame propagation of patches to accelerate the search
and ensure temporal coherence. Later, they improved im-
age quality and runtime of their method [9] by apply-
ing a homography transformation (estimated between an
earlier keyframe and the current frame) to the reference
map f : T → T

′
, where T

′
represents T transformed by

the homography. Kunert et al. [25] extended the method
by combining it with observed background pixels. Kawai
et al. [13] and Siltanen [14] also extended this strategy
to enable processing of several planes in parallel. Kawai
et al. [8] furthermore proposed an inpainting algorithm that
deforms inpainted results using feature point tracking.

All these attempts assume that the scene is locally planar.
While this notion makes it easier to obtain real-time perfor-
mance, it cannot recover depth information in T . Advanced
AR rendering typically requires the evaluation of lighting,
occlusion and other view-dependent phenomena [26], [27],
as well as image synthesis for stereoscopic displays [28].
Without restoring proper depth information in the inpainted
area, such rendering methods cannot be properly supported.

Our work is also conceptually related to depth densi-
fication. Unlike offline structure-from-motion methods, AR
requires densification to operate in real-time. State-of-the-
art methods densify sparse SLAM maps [29] or perform
real-time short-baseline stereo matching [30]. We could use
such methods as alternative forms of reconstruction, but, of
course, they cannot deal with unobserved areas.

Recently, convolutional neural networks (CNN), in par-
ticular, generative adversarial networks [31], have shown
great promise for complex image synthesis [32], [33], [34],
[35]. Inpainting based on CNN essentially uses a database of
trained feature as S. Such approaches have also been shown
to be able to generate depth maps from color images [36],
[37] or inpaint RGB-D images [38]. However, CNN typically
requires images to be resized before feeding them into the
network, and, again, on the output side. These implicit re-
sampling steps make the results prone to aliasing problems,

when the inpainted area changes with perspective distortion
(another resampling step), as the camera pose changes from
frame to frame. In contrast, our approach inpaints color
and depth using a conventional patch representation, which
does not have to be scaled or resampled. It also has the
advantage that it works instantaneously without requiring
extensive training databases to be collected and processed.

3 METHOD

In this section, we give an overview of our method, begin-
ning with a concise problem statement. Please note that we
rely on the notation introduced in section 2.

3.1 The problem of depth inpainting
Previous inpainting methods rely on homography warping
and thus assume planar scenes. Once a keyframe F (0) is
selected, the system inpaints the ROI as specified by the
user. Given a relationship between F (0) and the current
frame F (i) by a homography, F (0) is transformed into
the current frame as F ′(0), and the system overlays F ′(0)
onto F (i). Since all the pixels in T0 of F (0) are potentially
visible in F ′(0), the system can refine F ′(0) using new
pixel samples in F ′(i) with high constraints on the patch
appearance, in order not to break the texture [9], or progress
with pixel searching in F (0) [13]. In other words, assum-
ing the pixels’ spatial relationship will be preserved by a
homography transformation, these approaches can improve
the inpainting over time regardless of viewpoint changes.

For 3D inpainting, both update rules do not work. The
3D structure of the scene induces occlusions between the
projected pixels of F (0) to F (i), causing new missing pixels
to appear in F (i). These additional missing pixels needs to
be inpainted in the projected keyframe F ′(0).

Refining such hallucinated pixels does not work, since
they have been collected from various sources, which are not
necessarily consistent beyond the originally copied pixels.
For this reason, previous work has resorted to manual
labeling for additional constraints [9] or indirectly infering
additional structure by decomposing the scene into multiple
planes [13]. Refining F (0) does not resolve the problem,
either, since the newly found missing pixels are mostly in-
visible at F (0) due to occlusion. Fig. 2 depicts this problem.

Consequently, we need a novel approach for 3D inpaint-
ing, which incrementally fills in background 3D structure
without destroying previously inpainted color and struc-
ture. To this end, we propose to combine fusion from SLAM
with multi-keyframe inpainting. A novel fusion method
merges structural information of all inpainted keyframes

PREPRINT 4

Not-inpaintedInpainted

Object of interest

(b) Fusion-based
keyframe Inpainting

(a) Homography-based
keyframe inpainting

Fi
rs

t
ke

yf
ra

m
e

 F
(0

)
U

p
c

o
m

in
g

 f
ra

m
e

/k
e

yf
ra

m
e

s

Observed in F(0)
Newly observed

Fig. 2. Comparison between homography-based keyframe inpainting
and our multi-keyframe inpainting. (a) Assuming all pixels in a keyframe
are visible, a homography to a single keyframe may be sufficient. This
approach can even further update the keyframe over time by warping
it. (b) Assuming a non-planar background, we fuse multiple keyframes.
If the spatial relationship of the pixels changes due to occlusion, it is
difficult to refine the pixels using the projected keyframe. We cannot
project the current frame back to one of the keyframes, either, since
currently visible pixels may not be visible in the keyframe anymore.

into one consistent global map. We also present a rendering
scheme to synthesize multiple inpainted color frames rely-
ing on labels from the SLAM system to minimize inpainted
regions and to use observed background regions instead, if
available.

3.2 System overview
Our system supports per-pixel recovery of color and depth
information in the unobservable region T in real time.
For a frame F , it performs exemplar-based inpainting of a
region T by copying information from T , in both color and
geometry domains, on top of a SLAM system [39]. Fig. 3
illustrates our system architecture. Our system pipeline has
the following stages:

Scene scanning using SLAM. We rely on a SLAM system
to obtain an RGB-D frame F (i) = (Ci,Di,Vi,Ni,Mi),
consisting of a color buffer Ci, a depth buffer Di, a vertex
buffer Vi, a normal buffer Ni, and a 6DOF camera pose Mi,
expressed as an SE3 transformation matrix. The frame F (i)
is fused over time into a global map G represented as a
collection of surfels [40], i.e., the measurement F (i) updates
G in accordance with the previous work [39].

Object labeling. While SLAM runs, the user interactively
labels a ROI in 2D screen space, which will be preserved in
G and generate 2D target regions when projected.

Keyframe insertion. For stable inpainting over frames, we
utilize keyframes. Our goal is to fill in all missing pixels
in every novel viewpoint. Therefore, our system inserts a
new keyframe when the pose diverges too much from the
closest keyframe, while pixels remain missing in the ROI.
Since the inpainting process is too costly to be completed
before the next frame arrives, inpainting is performed in an
asynchronous background thread.

Keyframe propagation. Here, a mapping of the transfor-
mation function fk−m from the closest keyframe F (k −m)
to a newly selected keyframe F (k) is derived to initialize
the transformation function fk. For the first keyframe F (0),
the transformation function f0 is initialized with random
values.

Keyframe inpainting. An inpainted keyframe F̂ (k) =
(Ĉk, D̂k, V̂k, N̂k,Mk) is computed for the new keyframe
F (k) by minimizing a cost function over all pixels u ∈ Tk
with the given fk, or, otherwise, from a random guess.

Inpainted keyframe fusion. The inpainted keyframe is
passed to the SLAM system and fused with existing surfels.
To avoid interference with tracking, inpainted keyframes are
fused only in the ROI.

View-dependent keyframe blending. Labeled surfels are
projected to the current frame F (i) at Mi to obtain the
ROI Ti, which is filled with pixels from multiple inpainted
keyframes. The keyframes are projected to F (i) via the
fused inpainted surfels and blended depending on the view-
point.

AR rendering. Our system can provide the inpainted RGB-
D frame or the inpainted global world model for additional
AR rendering. In the following sections, we describe each of
these stages in detail.

3.3 Scene scanning using SLAM

We use the dense map and device pose provided by the
SLAM system of Keller et al. [39] to analyze the scene
color and geometry, but extract some additional data from
the global map G. Each point in our global map G is
represented as surfel S which contains a 24-bit RGB color
c = [R,G,B]T, a 3D position p = [X,Y, Z]T, a normal
n = [nx, ny, nz]T, a radius r, a depth confidence value conf ,
an index to distinguish a surfel among the rest of the surfels,
and a label l ∈ {LO , LIP , LROI }, which classifies scene
points as observed (LO), inpainted (LIP), or belonging to
the ROI (LROI).

We smooth the sensor depth map Di using a bilateral
filter [41] and derive a vertex map Vi and a normal map Ni.
Subsequently, we estimate the pose Mi using an iterative
closest point algorithm [42], aligningDi with a virtual depth
map, which we generate by reprojecting the global scene
map G fused over time, into frame F (i − 1). The inpainted
region is not tracked; only surfels with LO or LROI are
used for generating the virtual maps. The vertex map Vi is
derived from the smoothed depth map, and the normal map
Ni is fused into the global map G using weights derived
from the observed timing and the estimated confidence [39].
Initially, all the surfels are assigned the value LO , until the
user categorizes a surfel as LROI .

3.4 Object labeling

One application of DR is removing undesirable objects,
such as markers [8], [10], [11], pedestrians [4], cars [7], or
any other category of objects that can be pre-trained [43].
Another type of application lets the user specify the ROI,
e.g., by painting coarse strokes [9], and then segmenting

PREPRINT 5

Main
Thread

Photo
of

User’s drawing on screen

Object Labeling

Scene Scanning

TrackingRGBD Sensor

Inapinting Thread

Keyframe Propagation

Keyframe Inpainting

u
v

Keyframe FusionKeyframe Selection

AR Rendering

View-Dependent Keyframe Blending

Display

c

b

a d

e

f

g h

i

Fig. 3. Overview of our InpaintFusion framework. Our method operates on an RGB-D frame. We first align the input frame in the world coordinate
system by estimating the camera pose (a). This enables us to map pixels from the input frame to the 3D model and to a keyframe (b). Once the
user labels the object of interest on a screen (c), the system preserves a keyframe (d) and inpaints the keyframe. We use previous inpainting results
in keyframes to coherently map pixels over time (e). Subsequently, we search for an optimal set of pixel values which fill in the remaining unknown
RGB-D values (f). To generate consistent 3D information, we fuse the inpainted depth map into a surfel map G (g). Finally, we blend available
keyframes on the inpainted surfaces (h) and apply rendering effects to the 3D model (i).

Fig. 4. Labeling the 3D object of interest with 2D user interaction. The
system translates user’s pointing into a 2D label map, and fuses the label
map into the global surfel map G. Projecting such labeled surfel map to
the tracked frame results in 2D registered label map for (a) a plane, or
(b) a more complex object. (c) Our system allows users to label multiple
objects.

and tracking these objects using image gradients. Gradient-
based segmentation is fast and tends to work well on a
planar background and a planar object of interest. In more
complex environments, such as the multi-plane inpainting
of Kawai et al. [13], interaction gets more complicated –
the user must not only encircle the object, but also trim the
segmentation when the view has changed too much, since
the 3D object shape cannot be determined with sufficient
accuracy from a sparse map from a visual SLAM system.

Since we have access to a dense map, our method can
directly label the map by projecting the user’s 2D input onto
the depth map. Fig. 4 shows an example of our labeling
result. Inspired by incremental 3D segmentation [44], our
system first encodes label information in pixels and then
fuses the 2D label map into the global map. For this purpose,
the user coarsely traces the object on a 2D screen to provide
the input uuser . Our system defines a 3D bounding disc
with a center V(uuser), a radius rROI , and a thickness dROI

along a surfel normal. Pixels that have vertices within the

disc are labeled as LROI , and the rest, as LO .

L(u) =


LROI , if ||uuser − u||2 < rROI ∧

(V(uuser)− V(u)) · N (u) < dROI

LO, otherwise
(1)

The 2D label map L is fused with the 3D global map G. To
give safe margins for the ROI, the system dilates the region
where such surfels are projected to the screen. The user
can set a value for rROI that corresponds to the effective
range of the labeling on the screen. For dROI , one may set a
sensor depth uncertainty [39] that describes in which range
the specified depth should cover surfels in the global map.

3.5 Keyframe insertion
DR requires inpainting to be temporally coherent, which is
usually addressed by using keyframes [9], [13], [14]. One
can inpaint a frame as a keyframe and preserve it for
future frames by warping the inpainted frame to the current
frame. In the case of planar scenes, homography warping is
sufficient as a geometric representation, as long as the ROI is
tracked [13], [14] and pixel colors are referenced from visible
regions within the frame [9]. In other words, pixel searching
by inpainting need not to be repeated after inpainting the
initial keyframe, and this strategy significantly reduces the
processing time. In a planar scene, all inpainted keyframe
pixels are potentially visible from any viewing angle.

In a scene with 3D structure, occluded pixels will oc-
cur within the ROI, as the camera moves away from the
keyframe; those pixels need to be inpainted (Fig. 2). Our
system inserts a new keyframe when the absolute pose
difference from the closest keyframe F (k) to the current
frame F (i) exceeds a threshold. The difference has been for-
mulated as a Frobenius norm, i.e., Fnorm = ||I−M−1i Mk||F.

PREPRINT 6

p’

fk-m
uk-m

u’k-m

F(k-m)

uk
fk

F(k)

p

Obj. of
interest

u’k

Point on a surfel Point inpainted
in F(k-m)

(1)
(2)

(4)

(5)

(3)

Fig. 5. Keyframe propagation. The mapping fk (blue arrow) from uk to
the reference point u′k is defined by a series of transformations (black
arrows). (1) First, we project uk to the world coordinate point p (2),
before we project p into the other keyframe, which identifies uk−m. (3)
At uk−m, we look up fk−m to find u′k−m, and (4) we project u′k−m back
to the world coordinate systems onto p′. (5) Projecting p′ back into the
current frame identifies u′k.

We set the threshold to 0.7 for a Kinect sensor that provides
depth maps in meter (Fig. 1).

Additionally, our system checks the number of in-
valid pixels l′, which do not have any labels, i.e., l′ /∈
{LO, LIP , LROI}. We denote regions of such pixels l′ as Tl′ .
If |Tl′

⋂
T |/|T | > ε for a threshold ε (e.g., 0.1), the frame is

selected as a new keyframe. In this way, we collect spatially
distributed keyframes and safely exclude frames that do not
observe target pixels to be inpainted.

3.6 Keyframe propagation

When a keyframe F (k) is inserted, we must ensure that
inpainting at F (k) is consistent among previous keyframes
F (k − m). We address this requirement by initializing the
transformation function fk−m for F (k−m) using the trans-
formation function fk associated with a keyframe F (k). We
start with the closest keyframe, i.e., the keyframe with the
minimum absolute pose difference. Fig. 6 shows such an
example keyframe propagation.

Since keyframes remain stable over time, reusing the
inpainted keyframes in the current frame generates tempo-
rally coherent results even for shaky camera motion, as long
as the tracking works reliably. To bootstrap the mapping
from F (k −m) to F (k), we project G into F (k) to provide
an initial set of inpainted depth values for Mk. Therefore,
F (k) contains projections of LIP and LO in T and LO in S.

We transform F (k −m) into F (k) via geometric repro-
jection (i.e., forward warping), with the goal of reusing the
pixel mapping stored in fk−m on pixels in Tk. Therefore, we
use G to calculate the transformation of image coordinates
uk ∈ R2 of F (k) into image coordinates uk−m ∈ R2 of
F (k − m). These transformations are illustrated in Fig. 5.
We start by unprojecting the depth map Dk to 3D space,

p = K−1[uT
k |1]TDk(uk), (2)

where p = [X,Y, Z]T is a point in the scene, and K is the
3 × 3 camera intrinsic matrix. After projecting a pixel into
3D space, the resulting point is further projected into the
keyframe F (k −m):

uk−m = π([K|0]Mk−mM−1k [pT|1]T), (3)

The 1st keyframe: F(k-m)

The 2nd keyframe: F(k) Projection

For non-
inpainted ROI

fk-m
For the

ROI

fk

Fig. 6. Spatio-temporally coherent keyframe inpainting. (a) The system
selects a keyframe and (b) inpaints the keyframe. (c) Such an inpainted
keyframe is projected to the newly inserted keyframe, where (d) non-
inpainted regions may be revealed (magenta pixels). (e) Those pixels
are newly inpainted to complete the inpainting in the new keyframe.

where π([X,Y, Z]T) = [X/Z, Y/Z]T. Furthermore, we look
up the inpainting results within the keyframe F (k − m).
Thus, in F (k −m), we use the transformation fk−m at the
pixel located at uk−m. The result is the reference position
u′k−m from which the pixel value was taken to inpaint the
keyframe.

u′k−m = fk−m(uk−m) (4)

This provides a good guess for color and depth values based
on the keyframe data F (k −m). However, to ensure intra-
frame consistency, we are interested in selecting pixel values
from the new keyframe F (k) rather from the previously
preserved keyframe F (k−m). Therefore, we cannot directly
take the pixel values at position u′k−m. Instead, we are look-
ing for the corresponding pixel position of u′k−m in F (k).
We compute the projection of u′k−m into F (k), denoted as
u′k. We derive this transformation by unprojecting the pixel
to 3D space, followed by a projection of the corresponding
3D point into F (k).

The complete series of transformations required to map
a 2D coordinate uk to u′k in F (k) is given in Equation 5. Our
approach is applied to all pixels within the ROI Tk.

fk : uk
Eq. 2→ p

Eq. 3→ uk−m
Eq. 4→ u′k−m

Eq. 2→ p′
Eq. 3→ u′k (5)

If a projected point u′k is exceeding the bounds of frame
F (k), we apply random 2D coordinates to fk(uk). For
multiple keyframes, we repeat the above mapping from the
closest keyframe to the furthest one, until all the pixels in
Tk are processed, or a pre-determined number of keyframes
have been processed.

3.7 Keyframe inpainting
Frame pre-processing. There might be missing pixels in a
single depth map due to the limitations of the depth sensor,

PREPRINT 7

even though the depth map is projected from the global
map. Since pixels without depth cannot be used as sources
for inpainting, we require sufficiently dense depth to obtain
plausible results. Thus, we first fill in missing pixel depth
using convolutions [45] for edge-aware inpainting. After
this densification, Vk and Nk are calculated again from the
the depth map.

Finding reference pixels. The initial projection of G into
F (k) may leave some pixels in Tk uninitialized, so we
need to fill in these unmapped pixels from scratch. We find
the transformation f∗ of the remaining pixels by using the
PatchMatch algorithm [23] for minimizing the cost function
in Equation 6 . Similar to previous examplar-based inpaint-
ing, we model the overall cost ρ as a weighted sum of color
(texture) similarity, ρt, spatial similarity, ρs, and a novel
geometric similarity term, ρg :

f∗ = arg min
f

∑
u∈T

wρt(f,u)ρg(f,u) + (1− w)ρs(f,u) (6)

The texture cost (Equation 7) minimizes the appearance
difference between pixels to be inpainted in T and pixels
referenced in T , while the spatial cost function forces pixels
in the area surrounding a target pixel to cluster, so that
spatial continuity can be maintained (Equation 8).

ρt(f,u) =
∑

v∈{±1,±2}2
||C(u + v)− C(f(u) + v)|| (7)

ρs(f,u) =
∑

v∈{±1}2
||f(u) + v − f(u + v)|| (8)

In addition to texture and spatial similarity, we model a cost
function ρg for the geometric appearance. In Equation 6, the
geometric appearance term modulates the texture similarity
ρt, acting like a weight that forces both texture and normals
to agree. Adding ρg as another linear term to sum of ρt and
ρs works as well [9], but it introduces two more additional
weighting parameters that must be adjusted. The resulting
subtle differences are illustrated in Fig. 12.

Since directly using D would suffer from the perspective
and view-dependent nature of a depth map, we use the
normal map for inpainting instead. We derive a normal
map from the depth values by using a gradient estimator.
However, since the raw depth map suffers from noise and
incomplete areas, the derived normal map will be affected
as well. Therefore, we use NG derived from the projection
of the world space depth to the keyframe frame F (k),
i.e., Nk → NG.

ρg(f,u) =
∑

v∈NG

1/max(κ,NG(u+ v) · NG(f(u) + v)) (9)

Here, κ is a lower bound to avoid division by zero. Pixels
having similar normals are clustered naturally. In other
words, ρg provides a geometrical labeling that limits pixel
search to geometrically similar surfaces, overcoming the
need for manual labeling used in previous work [9].

The transformation map is randomly initialized when
the first keyframe is registered to the system. From the
second keyframe on, the closest keyframes’ results are prop-
agated as outlined in Section 3.6. We also take a coarse-to-
fine approach to find f∗ in reasonable time.

Fig. 7. A complete 3D inpainting for a keyframe. (Left) Given an RGB-D
frame, the proposed method finds globally optimized pixels in the color
and normal maps calculated from the depth map. (Right) The proposed
method also calculates a depth map using sampled depth according to
the optimized transformation map.

Generating pixel values. After finding references for all
pixels in the ROI, we are able to copy the corresponding
pixel values. To inpaint the color Ĉ, we simply copy the
values according to f∗.

Ĉ(u)← C(f∗(u)) (10)

Since we cannot simply copy view-dependent depth values,
we use the normal map N̂ for inpainting 3D structure. The
normals at reference pixels can simply be copied like color
values.

N̂ (u)← NG(f∗(u)) (11)

For the depth values in the ROI, we compute∇D̂, a gradient
field [46] (depth gradient map) of the sampled depth values.
We minimize

min
u∈T

∑
(∇D̂∗(u)−∇D̂(u))2 (12)

to calculate the inpainted depth map D̂∗. Note that directly
sampling pixels from f∗ will introduce inconsistencies: Con-
sider a pixel at u and its right neighbor at u + v. A naive
horizontal gradient

∆D̂(u) = d(f∗(u))− d(f∗(u) + v). (13)

will usually not match the sampled depth gradient of the
adjacent pixel, d(f∗(u + v))− d(f∗(u + v)− v). Therefore,
we minimize

min
u∈T

∑
(∇D̂∗(u)−∇Ê(u))2, (14)

where Ê is the mean bi-directional depth gradient sample:

∆Ê =(d(f∗(u))− d(f∗(u) + v)+

d(f∗(u + v))− d(f∗(u + v)− v))/2
(15)

After re-calculating the vertex and normal maps, V̂ and
N̂ , from the inpainted depth D̂∗, we obtain an inpainted
keyframe F̂ (k) = (Ĉk, D̂∗k, V̂k, N̂k,Mk). Fig. 7 shows an
example of an inpainting.

PREPRINT 8

3.8 Keyframe fusion

An inpainted keyframe F̂ (k) is fused into the global map
to obtain a uniform, consistent representation G. While the
user is presented with inpainted frames, the SLAM tracking
should not see the inpainting results containing hallucinated
data. Therefore, we fuse the inpainted keyframe F̂ (k) only
with surfels bearing the LIP label, or we insert new surfels
labeled LIP , if the unprojected space is vacant. Such newly
generated surfels are given a high conficdence value, to
ensure that they appear immediately in the next frame. The
SLAM tracking only sees surfels with LO and LROI .

3.9 View-dependent keyframe blending

Basic blending function. We fill-in the ROI at the current
frame F (i) only from completely inpainted keyframes F̂ (k).
As the surfel resolution in the current view may deviate
significantly from the keyframe pixel resolution, calculating
a blending weight per surfel can be computationally ineffi-
cient, since multiple pixels of F̂ (k) can be projected onto a
single surfel, or one projected pixel can spread onto multiple
surfels.

To avoid the expensive weight calculation at each point
of the dense geometry proxy [47], [48], we calculate weights
for the M closest keyframes instead and blend the M
keyframes with the following weights for projected surfels
of label l(u) ∈ LIP ∩ T and l(u) ∈ LO ∩ T :

wk =
exp(−(dAPD

k)2)∑
m∈M

exp(−(dAPD
m)2)

(16)

Combining observed and inpainted pixels. We always
prefer observations over inpainted pixels by giving higher
blending weights to such pixels. We distinguish between
pixels that have been observed before, pixels that have been
inpainted, and pixels in the ROI. As described in Section 3.3,
we assign the corresponding labels, LO, LIP , and LROI .
The label information is already available in each keyframe
when it is projected before inpainting. For each pixel u, we
check if it is projected to the ROI in a new keyframe F (k):

w′k(u) =
exp(−(dAPD

k wo(u, 0))2)∑
m∈M

exp(−(dAPD
m wo(u,m))2)

(17)

wo(u,m) = δ(lk−m(π(Mk−mM−1i Vi(u))), LIP),

where δ is the Kronecker delta function. Fig. 8 illustrates our
categorization of pixel-wise rendering based on global map
labels. First, the red and black regions of F (i) are inpainted
in F (k−m), and surfels are labeled as LIP . The blue region
remains labeled as observed LO . Then, the ROI of F (k) is
inpainted, i.e., the red and blue regions, using the rendering
of F (k−m) in the blue region. However, the label of the blue
region is set to LIP , since it is synthetic. Therefore, only the
red region is inpainted, receiving information from F (k−m)
as the initial guess for the inpainting. When rendering F (i),
pixels in the blue and red regions must be inpainted. In our
example, we have two keyframes and need to calculate their
blending weights.

In the blue region, w′k−m > w′k, even though F (i)
is closer to F (k), since F (k − m) is based on a sensor

Labels

lk-m = LO li = LROI lk = LIP

lk-m = LIP li = LROI lk = LIP

lk-m = LIP, li = LO lk = LO

Weights

w’k-m > w’k

w’k-m < w’k

w’k-m = w’k = 0

F(k)

F(k-m) F(i)

Fig. 8. Distinguishing observed surface and inpainted surface by blend-
ing weights in the keyframe blending.

observation. In the red region, we only have surfels with
LIP labels. Therefore, the blending weights depend on how
close F (i) is to the keyframes, i.e., w′k−m < w′k in this
case. The black region is a direct observation of F (i) and
is out of the range of keyframe blending. This procedure
combines inpainting-based DR with observation-based DR,
while minimizing the inpainting area.

3.10 AR Rendering

Since a full resolution color and geometry map F̂ (i) =
(Ĉi, D̂i, V̂i, N̂i,Mi) from a global map is accessible at each
frame, we can use various AR renderings methods for the
frame after the inpainting. All the geometry-related maps
correspond to G-buffers; therefore, InpaintFusion lends itself
to any kind of deferred rendering. Fig. 1 shows an example
of relighting in the inpainted AR space.

4 EVALUATION

We evaluate InpaintFusion concerning performance and
quality in 3D scenes. Therefore, we implement three dif-
ferent types of geometry proxies on top of InpaintFusion to
demonstrate how typical geometry proxies used in previous
work affect the quality of resulting 3D inpainting, while
InpaintFusion can maintain its quality in various scenes
without explicitly defining geometry proxies.

4.1 Quality assessment

As inpainting has no ground truth, previous work in TA-
BLE 1 does not present quantitative measures and typically
relies on the authors’ subjective preference. In fact, quanti-
tative assessment in inpainting is an open research problem,
as discussed by Isogowa et al. [49]. They propose an auto-
mated evaluation for inpainting methods that significantly
reduces manual labors in the training step. Such automated
quality assessment, however, will not be able to truly reflect
human judgement. In addition, spatio-temporal consistency
cannot be judged from individual images. For these reasons,
we perform a study with human subjects.

PREPRINT 9

The goal of our assessment is to demonstrate that In-
paintFusion surpasses existing work in terms of subjective
quality. To this end, we compared InpaintFusion to two other
popular approaches, which are based on a geometry proxy.
In particular, we compared results of InpaintFusion to those
generated using a single plane [8], [9], [10], [11], [12] and
a multi-plane approach [13], [14]. In the single and multi-
plane approach, only one keyframe is inpainted, such that
the resulting image looks plausible. Therefore, the quality
in subsequent frames only depends on the warping of the
inpainted keyframe to the current frame.

To generate the results with the single plane approach,
we manually selected three points in the keyframe to define
a plane. The geometry for the multi-plane approach is
generated using the mean-shift plane estimator proposed by
Kawai et al. [13]. For the estimated planes, we generated the
corresponding depth map and inpainted the color channels.
We estimated the camera pose over time with an RGB-D
tracker that minimizes point to plane distances [50] in addi-
tion to color [51] residuals in image space, as implemented
in OpenCV.

Hereafter, we refer to the contender methods as Single
Plane and Multi-Plane, respectively. Note that these planes
inpaint the depth before the color channels are inpainted.
Also, such explicit geometry gives enough constraints in
Equation 9 to inpaint each plane from geometrically sep-
arate pixels without the need for separate inpainting in each
plane [13] or manual labeling [9]. For fair comparison in
the quality assessment, we used the same tracker and mask
images in all three methods including InpaintFusion.

4.2 Inpainting quality

Fig. 10 shows inpainting results in selected frames and
fusion results of InpaintFusion in three scenes that have
reasonable 3D structures: Rock, Leaves, and Crack. In Rock, we
inpainted the handkerchief on a rock. The system generated
seamless but fake surface in 3D. Owing to the image-space
color and depth inpainting and subsequent fusion of those
images, the inpainted structure fits the 3D structure of the
real rock even under significant viewport changes. In Leaves,
we inpainted the dead leaf among the green leaves to
replace the dead leaf with green leaves hallucinated by the
proposed system. Note that real leaves are occluded by the
generated leaves, and partially observable real leaves from
different viewpoints retain their shape and color in each
view. In Crack, we inpainted a crack on a rock to virtually fix
the crack. Note how the inpainting kept the geometric edge
of two surfaces.

We also compare inpainted color and depth maps of
all types of geometry proxies. Here, for lack of space, we
show results of only the Crack dataset as a typical case
(Fig. 11). More results are provided in the accompanying
video. Note that all inpainting results have a different ap-
pearance in each trial due to the randomized initial transfer
map and the different geometry proxy. Besides, none of
the methods in TABLE 1 explicitly provide depth, although
approaches that use AR markers or SLAM as a tracker coud
provide depth from the marker position or SLAM points.
Even though single frame appearance may be plausible, in
motion, wrongly fitted planes reveal the ROI due to the

inconsistent disparities. This effect is best observed in the
accompanying video.

We specified three points on the top surface for Sin-
gle Plane, defining an infinite plane. Consequently, the in-
painted region on the side surface floats when the camera
moves. Multi-Plane estimated two dominant planes for the
top and the side surfaces. Nevertheless, this method always
selects the closest plane distance from the camera; the shape
of the scene resembles a concave wall-and-floor geometry.
This geometry is not correctly representing the scene, lead-
ing to inconsistent inpainting results in all views except at
the keyframe. In contrast, InpaintFusion plausibly estimates
two surfaces that fit the real geometry well, resulting in
seamless and consistent inpainting from various viewpoints
(Fig. 10).

4.3 User Study

Design We designed a repeated measures within-subjects
study to compare the inpainting quality of different inpaint-
ing methods. Therefore, we introduced the indepenedent
variable ”inpainting method” with three conditions: Single
Plane (S), Multi-Plane (M), and InpaintFusion (IF). As depen-
dent variables, we collected ratings for image and video
results, sI and sV, respectively. To analyze how different
geometry proxies impact inpainting results under camera
motions, we also calculate the differences, sV − sI scores.

Task We designed a task for rating image and video in-
painting results on a 10-point Likert scale, using nine scenes
including the scenes in Fig. 10 and Fig. 14. Provided textual
information, the participants were instructed to understand
the purpose of the inpainting process in each scene, e.g.,
the inpainting is used to hide logos in the scene. Later we
asked the participants to evaluate how well each inpainting
method achieved the purpose1. For image results, we chose
a corresponding frames from each of the videos showing the
different inpainting methods.

Apparatus We used a web-based survey system, Survey-
Monkey, to collect responses from people of different exper-
tise and nationalities, after email invitation. The participants
were instructed to use at least a 13” screen to ensure reason-
able viewing conditions.

Procedure After receiving textual instructions and signing
an informed consent form, participants evaluated a series
of inpainted images, followed by evaluation of inpainting
videos. In each rating, three still images or videos were pre-
sented side-by-side, showing the original with and without
the highlighted interest region and the inpainted image. 55
participants (six female, age X̄ = 31.7, SD = 7.8 years old)
volunteered for the study. On a scale from one to five, where
five means the best, the mean self-rated experience concern-
ing inpainting was 2.4 (SD= 1.1). The participants scored
the nine inpainting test cases in random order. A session
took approximately 17 minutes. With 55 participants, nine
repetitions and three inpainting methods, we collected a
total of 55 × 9 × 3 = 1, 485 ratings for image and the same
number of ratings for video results.

1. For further details, we provide a supplemental videos.

PREPRINT 10

S M IF
0

2

4

6

8

10

12 **
**

(a) sI

S M IF
0

2

4

6

8

10

12 ** **

**

(b) sV

S M IF
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

** **
**

(c) sV − sI

Fig. 9. Study results in image evaluation (a), video evaluation (b), and
deteriorations from image to video (c).

Hypotheses We did not expect significant differences in
still image results where no motion disparities appear (H1).
However, due to the fused 3D geometry proxy of the pro-
posed method, we expected IF to have significantly higher
scores in video results than S and M (H2). Moreover, we
expected IF to have significantly fewer deteriorations of the
sV − sI score than S and M (H3).

Results The score data was analyzed using a non-
parametric Friedman test followed by pairwise Wilcoxon
signed rank tests with Bonferroni correction. The reported
p-values have been Bonferroni corrected to reflect a signif-
icance level of 0.05. The statistical analysis was performed
using R software.

Friedman tests revealed significant differences in
image results (χ2(2)=852.02, p<0.001), in video re-
sults (χ2(2)=1018.00, p<0.001), and in sV − sI scores
(χ2(2)=1018.00, p<0.001). Post-hoc tests indicated that IF
scores (Mdn=6) were statistically higher than S scores
(Mdn=5, Z=-5.540, p<0.001, r=0.249) and M scores (Mdn=5,
Z=-4.66, p<0.001, r=0.209) in image results. Post-hoc tests
indicated that all combinations in video results have signif-
icant differences; IF scores (Med=7) were statistically higher
than S scores (Mdn=3, Z=-16.589, p<0.001, r=0.746) and M
scores (Mdn=2, Z=-17.775, p<0.001, r=0.799), and S scores
were statistically higher than M scores (Z=-7.342, p<0.001,
r=0.330). Also, in sV − sI scores, post-hoc tests indicated
that all combinations have significant differences; IF scores
(Med=1) were statistically higher than S scores (Mdn=−1,
Z=-15.071, p<0.001, r=0.677) and M scores (Mdn=−2, Z=-
16.251, p<0.001, r=0.730), and S scores were statistically
higher than M scores (Z=-6.366, p<0.001, r=0.286). Fig. 9
summarizes the study results.

Discussion IF is scored one unit higher in the median
than the others in image results. Therefore, we reject our
pessimistic hypothesis H1, as IF performed better than ex-
pected. One possible explanation could be that the geometry
term of IF constrains the search range to a proper region,
while S must search pixels only using colors. We observed
that M tends to leak colors in wrong plane regions, when it
fails to estimate planes correctly.

For video, IF scored even one unit higher than for still
images, clearly outperforming both S and M. We explain
this by the well-maintained temporal and spatial coherence

TABLE 2
Average time (ms) spent in each stage of the main thread.

Component Runtime [ms]
Tracking (OpenCV / GPU ICP) 128.16 / 21.44
SLAM fusion 4.60
Inpainted KF fusion 8.00 / KF
View-dependent KF blending 1.93
Misc (Frame pre-processing & data handling) 3.20
Total (OpenCV / GPU ICP) 137.88 / 31.16

TABLE 3
Average time spent in each stage of the inpainting thread, which runs in
parallel to the main thread and therefore does not stall the application.

Component Runtime [ms]
KF propagation 19.75
Transformation map optimization 4288.33
(50 raster-scans at each of a six level pyramid)
Depth estimation from depth samples 96.67
Mask ratio 17.02 %
Total 4385.00

of IF under 6DOF motions. IF gave the participants better
impressions than in image results, while scores for S and
M were lowered due to geometrical misalignments. S re-
peatedly failed when there were multiple objects of interest
at different depths or when the region had varying depth.
Also, we observed that, when M fails to estimate the right
planes, mismatched disparities in the video are created.
Fig. 11 shows such typical cases. Overall, we accept our
optimistic hypotheses H2 and H3. We conclude that IF can
maintain the quality even in scenes where planar inpainting
approaches fail.

4.4 Runtime performance
We implemented InpaintFusion on a notebook computer
(Intel Core i7-6567U with 3.3 GHz, 16 GB RAM, external
NVIDIA GeForce GTX1080Ti connected via Thunderbolt 3)
running Windows 10. As RGB-D sensor, we either used a
Microsoft Kinect v1 or an Intel Realsense SR300, running at
30Hz in 640 × 480 resolution. We implemented our system
in two threads, one performing keyframe inpainting and
another one for the rest of the processing, including GPU
tasks (using OpenGL and GLSL), SLAM, rendering, and
passing selected keyframes to the inpainting thread.

TABLE 2 and 3 summarize the performance in mil-
liseconds in the main and inpainting threads, respectively.
Overall, InpaintFusion operates approximately at 31.16Hz.
Although the first keyframe inpainting is most expensive
and finishes in 4.4 sec., it runs in the background without
interfering with tracking, and it takes less in the following
keyframes due to keyframe propagation. In comparison
with existing methods using a similar hardware setup,
InpaintFusion performs equal or even faster, even though it
is capable of full 3D inpainting that has never been achieved
before (please see the accompanying video).

5 LIMITATIONS AND FUTURE WORK

While InpaintFusion generalizes the inpainting-based DR
methods, some points need to be addressed to further
improve the quality.

PREPRINT 11

Ro
ck

Le
av

es
Cr

ac
k

(a) Raw images w/ ROI (top) our results (bottom) (b) Color and normal maps of raw image data (left) and results after inpainting (right)

Fig. 10. InpaintFusion in three different scenes.

Fig. 11. Comparison of different types of geometry proxies on the Crack dataset. From left to right: original, single plane, multi-plane, and
InpaintFusion. The insets in the lower left corner show depth encoded as greyscale values.

Fig. 12. Comparison of similarity metrics. From left to right: original, linear combination of texture and geometry similarity, and multiplicative
combination of texture and geometry similarity (our approach). The linear combination requires three parameters to be adjusted for inpainting,
while the multiplicative approach requires one parameter.

PREPRINT 12

Fig. 13. Scene completion using InpaintFusion. Our approach is able to
complete 3D reconstructions. In this example, it completes a reconstruc-
tion of the CityWall dataset provided by TU Darmstadt2. InpaintFusion
generates the missing geometry and color information (right), which is
highlighted by white circles in the image on the (left).

Integer space transformation map propagation Transfor-
mation map f represents pixel-to-pixel offsets, i.e., f ∈ Z.
Therefore, propagating such a map to the next keyframe
leads to nearest-neighbor interpolation in image space. Such
an approach is prone to aliasing, as seen in Ck(f∗k (u)) of
Fig. 6 (e). A potential solution to this problem in our system
is to set fairly large thresholds discussed in Section 3.5.
We could re-optimize the propagated transformation map
using the warped color map from the closest keyframe as a
strong constraints in the appearance costs minimization [9].
However, once the optimization finds better pixel-to-pixel
relationships than the current ones, the resulting appearance
of the inpainting will differ substantially from the other
keyframes. Planar inpainting avoids this problem, since it
does not have to handle occlusions. To mitigate the aliasing
problems, we can use view-dependent keyframe blending,
as described in Section 3.9, to compose multiple keyframes
to render the current inpainted region.

Occlusion handling with real and inpainted depths In
case our system reconstructs a potentially observable back-
ground, and the user perfectly labels an object of interest
before inpainting starts, our system can safely project the
reconstructed surfels belonging to LO to exclude ones with
LROI from inpainting. However, in practice, the surfel-wise
colors are not precise enough to fill in LROI as they are.
This issue is demonstrated in an existing attempt [43], and
surfels with view-dependent properties could mitigate this
problem [52]. Therefore, we chose to inpaint the entire ROI
in the first keyframe. This means that, in case a real back-
ground is observed after inpainting, that inpainted depth
and real depth may disagree, leading to discontinuities at
the ROI border. To minimize such discontinuities, we can
use automatic segmentation, using the manually specified
ROI as seed, to obtain a better labeling that supresses
problems at borders.

Bundle inpainting using all keyframes Adding more con-
straints in the transformation map optimization will lead
to more robust inpainting, but it will also further restrict
the pixel search range. This can lead to a lack of pixel

2. https://www.gcc.tu-darmstadt.de/home/proj/mve/

sources. One could search pixels in all preserved keyframes
to optimize a single transformation map, but this would
require another term in the optimization to represent pixel
continuities across keyframes. One good example we could
find projects multi-view images to common planes to use
available pixel sources for the inpainting [53], although the
authors stress the difficulties to apply the strategy for non-
planar regions. We find such an extension an interesting
avenue of future research.

6 CONCLUSION

This paper presents a novel approach for interactive image
inpainting in 3D. We have shown how the integration of
fusion and multi-keyframe inpainting delivers globally con-
sistent and appealing results. Our system ensures frame-to-
frame coherence of the inpainted results by considering a 3D
geometric term in addition to texture in image space. This
ability improves the range of possible use cases for interac-
tive DR applications, for instance, we can target multi-view
rendering for stereoscopic display devices. Furthermore, our
system supports image editing by its ability to add 3D visual
effects to inpainted images. This enables quickly adding 3D
visual effects to images and videos, providing a tool for
previewing image and video editing operations.

InpaintFusion also opens up possibilities for AR effects
after the inpainting. For example, we demonstrated re-
lighting from virtual car headlights and physical animation
of snowballs in the inpainted region (Fig. 1). We also made
real objects virtually interactive by replacing the real object
with a scanned model after removing the real object. In case
the user could scan the backgrounds in advance, our system
can erase frontally occluding objects for X-ray vision. In this
case, surfels belong to the ROI are replaced with observed
ones. InpaintFusion can also supply RGB-D inpainting for
scene completion, filling holes in a point cloud correspond-
ing to unobserved areas in the scene or reconstruction fail-
ures (Fig. 13). Prototypes of these applications are presented
in the supplementary materials.

ACKNOWLEDGMENTS

This work was enabled by the FFG (grant 859208) and the
Austrian Science Fund (grant P30694).

REFERENCES

[1] S. Mori, S. Ikeda, and H. Saito, “A survey of diminished real-
ity: Techniques for visually concealing, eliminating, and seeing
through real objects,” IPSJ Trans. on Computer Vision and Applica-
tions, vol. 9, no. 17, 2017.

[2] D. Schmalstieg and T. Höllerer, Augmented Reality: Principles and
Practice. Addison-Wesley Professional, 2016.

[3] F. Cosco, C. Garre, F. Bruno, M. Muzzupappa, and M. A. Otaduy,
“Visuo-haptic mixed reality with unobstructed tool-hand integra-
tion,” IEEE Trans. on Visualization and Computer Graphics, vol. 19,
no. 1, pp. 159–172, 2013.

[4] Z. Li, Y. Wang, J. Guo, L.-F. Cheong, and S. Z. Zhou, “Diminished
reality using appearance and 3d geometry of internet photo col-
lections,” in Proc. IEEE Int. Symp. on Mixed and Augmented Reality,
2013, pp. 11––19.

[5] P. Barnum, Y. Sheikh, A. Datta, and T. Kanade, “Dynamic
seethroughs: Synthesizing hidden views of moving objects,” in
Proc. IEEE Int. Symp. on Mixed and Augmented Reality, 2009, pp.
111––114.

PREPRINT 13

Fig. 14. Additional results. Raw images w/ ROI (left) our results (right). As we discuss in Section 4.3, static images do not clearly show the
advantages of our method. Therefore, we strongly recommend readers to watch the results in motion in the provided supplemental videos.

[6] S. Zokai, J. Esteve, Y. Genc, and N. Navab, “Multiview paraper-
spective projection model for diminished reality,” in Proc. IEEE Int.
Symp. on Mixed and Augmented Reality, 2003, pp. 217—-226.

[7] F. Rameau, H. Ha, K. Joo, J. Choi, K. Park, and I. Kweon, “A real-
time augmented reality system to see-through car,” IEEE Trans. on
Visualization and Computer Graphics, vol. 22, no. 11, 2016.

[8] N. Kawai, T. Sato, Y. Nakashima, and N. Yokoya, “Augmented
reality marker hiding with texture deformation,” IEEE Trans. on
Visualization and Computer Graphics, vol. 23, no. 10, pp. 2288–2300,
2017.

[9] J. Herling and W. Broll, “High-quality real-time video inpainting
with pixmix,” IEEE Trans. on Visualization and Computer Graphics,
vol. 20, no. 6, pp. 866–879, 2014.

[10] S. Siltanen, “Texture generation over the marker area,” in Proc.
IEEE Int. Symp. on Mixed and Augmented Reality, 2006, pp. 253–254.

[11] O. Korkalo, M. Aittala, and S. Siltanen, “Light-weight marker
hiding for augmented reality,” in Proc. IEEE Int. Symp. on Mixed
and Augmented Reality, 2010, pp. 247–248.

[12] J. Herling and W. Broll, “Advanced self-contained object removal
for realizing real-time diminished reality in unconstrained envi-
ronments,” in Proc. IEEE Int. Symp. on Mixed and Augmented Reality,
2010, pp. 207–212.

[13] N. Kawai, T. Sato, and N. Yokoya, “Diminished reality based on
image inpainting considering background geometry,” IEEE Trans.
on Visualization and Computer Graphics, vol. 22, no. 3, pp. 1236–1247,
2016.

[14] S. Siltanen, “Diminished reality for augmented reality interior
design,” The Visual Computer, vol. 33, pp. 193–208, 2015.

[15] S. Meerits and H. Saito, “Real-time diminished reality for dynamic
scenes,” in ISMAR Workshop on Diminished Reality, 2015, pp. 53–
–59.

[16] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2003.

[17] S. Ilan and A. Shamir, “A survey on data-driven video comple-
tion,” Computer Graphics Forum, vol. 34, no. 6, 2015.

[18] J. Y. A. Wang and E. H. Adelson, “Representing moving images
with layers,” IEEE Trans. on Image Processing, vol. 3, no. 5, pp. 625–
638, 1994.

[19] V. Lepetit, M.-o. Berger, and L.-i. Lorraine, “An intuitive tool for
outlining objects in video sequences: Applications to augmented
and diminished reality,” in Proc. IEEE Int. Symp. on Mixed and
Augmented Reality, 2001, pp. 159–160.

[20] Y. Shen, F. Lu, X. Cao, and H. Foroosh, “Video completion for
perspective camera under constrained motion,” in Proc. Int. Conf.
on Pattern Recognition, 2006, pp. 63–66.

[21] F. Klose, O. Wang, J.-C. Bazin, M. Magnor, and A. Sorkine-
Hornung, “Sampling based scene-space video processing,” ACM
Trans. on Graphics (Proc. SIGGRAPH), vol. 34, no. 4, 2015.

[22] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. on
Image Processing, vol. 13, no. 9, pp. 1200–1212, 2004.

[23] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“Patchmatch: A randomized correspondence algorithm for struc-
tural image editing,” ACM Trans. on Graphics (Proc. SIGGRAPH),
vol. 28, no. 3, 2009.

[24] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein, “The

generalized patchmatch correspondence algorithm,” in European
Conf. on Computer Vision, 2010, pp. 29–43.

[25] C. Kunert, T. Schwandt, and W. Broll, “An efficient diminished
reality approach using real-time surface reconstruction,” in Cyber-
worlds, 2019.

[26] P. Debevec, “Rendering synthetic objects into real scenes: Bridging
traditional and image-based graphics with global illumination
and high dynamic range photography,” in Proc. Annual Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH), 1998, pp.
189–198.

[27] K. Rohmer, W. Büschel, R. Dachselt, and T. Grosch, “Interactive
near-field illumination for photorealistic augmented reality with
varying materials on mobile devices,” in Proc. IEEE Int. Symp. on
Mixed and Augmented Reality, 2015, pp. 1349–1362.

[28] C. Fehn, “Depth-image-based rendering (dibr), compression, and
transmission for a new approach on 3d-tv,” in Stereoscopic Displays
and Virtual Reality Systems XI., vol. 5291, no. 93. Proc. Int. Society
for Optics and Photonics, 2004, p. 1.

[29] A. Holynski and J. Kopf, “Fast depth densification for occlusion-
aware augmented reality,” ACM Trans. on Graphics, vol. 37, no. 6,
pp. 194:1–194:11, Dec. 2018.

[30] J. Valentin, A. Kowdle, J. T. Barron, N. Wadhwa, M. Dzitsiuk,
M. Schoenberg, V. Verma, A. Csaszar, E. Turner, I. Dryanovski,
J. Afonso, J. Pascoal, K. Tsotsos, M. Leung, M. Schmidt,
O. Guleryuz, S. Khamis, V. Tankovitch, S. Fanello, S. Izadi, and
C. Rhemann, “Depth from motion for smartphone ar,” ACM Trans.
on Graphics, vol. 37, no. 6, pp. 193:1–193:19, Dec. 2018.

[31] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial net-
works,” in Proc. Advances in Neural Information Processing Systems,
2014, pp. 2672–2680.

[32] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally
consistent image completion,” ACM Trans. on Graphics (Proc. SIG-
GRAPH), vol. 36, no. 4, pp. 107:1–107:14, 2017.

[33] D. Pathak, P. Krähenbühl, J. Donahue, and T. Darrell, “Context
encoders: Feature learning by inpainting,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, 2016, pp. 2536–2544.

[34] R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-
Johnson, and M. N. Do, “Semantic image inpainting with deep
generative models,” in Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, 2017, pp. 6882–6890.

[35] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative
image inpainting with contextual attention,” in Proc. IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, 2018.

[36] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual net-
works,” in Proc. IEEE Int. Conf. on 3D Vision, 2016, pp. 239–248.

[37] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised
monocular depth estimation with left-right consistency,” in Proc.
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2017.

[38] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari, “Peeking
behind objects: Layered depth prediction from a single image,”
Pattern Recognition Letters, vol. 125, pp. 333 – 340, 2019.

[39] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and
A. Kolb, “Real-time 3d reconstruction in dynamic scenes using
point-based fusion,” in Proc. Int. Conf. on 3D Vision, 2013, pp. 1–8.

PREPRINT 14

[40] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface
elements as rendering primitives,” in Proc. SIGGRAPH, 2000, pp.
335–342.

[41] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. Int. Conf. on Computer Vision, 1998, pp. 839–846.

[42] K.-L. Low, “Linear least-squares optimization for point-to-plane
icp surface registration,” Dept. of Computer Science, University of
North Carolina, Chapel Hill, Tech. Rep. TR04-004, 2004.

[43] Y. Nakajima, S. Mori, and H. Saito, “Semantic object selection and
detection for diminished reality based on slam with viewpoint
class,” in 2017 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR-Adjunct), 2017, pp. 338–343.

[44] C. Li, H. Xiao, K. Tateno, F. Tombari, N. Navab, and G. D. Hager,
“Incremental scene understanding on dense slam,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, October 2016.

[45] T. Schöps, M. R. Oswald, P. Speciale, S. Yang, and M. Pollefeys,
“Real-time view correction for mobile devices,” IEEE Trans. on
Visualization and Computer Graphics, vol. 23, no. 11, pp. 2455–2462,
2017.

[46] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. on Graphics (Proc. SIGGRAPH), vol. 22, no. 3, pp. 313–318,
2003.

[47] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen,
“Unstructured lumigraph rendering,” in Proc. Annual Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH), 2001, pp.
425–432.

[48] A. Davis, M. Levoy, and F. Durand, “Unstructured light fields,”
Computer Graphics Forum, vol. 31, no. 2, pp. 305–314, 2012.

[49] M. Isogawa, D. Mikami, K. Takahashi, D. Iwai, K. Sato, and
H. Kimata, “Which is the Better Inpainted Image? Training Data
Generation Without Any Manual Operations,” Int. Journal of Com-
puter Vision, 2018.

[50] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
Proc. IEEE Int. Symp. on Mixed and Augmented Reality, 2011, pp.
127–136.

[51] F. Steinbrücker, J. Sturm, and D. Cremers, “Real-time visual
odometry from dense rgb-d images,” in ICCV Workshops. IEEE
Computer Society, 2011, pp. 719–722.

[52] J. J. Park, R. Newcombe, and S. Seitz, “Surface light field fusion,”
in 2018 International Conference on 3D Vision (3DV). IEEE, 2018,
pp. 12–21.

[53] J. Philip and G. Drettakis, “Plane-based multi-view inpainting
for image-based rendering in large scenes,” in Proc. of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, may
2018.

Shohei Mori is a postdoctoral researcher at the
Institute of Computer Graphics and Vision (ICG)
at Graz University of Technology. His focus lies
in augmented and diminished reality and the re-
lated computer vision and display technologies.
Shohei received his B.S. (2011), M.S. (2013),
and PhD (2016) in engineering at Ritsumeikan
University, Japan. Before joining the ICG, he
worked as a Research Fellowship for Young Sci-
entists (DC-1) from the Japan Society for the
Promotion of Science (JSPS) during his Ph.D

degree, and he started his career as a JSPS Research Fellowship for
Young Scientists (PD) at Keio University, Japan.

Okan Erat is a research assistant at Institute
of Computer Graphics and Vision at the Techni-
cal University of Graz (TU-Graz). Before joining
TU-Graz He studied Biomedical Computing at
Technical University of Munich (TUM). His focus
lies on image based rendering for telepresence
systems.

Wolfgang Broll is a full professor at Ilmenau
University of Technology, heading the Virtual
Worlds and Digital Games group. He received
his Master’s (Dipl.-Inf.) in Computer Science at
Darmstadt University of Technology (1993) and
PhD in Computer Science at Tübingen Univer-
sity (1998). He was a lecturer at RWTH Aachen
from 2000 to 2009. From 1994 to 2012 he was
heading the VR/AR activities at Fraunhofer FIT in
Sankt Augustin. He was also a co-founders and
manager of fayteq. He is an ACM SIGGRAPH

pioneer member, member of IEEE Computer Society and Germany’s
computer society (GI). He is currently concerned with augmented reality
related technologies, including diminished and mediated reality.

Hideo Saito received the Ph.D. degree in elec-
trical engineering at Keio University, Japan, in
1992. Since 1992, he has been on the Faculty of
Science and Technology, Keio University. From
1997 to 1999, he joined the Virtualized Reality
Project at the Robotics Institute, Carnegie Mel-
lon University, as a Visiting Researcher. His re-
cent activities in academic conferences include
being a Program Chair of ACCV 2014, a General
Chair of ISMAR 2015, and a Program Chair of
ISMAR 2016 and EuroVR 2020.

Dieter Schmalstieg is a Professor at Graz
University of Technology, Austria. His research
interests are augmented reality, virtual reality,
computer graphics, visualization and human-
computer interaction. He received a PhD from
Vienna University of Technology.

Denis Kalkofen is an Assistant Professor at the
Institute of Computer Graphics and Vision (ICG)
at Graz University of Technology, Austria. Before
joining ICG, he was a member of the Virtual
Reality Laboratory at University of Michigan. In
2019, he joined the Wearable Computer Labora-
tory at the University of South Australia as Vis-
iting Researcher and the Computational Imag-
ing Laboratory at Stanford University as Visiting
Assistant Professor. His research is focused on
visual computing for developing visualization, in-

teraction, display and authoring techniques for Mixed Reality environ-
ments.

