
To appear in IEEE Transactions on Visualization and Computer Graphics

Real-Time View Planning for Unstructured Lumigraph Modeling

Okan Erat, Markus Hoell, Karl Haubenwallner, Christian Pirchheim, Dieter Schmalstieg

Graz University of Technology

Fig. 1. (Top row) Progression of real-time view planning; unseen parts of the scene are black, and brighter colors (purple to yellow)
mean more views covering a portion of the scene. Gray color indicates the surface has been seen but could not be textured. (Bottom
row) Images rendered using the unstructured lumigraph.

Abstract— We propose an algorithm for generating an unstructured lumigraph in real-time from an image stream. This problem has
important applications in mixed reality, such as telepresence, interior design or as-built documentation. Unlike conventional texture
optimization in structure from motion, our method must choose views from the input stream in a strictly incremental manner, since only
a small number of views can be stored or transmitted. This requires formulating an online variant of the well-known view-planning
problem, which must take into account what parts of the scene have already been seen and how the lumigraph sample distribution
could improve in the future. We address this highly unconstrained problem by regularizing the scene structure using a regular grid
structure. Upon the grid structure, we define a coverage metric describing how well the lumigraph samples cover the grid in terms of
spatial and angular resolution, and we greedily keep incoming views if they improve the coverage. We evaluate the performance of our
algorithm quantitatively and qualitatively on a variety of synthetic and real scenes, and demonstrate visually appealing results obtained
at real-time frame rates (in the range of 3Hz-100Hz per incoming image, depending on configuration).

Index Terms—Lumigraph,virtual reality,rendering,real-time,view planning,keyframe selection,multi-view.

1 INTRODUCTION

Simultaneous localization and mapping (SLAM) can obtain geometric
reconstructions in real time. In particular, RGB-D sensors make it easy
to obtain dense geometry. The reconstructed scene can be rendered
with free viewpoint control by the user. Free-viewpoint rendering can
instantly be used on incomplete scenes, even while the reconstruction
is still ongoing. Apart from feedback for the camera operator, instant
reconstruction enables important novel applications of mixed reality
(MR) [1], such as telepresence [2], physically embedded games, as-built
documentation, interior design, or preview for videography.

However, instant reconstruction is still an emerging technology and
requires further technical improvements. In particular, while real-
time geometric reconstruction is very mature, real-time photometric
reconstruction, i.e., acquiring surface colors and textures, is often only
treated as a byproduct of geometric reconstruction. A typical approach
is to cache a single, averaged color, either per voxel of a volumetric
model or per mesh vertex. Such a low-pass filtered representation is
often not enough to preserve high-quality appearance.

• E-mail: okan.erat, hoell, karl.haubenwallner, pirchheim,

schmalstieg@icg.tugraz.at

Many techniques for photometric reconstruction exist, but most are
designed for offline use. Approaches that run for minutes or hours [3–5]
and require unbounded memory are not compatible with MR require-
ments. In particular, global methods depend on scene complexity and
are generally unable to maintain strict bound on computation times.

As an alternative to global optimization, photometric reconstruction
can harvest the rich input image stream directly in the form of image-
based modeling and rendering (IBMR). For best results in larger scenes,
IBMR is usually combined with a dense geometric model, yielding a
variant of a lumigraph [6]. Table 1 summarizes a typical IBMR pipeline,
which can roughly be divided into two stages, modeling and rendering.

1. The modeling stage is most often run offline and executed jointly
with geometric reconstruction. IBMR modeling consists of four
sub-stages: View capturing obtains the input images. View plan-
ning decides which views (images annotated with camera pose)
from an input image stream are kept. If a view is kept, view
refinement tries to rectify any shortcomings of the view data, such
as improving the spatial registration with the scene geometry or
correcting of color and brightness artifacts. View pre-selection is
concerned with associating views with portions of the scene ge-
ometry for later rendering. Note that, in this stage, view selection
must be done without knowing the actual viewpoint of novel view
that will be requested later.

1

2. The rendering stage always runs at the target frame rate. Its pur-
pose is to generate, per frame, a novel view for a user-controlled
viewpoint. Rendering consists of two sub-stages, view selection
and view blending. View selection performed during rendering
selects appropriate views to sample guided by the novel viewpoint.
It can operate per frame or per rendered fragment. Finally, view
blending determines the weights given to individual views for a
rendered fragment.

Throughout this pipeline, the number of views considered is reduced
continuously, to make the computational effort of subsequent stages
tractable. However, for an operational IBMR system, only capturing
and blending are mandatory, while the intermediary stages (planning,
refinement and selection) are optional. Many systems assume that a
reasonable set of views has been captured in advance and concentrate
only on the rendering stage, i.e., selection and blending. Another family
of techniques attempts to synthesize the best possible view-independent
texture map from the available views using offline optimization, concen-
trating on refinement and selection. In this case, the rendering trivially
reduces to conventional, view-independent texture-mapping. There are
a few end-to-end IBMR systems, which consider the entire pipeline,
but they typically assume sufficient storage for all views. Hence, they
have no need for view planning.

In real-time applications, the requirements are different. For instance,
in a telepresence application, we would like an IBMR model from an
exploring camera to be instantaneously usable in a free-viewpoint
rendering at a remote site. Hence, the input stream must be processed
immediately to obtain a photometric reconstruction. Even if we allow
a small delay, such as a few seconds or even tens of seconds, for new
photometric data to become available to IBMR, we cannot afford to
unconditionally cache all images from an input stream and process
them later, since we will never catch up. Instead, we must be able to
process them at frame rate.

For this purpose, view planning becomes mandatory. We are not the
first to consider IBMR view planning, but early work in this area [7, 8]
only intended to cover each scene primitive in a single view, thus
solving a variant of the art gallery problem [9], which – like other set
cover problems [10] – are NP-hard. In contrast, we carefully select
multiple views to build an unstructured lumigraph [11]. Therefore, our
generalized view plan has three simultaneous requirements:

1. Planning must consider coverage of every primitive in every view.

2. Planning must operate strictly incremental on an input stream.

3. Planning plan must operate within bounded memory.

In this paper, we address these requirements by incrementally filling a
view store of bounded size for arbitrarily large scenes with thousands
of input views. We organize the scene using a regular discretization,
similar to the one used by Hedman et al. [3]. However, since our plan
must be constructed online and in bounded memory, we cannot rely on
any global optimization procedures. Instead, for each new view, we
compute a coverage score and use it as a cache replacement metric.
Our method also performs view-processing, correcting for erroneous
viewpoints and exposure differences between views. Moreover, we also
describe how view pre-selection can be formulated using the coverage
score. Finally, we demonstrate that our view planning can run at
interactive rates and delivers IBMR quality comparable to IBMR using
an unbounded number of views, both for synthetic scenes and for real-
world video sequences. Thus, our work is the first to solve a general
view planning problem for IBMR in real time and bounded memory.

2 RELATED WORK

Computer graphics models generated by reconstruction from image or
depth sensors can be organized according to the amount of geometry
and photometric data they contain. Pure geometric models do not
contain any photometric information, while pure lightfields [12, 13] do
not contain any surface geometry.

Since the most widespread computer graphics model consists of a
polygonal surface mesh covered by a texture map, many reconstruction

Stage Time unit No. of views considered

Modeling
View capturing Per input image Infinite
View planning Per input image Fixed upper bound
View refinement Per novel view Fixed upper bound

Rendering
View selection Per stored view Only close-by views
View blending Per fragment Only views with weight> 0

Table 1. Image-based rendering pipeline

methods aim at creating this type of model. Real-time methods, such
as volumetric fusion from RGB-D sensors [14], usually cache averaged
colors, either per surface point or, if a mesh is extracted, per vertex.
Color averaging often leads to a loss of contrast and a blurry appearance,
even if colors are cached densely on the surface [15].

Offline methods which assume that detailed geometry has already
been recovered concentrate on extracting an optimal texture map from
a set of input images (views) covering the geometry [4, 5, 16, 17].
However, even with perfect registration of views to geometry, baking
the image information from multiple views into a single texture map
destroys view-dependent aspects of surface materials.

Image-based rendering (IBMR) gives a stronger emphasis to photo-
metric information by subsampling a view-dependent plenoptic func-
tion [18]. For small objects or scenes, pure IBMR methods rely ex-
clusively on densely sampled views, while replacing detailed scene
geometry with crude proxy geometry (e.g., a single plane or a sphere).
For such outside-in scenes, the possible viewpoints are typically re-
stricted to an orbit around the object or even a narrow zone inside
such an orbit. A drawback of pure IBMR methods comes from their
excessive storage requirements for larger scenes, where free-viewpoint
navigation is desirable. For such inside-out scenes, better storage ef-
ficiency can be obtained by combining more detailed geometry with
sparser views.

Thus, geometry-based IBMR methods, such as the lumigraph [6],
combine a proxy geometry with sampled views. With view-dependent
texture mapping [19] we can build an unstructured lumigraph [11],
which can render new views from sparse and irregular view sets without
special preprocessing. However, poorly registered views may lead to
blurriness and ghosting artefacts. A lot of research has addressed
better registration, for instance, by using floating textures [20] or by
resampling input views into surface lightfields [21] indexed per surface
point instead of per viewpoint.

Forward-projection IBMR replaces global geometry with local geom-
etry per input view, for example, from superpixel segmentation [22, 23]
or local structure from motion [3]. These methods can better suppress
artifacts stemming from sparse or incomplete geometry.

Besides registration, a second challenge for geometry-based IBMR
methods is that they do not trivially scale to a large number of views.
This implies that the acquisition of views, or view planning, deserves
specific attention in IBMR systems. If a finite number of targets views
is known in advance, view planning can aim to optimally cover these
views [24, 25]. If the target views can be assumed to lie within a
bounded ”walking” range, view planning becomes a variant of the art
gallery problem, aiming to cover every surface point in the scene with
at least one view [7, 8].

Unfortunately, texturing with a single view is not sufficient for high
quality IBMR. It is more meaningful for modern IBMR to consider
a form of reprojection error between sampled views, to decide if an
additional view should be acquired. For instance, recent work [3] has
proposed offline view planning for larger scenes by subdividing the
scene into parts and establishing an explicit mapping between views
and scene parts. However, this work does not place an upper bound on
the size of the view cache, and does not run in real time. This makes it
unsuitable for interactive reconstruction [26] or telepresence [27–29].

View planning for outside-in scenes has been demonstrated at inter-
active rates to guide a user’s acquisition with a handheld camera [26].
Our work has the additional requirement that view planning needs to
consider surrounding geometry of inside-out scene and not only the

2

To appear in IEEE Transactions on Visualization and Computer Graphics

TrackiŶg

Vieǁ plaŶŶiŶg

Vieǁ
processiŶg

MappiŶg

Vieǁ selectioŶ,
BleŶdiŶgCaŵera seŶsor Display

Vieǁ
store

Geoŵetry
store

FULL FRAME RATE

SLOWER

Color fraŵes

Free ǀieǁpoiŶt

Grid refereŶces

Depth
fraŵes

Caŵera
pose

Fig. 2. We extend SLAM with lumigraph modeling and rendering including
a novel real-time view planning approach. This diagram shows existing
components in white and new components in orange.

orbital space around an outside-in scene.

While relatively little work on view planning for lumigraphs exists,
the problem received more attention in multi-view reconstruction [30].
Here, the main objective is scalability: Naive structure from motion in
large image collections suffers from quadratic runtime requirements,
when every input image is matched with every other input image. A
typical approach to reduce the computational complexity is to build
a reconstructed model incrementally, by greedily adding views that
promise the fastest improvement in model coverage and quality [31,
32]. The metrics employed in selecting new views to be added are
partially similar to metrics used in texture map optimization, such as
view disparity, occlusion, and distance to the scene [33]. However,
the emphasis lies on geometric matching, for example, by tracing
silhouettes, not so much on photometric matching. Moreover, these
methods are usually employed offline, often in multiple passes [34],
assuming full access to all input views simultaneously.

In contrast, view planning in robotics needs real-time performance
to support active vision [35]: Given a partial reconstruction, an au-
tonomous robot is instructed to navigate to the position corresponding
to a next best view, which promises the best improvement of the scene
reconstructed so far [36,37]. Robotic view planning needs to deliver not
only a next best view, but also a path plan to navigate there safely [38].
However, real-time constraints are somewhat relaxed, if the robot can
simply remain stationary until the plan becomes available. If this is not
possible, for example, in case of aerial vehicles [39], the entire plan
must be computed in offline phases interleaved with flight phases [40].

Another variant of active vision is to give the user control over the
camera, either using a handheld camera [26] or a remote-controlled
aerial vehicle [41]. In either case, the user must receive instant feedback
on the state of the acquisition to determine if there is sufficient coverage
already. Our approach belongs to this category, although we concentrate
on the planning algorithm and not on interactive user feedback. The
difference over previous work is that we retain real-time performance
for optimal view planning of a lumigraph embedded in a 3D scene, and,
not just a point cloud or spherical lightfield.

3 METHOD

We propose a new approach to build an IBMR pipeline around instant
modeling of a sparse, unstructured lumigraph. We take advantage of
the inherent multi-threading of SLAM [42]. SLAM typically uses a
tracking task running at full frame-rate and a slower mapping (i.e.,
geometric reconstruction) task. We introduce additional tasks for pho-
tometric registration and novel view synthesis, which run at their own,
independent rates.

Figure 2 shows an overview of our system architecture: White boxes
belong to the existing SLAM system, which fills the geometry store.
Red boxes describe our novel photometric registration. Every input
frame is considered by the view planning component as a potential
novel view to be placed in the view store, which is also associating
novel views with the scene geometry.

A lumigraph rendering component is responsible for generating
novel views. Using the information from the geometry and view stores,
this component performs view selection and blending to generate a
novel view to display. The framerate of the rendering component is
decoupled from the lumigraph modeling, and rendering can even run
remotely in a telepresence environment.

We begin by reviewing a basic unstructured lumigraph (section 3.1),
as described by Buehler et al. [11]. Then, we explain our core con-
tribution, the real-time view planning algorithm for the lumigraph
(section 3.2). We also discuss how the views selected for the lumigraph
can be refined in real time (section 3.3), and, finally, how the runtime
view selection works (section 3.4).

3.1 Basic lumigraph blending

Basic lumigraph blending creates novel views by sampling views from
a view store F = { fi}

1. Each view fi = (ci,ei,zi) consists of a camera
pose ci, decomposed into camera position Pos(ci) and viewing direction
Dir(ci), as well as a color image ei(x) and a linear depth image zi(x).

Lumigraph blending selects, for each sample position X, the best
K views (collected in FK) according to a weighting function wi and
blends them into a new view fo = (co,eo,zo).

Using a projection operator pr(X, f) from world space to image
space and an inverse projection operator P(x) from image space to
world space, we obtain eo as follows:

eo(x) = ∑
fi∈Fk

ei(pr(Po(x), fi)) ·
wi(x)

∑ fr∈FK
wr(x)

The weights wi are obtained by combining terms that describe the
geometric (i.e., directional and positional) similarity of a reference
view to the novel view. The directional term wDir

i is described using a
clamped cosine of the angle between the reference view and the novel
view (Nrm() denotes vector normalization).

wDir
i (x) = max(0,Nrm(Pos(co)−Po(x)) ·Nrm(Pos(ci)−Po(x)))

The position term wPos
i is described as the ratio of distances to the

camera center:

wPos
i (x) = max

(

0,1−
|Pos(co)−Po(x)|

|Pos(ci)−Po(x)|

)

In addition to the geometric similarity, the weight must also ensure
that a sample is valid. Buehler et al. [11] only consider that a sample
X must be within the field of view covered by f (assumed to have an
opening angle of 2α). This suffices if the geometric model is very
simple, but, for complex geometric models, we must additionally take
care that a sample X is not occluded in f and that X is not closer
than ∆xy to a depth discontinuity larger than ∆z [28], which would
make X unreliable. We combine these constraints in a validity function
valid(X, f) as follows:

valid(X, f)=

0, if |X−Pos(c f)|> z f (pr(X, f))

0, if Nrm(X−Pos(c f)) ·Dir(c f)< cosα

0, if max
∆xy∈SW (2)

|z f (pr(X, f))− z f (pr(X, f)+∆xy)|> ∆z

1, otherwise

Here, SW (U) = {∆xy ∈ Z ×Z, |∆xy| ≤U} is a radial search window in
image space. The final weight is obtained by linearly combining the
geometric similarity and the validity function using a parameter λ :

wi(x) = valid(x, fi) · (λ ·wDir
i +(1−λ)wPos

i)

1We denote scalars in italics, 2D Euclidean vectors in lowercase boldface

and 3D Euclidean vectors in uppercase boldface.

3

a
h

rθ

c
2

c
3

c
1

c
5

cov
a
max

cov
a
min

c
4

c
6

b
k

Fig. 3. (left) By dividing the area of a unit sphere, 4π, by the number
of views, we obtain a maximum area per view. The area assigned to
one view has as an upper bound the area of a sphere cap, 2π(1−
cosθ). (right) Example for angular coverage of bk observed by six views
c1, . . . ,c6. The angular coverage weight is related to the ratio of the
minimal observed angle between two cameras, covmin

a , and the maximum
possible angle between two cameras, covmax

a .

3.2 View planning

The above description of basic lumigraph blending assumes that F is
small enough so all views can be stored and searched at runtime. The
key contribution of our paper is the introduction of a real-time solution
for view planning, which addresses two requirements not handled by
basic lumigraph blending: first, choose views from the incoming image
stream to store in F , second, obtain a pre-selection so view blending
can be done with a constant effort that is independent of the chosen
size of F .

Our view planning approach extends the frame store used in lumi-
graph blending with an additional view-independent data structure: We
organize the scene into a regular grid B = {bk}, which subdivides the
scene geometry G into cells G(bk). Per cell bk, we store a set of Rmax

references to F , denoted as R(bk) = { fk,r},1 ≤ r ≤ Rmax.

The cell structure has a number of advantages: It reduces the overall
effort compared to processing surface geometry explicitly, it exploits
spatial locality, and it decouples the lumigraph from the detailed sur-
face geometry reconstruction. Only during the final rendering are the
views associated with individual surface points through indirect texture
lookups. The geometric and photometric reconstructions can evolve in-
dependently, making our approach robust to variations in computational
load and other unforeseen challenges that may occur in a real-time sys-
tem. For example, new views can be incorporated to refresh the view
store after changes to scene geometry or incident illumination. More-
over, cells naturally correspond to blocks of a sparse volumetric data
structure, which is now commonly used for large scenes [43].

Coverage metric In order to fill the view store with the best views,
we define a coverage metric that expresses the benefit of new view in
covering the lumigraph. We weight two quality criteria, each expressed
by a factor in the range [0,1], which can be seen as a view-independent
variant of the directional and positional similarity described above:

• Directional coverage covd : Views observing a cell should be
well distributed in the cell’s orientation space, so that every new
view covers a portion of the scene from a new angle.

• Positional coverage covp: Views should have the desired pixel
density (neither too dense nor too sparse). Moreover, the view
should see as much as possible of the surface inside the cell.

46%

54%

covc=54%

Fig. 4. A view’s contribution to a cell is weighted by the relative fraction
of the cell’s visible surface in the view.

We compute the overall coverage cov as a weighted sum of directional
and positional coverage:

cov(f ,bk) = λ · covd(f ,bk)+(1−λ) · covp(f ,bk)

Directional coverage. We determine the minimum angular devia-
tion covmin

d to all views already selected for a particular cell (represented
by its centroid, Pos(bk)):

γ = max
fi∈R(bk)

Nrm(Pos(c f)−Pos(bk)) ·Nrm(Pos(ci)−Pos(bk))

covmin
d (f ,bk) = δ (|R(bk)|,0)+(1−δ (|R(bk)|,0)) · γ

Here, δ denotes the Kronecker delta function. If more views are
stored in R(bk), the angle between them must become smaller. For
Rmax views (all references are filled), the Tammes number denotes the
maximum angle θ(Rmax) between views [44]. We can estimate an
upper bound (Figure 3, left) to the cosine of the Tammes number as
covmax

d = cos(θ(Rmax)) = 2 · (1−2/Rmax)2 −1. Therefore, we obtain
an approximate angular coverage covd from the minimal observed angle
between views and the largest possible angle between views (Figure 3):

covd(f ,bk) = min

(

1,
1− covmin

d (f ,bk)

1− covmax
d

)

Positional coverage. Positional coverage combines a term judg-
ing the resolution of f with respect to bk and a term describing what
fraction of bk is visible. The distance of a cell to the view is given by d:

d(f ,bk) = |Pos(c f)−Pos(bk)|

We express how well the distance of a view matches an ideal distance
dmax using a Gaussian g with variance σ2, centered around the ideal
distance dmax.

g(f ,bk) = exp

(

−
(d(f ,bk)−dmax)

2

2σ2

)

The second term, the visible fraction of a cell (in pixel area units Apx),
is determined as the ratio of the visible pixel count, pix, to the total
pixel count. The visible pixel count is obtained by rendering a position
buffer P(x) and obtaining a cell id cid. The cell id is generated by
quantizing P with a factor q and computing a spatial hash, such that
k = cidi(x) = hash(⌊Pi(x) · q⌋) if x ∈ bk. Using cid, we can easily
determine a visible pixel count pixvis per cell, i.e., the visible pixels
inside bk:

pixvis(f ,bk) = ∑
x∈ f

δ (cid f (x),k)

The total pixel count is obtained by projecting the total surface area
A(bk) of the scene geometry contained in cell bk from world space into
f (Figure 4). To avoid an exaggerated influence of very densely or very
sparsely populated cells, we constrain the value to lie in the interval

4

To appear in IEEE Transactions on Visualization and Computer Graphics

Eǆposure
correctioŶ

VieǁpoiŶt
refiŶeŵeŶt

Neǁ
view

Store
view

If
coŶǀerged

Fig. 5. Before a new view is accepted into the view store, exposure and viewpoint are refined in an alternating optimization.

Fig. 6. Quality comparison of ”city wall” scene, from left to right: ground truth, lumigraph rendering with view processing (pose and exposure
refinement), lumigraph rendering without view processing. In fthe latter case, blurriness and exposure differences reduce image quality.

from one pixel, Apx to the projection of a cell face area Acell into the
view. Then, we convert from world-space area into pixel area units by
normalizing with Apx to obtain a total pixel count pixtotal .

pixtotal(f ,bk) =
1

Apx
·max

(

min(A(bk),Acell)

d2(f ,bk)
,Apx

)

Now we weight the pixel count by distance quality and cell coverage to
obtain the positional coverage

covp(f ,bk) = g(f ,bk) ·
pixvis(f ,bk)

pixtotal(f ,bk)

Candidate view evaluation. We use the coverage metric cov() to
decide if we add a candidate view f to F or not. To this end, we seek
to increase the summed coverage scov over all views and cells. Per cell,
the coverage is clamped by a constant f covmax to avoid a bias towards
cells covered by many views.

f cov(F,bk) = ∑
fi∈F

cov(fi,bk)

scov(F) = ∑
k

min(f cov(F,bk), f covmax)

We keep f , if it improves the coverage by at least ∆scov, i.e., scov(F ∪
f) > scov(F)+∆scov. When the view store is full, f must replace a
victim v. By replacing every existing view fi with f and finding the
optimal coverage, we determine the victim v = argmax fi∈F scov(F ∪
f \ fi). For efficiency, we keep the views in a list sorted by coverage,
and only consider victims that are among the lowest-ranking views. If
no victim v can be found such that scov is increased by at least ∆scov, f
is not kept.

3.3 View processing

Before we store a candidate frame f , we must match its exposure to the
existing views and ensure that its viewpoint is as accurate as possible,
so that ghosting artifacts resulting from reprojection errors are minimal
(compare images in Figure 6).

Using a subset of surface points X j with valid(X j, f) = 1 as sam-
ple points [45], we determine an exposure correction factor E f . The
exposure correction scales a new view f such that it best agrees with
the median value of the other views fi ∈ F (each scaled with an expo-
sure correction factor Ei) according to a robust metric m (such as the
Tukey estimator). We use the median for robustness against outliers

that come from observing specular reflections. The energy function
J(f) describes the agreement among measurements:

J(f) = ∑
j

m

(

E f · e f (pr(X j, f))−median
i

(Ei · ei(pr(X j, fi))

)

By minimizing J(f), we obtained the desired exposure factor E f =
argminE f

J(f). After obtaining an initial estimate for the exposure

correction of f , we rectify small errors in the viewpoint associated with
f by making small changes to the external camera parameters, Pos(c f)
and Dir(c f) and recomputing J(f). A search for a local minimum
of J(f) using the method of Farnebäck [46] determines the optimal
camera pose c f = argminc f

J(f). We optimize exposure compensation

and pose correction until convergence [47] (Figure 5). If the geometric
reconstruction used as input contains views with pose outliers, the
optimization can get stuck in a local minimum that can be detected by
thresholding the residual error; such outlier views are discarded.

3.4 View selection

View selection is composed of two parts, a pre-selection part computed
every time a new view is accepted into the view store, and a final
selection part executed in the fragment shader during view blending.

Pre-selection fills the references R(bk) when a new view f ar-
rives. We add f to R(bk) if the cumulative coverage per cell is at
least increased by ∆ f cov, i.e., we make sure that f cov(R(bk)∪ f) >
f cov(R(bk)) +∆ f cov. If R(bk) is full, we determine a victim to be
replaced with f in R(bk) as vk = argmax fi∈R(bk) f cov(R(bk)∪ f \ fi).

If R(bk) is not yet full, ∆ f cov = 0.
During view blending, the fragment shader iterates over the R(bk)

and uses the validity function to determine if a particular view should
contribute to the lumigraph at the given location or not. Out of the
remaining views, the K = 3 best ones are used to determine the color
of a pixel as described in section 3.1.

4 EVALUATION

We integrated a prototype view planner into the Unity3D game engine
on a desktop computer (CPU: Intel i7-5820K 3.30GHZ, GPU: Nvidia
GTX 1080Ti). For best performance, the entire pipeline is execute
directly on the GPU, using HLSL shaders, while interface program-
ming was done in C# for easy testing. The implementation expects a
triangle mesh and an image sequence, annotated with camera poses,
that can come from any (real-time or non-real-time) reconstruction
algorithm. This allows us to conveniently test our system with a variety
of reconstruction engines. We acquired the following four test scenes:

5

Fig. 7. By using a trajectory following a Hilbert curve for generating the input image sequence in the apartment scene, we achieve a progressive, but
homogeneous coverage (Top left). The coverage per cell is visualized (Top right). The homogeneous color indicates that all cells receive a relatively
equal coverage in the view store. Note that to increase visual contrast at low scoring cells, scores has been clamped at 0.3. Coordinate glyph marks
the camera pose of the views referenced by the blue cell in the middle (Bottom left). The number of references stored per cell is visualized (Bottom
right). Most cells fill all their references (yellow), while only a few inaccessible areas do not get covered properly (dark purple).

1. Viking village: synthetic scene with mostly diffuse materials

2. Apartment: synthetic scene with specular materials

3. City wall: real scene reconstructed using the multi-view stereo
algorithm of Fuhrmann et al. [48]

4. Lab: real scene scanned with an RGB-D camera and geometri-
cally reconstructed using InfiniTAM [49] [43]

For the synthetic scenes, we generated 5000 input images by densely
sampling a trajectory created by 2D Hilbert curve as shown in Figure 7.
For the real scenes, we used the original image sequences as input to
our view planning algorithm.

We used this setup to analyse how various system parameters influ-
ence the results. We evaluate visual quality by comparing rendered
views to reference images, reporting image quality as mean SSIM [50],
or MSSIM, for 200 test views taken with random camera poses. Finally,
we compare image quality of our method to a state-of-the-art real-time
method and a commercial offline method.

4.1 Coverage computation

Our first evaluation of the view planning method focuses on the cover-
age computation. Ideally, view references of a cell should already be
full, before we run out of space in the view store.

To understand how much geometry is often (or never) seen in any
view, we implemented an in-engine visualization tool which color-
codes various aspects of the cells or the contained geometry (Figure 7),
such as the number of views observing the cell, the number of registered
views, the average coverage per registered views and the directional
coverage. For example, it distinguishes geometry that is not seen by any
input view from geometry that is seen in an input view, but not selected
for the view store. Additionally, in order to assess spatial behavior
of our per-cell view planning, we visualize the selected and rejected

10 40 70 100 130

Cell Dimention (cm)

0.88

0.89

0.9

0.91

0.92

M
S

S
IM

Apartment

70 100 130 160 190

Cell Dimention (cm)

0.86

0.865

0.87

0.875

0.88
M

S
S

IM

Viking Village

Fig. 8. Effect of cell size on MSSIM. We observe the optimal cell distance
depends on the scene diameter, in our examples, 30-100cm.

views as small coordinate axis icons around a particular cell (Figure
7). These visualizations are generated in real-time and could be used
during actual scanning, for example, with a handheld RGB-D sensor.

4.2 Trade-off between positional and directional coverage

We studied how blending of directional and positional coverage terms
effects our rendering quality over two different types of trajectories.
Using viking village, we compared a Hilbert curve fly-over trajectory
(simulating a drone) to a walking-like trajectory with images taken at
human eye-level. Each trajectory consisted of 5000 images overall.

Unlike the fly-over, occlusion varies significantly during the walking
trajectory. One image may look down an entire street, while another
one is complete occluded by a building. The walking trajectory benefits
more from an increased weight given to positional coverage (Figure 12).

6

To appear in IEEE Transactions on Visualization and Computer Graphics

0 100 200 300

Cache Size

0.82

0.84

0.86

0.88

0.9

0.92

M
S

S
IM

Apartment

0 100 200 300

Cache Size

0.65

0.7

0.75

0.8

0.85

0.9

M
S

S
IM

Viking Village

Fig. 9. Diminishing returns in terms of image quality can be observed at
reasonable caches sizes of 100-200 frames. MSSIM above 80% typically
yields subjectively high image quality.

0 10 20 30 40 50 60

Number of slots per cell

0.8

0.85

0.9

0.95

M
S

S
IM

Apartment

Cache Size=150

Cache Size=250

0 10 20 30 40 50 60

Number of slots per cell

0.7

0.75

0.8

0.85

0.9

M
S

S
IM

Viking Village

Cache Size=150

Cache Size=250

Fig. 10. Effect of number of view references per cell on MSSIM. Dimin-
ishing returns can be observed after 15-20 view references.

4.3 Cell dimension

We systematically varied the cell dimension and investigated how it
influences the quality. Quality was measured as SSIM between images
rendered using our system and reference views, averaged over 200
randomly chosen camera poses per test scene. Consequently, we report
MSSIM over all views. We varied cell dimension depending on the
overall scene size and plotted the results in Figure 8.

We observed an optimal cell dimension that depends on the size of
the scene. Too small cell dimensions can cause a lower SSIM, since
the views only have finite resolution, and varying views across very
small cells encourages mosaicing artifacts. If the cell dimension gets
too large (larger than 30-100cm for the tested scenes), many views will
not cover the entire area inside the cell and, in unfortunate situations,
parts of the geometry are not properly covered. A heuristic based on
(expected) scene diameter is therefore a good solution.

4.4 Distance of views and cells

The parameters dmax and σ define the ideal distance of a view from a
cell, such that the view covers the cell at the desired resolution. As can
be seen in Figure 11, the choice of these parameters is not very sensitive
in the apartment scene, which has a small overall diameter, so that even
the furthest parts of the scene are covered with good resolution in every
view. In contrast, the much larger viking village scene benefits from an
appropriate parameter choice. Here, a choice of σ2 = 20m2 yields the
best distribution of views with respect to the obtained image quality.

4.5 View store size

We wanted to find out how the number of stored images (a few hundred
2MPix images fit in GPU memory) influences quality. We processed
the images using various cache sizes and plotted results for both data
sets in Figure 9. Obviously, a larger cache contains more information
and can yield a better image quality if used properly. Nonetheless, we
observed that cache sizes above 100-200 images (again, dependent on
scene characteristics) yield diminishing returns, implying that a finite
number of views is sufficient, and a view store of reasonable size can
be filled and maintained incrementally.

0 10 20 30 40 50 60
0.87

0.88

0.89

0.9

0.91

M
S

S
IM

Apartment

DMax=0 m

DMax=3 m

DMax=5 m

0 10 20 30 40 50 60

0.858

0.86

0.862

0.864

0.866

M
S

S
IM

Viking Village

DMax=0 m

DMax=3 m

DMax=5 m

Fig. 11. Effect of view-cell distance parameters σ and dmax on MSSIM.

0 0.2 0.4 0.6 0.8 1
0.795

0.8

0.805

0.81

0.815

M
S

S
IM

Walking Trajectory

0 0.2 0.4 0.6 0.8 1

0.82

0.83

0.84

0.85

0.86

M
S

S
IM

Aerial Trajectory

Fig. 12. Effect of changing the weight of directional and positional cover-
age on MSSIM. The walking trajectory has more occlusions and requires
giving a plausible to positional coverage (e.g., λ = 0.4).

4.6 Influence of per-cell view references on quality

We studied how image quality changes with varying number of refer-
ences per cell as shown in Figure 10. Note that all lumigraph renderings
were produced by blending only three views per pixel, but chosen from
the all references stored in a cell. More references per cell increase the
chance that views with good coverage of a sample within that cell are
found. However, an increasing number of references exhibits diminish-
ing returns after 15-20 references, implying that cells can be properly
covered with a small number of views, if chosen carefully. This insight
is of practical importance, since the rendering speed depends on the ref-
erence number that must be searched in the fragment shader (Table 2).
A reference number of 16 appears to be the best trade-off.

4.7 Influence of refinement on quality

We investigated the influence of view refinement on quality by comput-
ing the difference between lumigraph rendering results with refinement,
without refinement, and the reference images. We present side by side
images of before and after image pose refinement in Figure 6. As ex-
pected, image quality is significantly increased by the refinement. This
result is consistent with observations made by other authors [47, 51].
However, our work demonstrates that a refinement carried out in real
time (i.e., without extensive global search and optimization) is feasible.

4.8 Speed

We measured the performance of our algorithm by means of view
selection speed and rendering speed. Specifically, we investigated
performance impact of number of references as shown in Table 2. The
performance reported in the table is obtained while rendering at 1080p
resolution along a trajectory through the scene. Performance depends
on both the geometric complexity of the scene (which is out of scope of
our work) and the number of references. At the recommended number
of 16 references, we observe between 3-54ms per input image for view
planning (considering a new frame for the view store) and 18-37ms
for rendering. There is ample room for optimizations, but we already
achieve interactive performance that would be suitable, for example,
for viewing a remote scene in a telepresence application.

7

Data set Model (ms) Render (ms)

Name Tris Res. Refine 8 ref 16 ref 32 ref 60 ref 8 ref 16 ref 32 ref 60 ref

Viking village 6.1M 2.1MP - 4.2 4.5 6.3 22.7 16.6 29.6 61 101.8
Apartment 1.6M 2.1MP - 3.1 3.1 8.7 16.9 16.5 19 43 89.3
City wall 10.3M 3.0MP 350 37.5 53.5 70.4 104.2 23.6 37.3 69 109
Lab 1.6M 0.3MP 60 2.1 15.2 44.2 63.3 16.6 17.7 29.8 45.9

Table 2. Performance overview. The left block of columns lists model name, primitive count (in million triangles) and input image resolution (in
mega-pixels). The middle block gives timings of the modeling stage, and the right block, of the rendering stage, both in milliseconds. Column ”Refine”
is the average time for refining an input view. Columns labeled ”ref” list timings for 8, 16, 32 or 60 references per cell, for either modeling or rendering.

4.9 Quality comparison to reference methods

We visually compare our method to two reference methods on the same
input data: The first method is KinectFusion, which accumulates depth
images in a volume tabulating a truncated signed distance function
and extracts a mesh with per-vertex averaged colors. It represents the
class of real-time methods. The second method used for comparison
is 3DF Zephyr 2, a leading commercial photogrammetry software. It
represents the class of offline method, which can perform arbitrary
global optimizations. Zephyr delivers noticeable higher precision ge-
ometry than KinectFusion, but required 40 min of compute time on
the Lab dataset. Texture quality is optimized as well; however, Zephyr
combines texture extracted from multiple into one final surface texture,
which is not view-dependent like ours. For a fair comparison, our
method used the geometry delivered by KinectFusion under real-time
constraints as input, and not the more precise geometry of Zephyr.

Side-by-side image comparisons can be seen in Figure 15. Infor-
mally, our method performs on par with 3DF Zephyr, while our method
clearly outperforms the result delivered by KinectFusion in the same
instant timeframe. KinectFusion’s per-vertex coloring exhibits blurry
rendering due to lack of high frequencies in its textures. While Zephyr
utilizes textures much better, it has no intensity correction or view-
dependent representation and shows significant mosaicing artifacts.
Visual inspection of magnified details reveals that Zephyr’s advantage
of more precise geometry is lost if mosaicing cannot be suppressed.

To demonstrate the influence that the view planning method alone
has on visual quality, we tested the image quality that our incremental
view planning delivers compared to a globally optimal version of the
same planning. We chose the 250 best out of 5000 keyframes by global
optimization over all 5000 keyframes simultaneously, and compare
the resulting image quality to the online method (which considers the
views in strict sequence, one at a time, and not simultaneously). The
globally optimal version of our algorithm results in an MSSIM increase
of 1.3% compared to online version. Visual differences are only visible
when looking carefully, as can be seen in Figure 13.

5 CONCLUSIONS AND FUTURE WORK

We have described a new method for online view planning in recon-
struction applications that builds an unstructured lumigraph. The views
for the lumigraph are selected such that they cover the entire scene well
without having to revisit older views, which are not longer available in
the view store. Such an approach has previously only been explored
in next-best view planning in robotics, but with the difference that our
algorithm has no control over where the human operator will move the
camera to. As far as we know, we are the first to explore this situation,
although it is highly relevant for mobile MR applications.

In future work, we will integrate our view planning system with
real-time scanning, rather than working from recorded and played-
back sequences. While this is conceptually straight forward, it implies
two important additional problems: First, testing lumigraph quality
is much more difficult if every test run gives a different trajectory.
Second, incremental geometric reconstruction via SLAM does make
all geometry available immediately. Therefore, a short delay (e.g.,
a few seconds) of storing incoming images will be required to be
able to match geometry to view candidates. It will also require that
new portions of the geometry are cross-referenced with existing views

2http://www.3dflow.net

periodically to make the most out of the view store’s content. In
addition to including real-time reconstruction, we will also investigate
further algorithmic improvements, such as replacing the simple greedy
optimization strategy with a more sophisticated optimization strategy
that identifies areas of the scene with good coverage and excludes them
from disruptive updates.

Fig. 13. Rendering results with our incremental view planning algorithm
(top) and the globally optimal version of our algorithm (bottom) are shown.
Subtle differences can be realized only in a careful examination.

REFERENCES

[1] D. Schmalstieg and T. Höllerer, Augmented Reality - Principles and Prac-

tice. Addison-Wesley Professional, June 2016.

[2] O. Erat, W. A. Isop, D. Kalkofen, and D. Schmalstieg, “Drone-augmented

human vision: Exocentric control for drones exploring hidden areas,”

IEEE Trans. Vis. Comp. Graph., vol. 24, no. 4, pp. 1437–1446, 2018.

[3] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow, “Scalable inside-out

image-based rendering,” ACM Trans. Graph., vol. 35, no. 6, pp. 1–11,

2016.

[4] S. Bi, N. K. Kalantari, and R. Ramamoorthi, “Patch-based optimization for

image-based texture mapping,” ACM Transactions on Graphics, vol. 36,

pp. 1–11, jul 2017.

[5] M. Waechter, N. Moehrle, and M. Goesele, “Let there be color! Large-

scale texturing of 3D reconstructions,” in ECCV, pp. 836–850, 2014.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,”

in Proc. SIGGRAPH, pp. 43–54, 1996.

8

To appear in IEEE Transactions on Visualization and Computer Graphics

Fig. 14. View planning visualization over time on the Viking village dataset. From left to right: (a) Lumigraph rendering (b) Cell reference count
[0,max], (c) Normalized cell coverage.

Fig. 15. Comparation of our method to per-vertex colored KinectFusion model and to an offline-reconstruction rendering using a leading commercial
photogrammetry (3DF Zephyr). From left to right: (a) KinectFusion’s rendering (b) our rendering (c) 3DF Zephyr’s rendering results.

9

[7] S. Fleishman, D. Cohen-Or, and D. Lischinski, “Automatic camera place-

ment for image-based modeling,” in Proc. Pacific Conference on Computer

Graphics and Applications, pp. 12–20, 1999.

[8] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich, “Automatic view

selection using viewpoint entropy and its application to image-based mod-

elling,” Computer Graphics Forum, vol. 22, pp. 689–700, Nov. 2004.

[9] J. O’Rourke, Art Gallery Theorems and Algorithms. New York, NY, USA:

Oxford University Press, Inc., 1987.

[10] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM,

vol. 45, pp. 634–652, July 1998.

[11] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstruc-

tured lumigraph rendering,” in Proc. SIGGRAPH, pp. 425–432.

[12] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. SIGGRAPH,

pp. 31–42, 1996.

[13] M. Bolas, A. Kuruvilla, S. Chintalapudi, F. Rabelo, V. Lympouridis, C. Bar-

ron, E. Suma, C. Matamoros, C. Brous, A. Jasina, et al., “Creating near-

field vr using stop motion characters and a touch of light-field rendering,”

in ACM SIGGRAPH 2015 Posters, p. 19, ACM, 2015.

[14] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.

Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion:

Real-time dense surface mapping and tracking,” pp. 127–136, 2011.

[15] S. Dong and T. Hollerer, “Real-Time Re-Textured Geometry Modeling

Using Microsoft HoloLens,” in IEEE Virtual Reality, pp. 231–237, 2018.

[16] Q. Zhou and V. Koltun, “Color map optimization for 3d reconstruction

with consumer depth cameras,” ACM Trans. Graph., vol. 33, no. 4, 2014.

[17] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or, “Seamless

Montage for Texturing Models,” Eurographics 2010, vol. 29, 5 2010.

[18] J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,”

in Proc. SIGGRAPH, pp. 307–318, ACM Press, 2000.

[19] P. Debevec, C. Taylor, and J. Malik, “Modeling and rendering architecture

from photographs: a hybrid geometry- and image-based approach,” in

Proc. SIGGRAPH, pp. 11–20, 1996.

[20] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. de Aguiar,

N. Ahmed, C. Theobalt, and A. Sellent, “Floating Textures,” Computer

Graphics Forum, vol. 27, pp. 409–418, apr 2008.

[21] W.-C. Chen, J.-Y. Bouguet, M. H. Chu, and R. Grzeszczuk, “Light field

mapping: Efficient representation and hardware rendering of surface light

fields,” in Proc. SIGGRAPH, pp. 447–456, 2002.

[22] G. Chaurasia, S. Duchêne, O. Sorkine-Hornung, and G. Drettakis, “Depth

synthesis and local warps for plausible image-based navigation,” ACM

Transactions on Graphics, vol. 32, 2013.

[23] R. O. Cayon, A. Djelouah, and G. Drettakis, “A bayesian approach for

selective image-based rendering using superpixels,” in 3DV, pp. 469–477,

2015.

[24] V. Hlaváč, A. Leonardis, and T. Werner, “Automatic selection of reference

views for image-based scene representations,” in ECCV, pp. 526–535,

Springer, Berlin, Heidelberg, 1996.

[25] C. Zhu, L. Yu, and Z. Xiong, “A Noncoverage Field Model for Improving

the Rendering Quality of Virtual Views,” IEEE Trans. Multimed, vol. 20,

no. 3, pp. 738–753, 2018.

[26] A. Davis, M. Levoy, and F. Durand, “Unstructured light fields,” Comput.

Graph. Forum, vol. 31, pp. 305–314, May 2012.

[27] M. Dou and H. Fuchs, “Temporally enhanced 3D capture of room-sized

dynamic scenes with commodity depth cameras,” in 2014 IEEE Virtual

Reality (VR), pp. 39–44, IEEE, mar 2014.

[28] S. Orts-Escolano, M. Dou, V. Tankovich, C. Loop, Q. Cai, P. Chou, S. Men-

nicken, J. Valentin, V. Pradeep, S. Wang, S. Kang, C. Rhemann, P. Kohli,

Y. Lutchyn, C. Keskin, S. Izadi, S. Fanello, W. Chang, A. Kowdle, Y. Degt-

yarev, D. Kim, P. Davidson, and S. Khamis, “Holoportation: Virtual 3D

Teleportation in Real-time,” in ACM UIST, pp. 741–754, 2016.

[29] S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer, “World-stabilized

annotations and virtual scene navigation for remote collaboration,” in ACM

UIST, pp. 449–459, 2014.

[30] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated

three-dimensional object reconstruction and inspection,” ACM Comput.

Surv., vol. 35, pp. 64–96, Mar. 2003.

[31] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz, “Multi-

view stereo for community photo collections,” in ICCV, pp. 1–8, 2007.

[32] M. Mauro, H. Riemenschneider, A. Signoroni, R. Leonardi, and L. J. V.

Gool, “An integer linear programming model for view selection on over-

lapping camera clusters,” in 3DV, pp. 464–471, 2014.

[33] A. Hornung, B. Zeng, and L. Kobbelt, “Image selection for improved

multi-view stereo,” in CVPR, 2008.

[34] C. Mostegel, F. Fraundorfer, and H. Bischof, “Prioritized multi-view

stereo depth map generation using confidence prediction,” ISPRS Journal

of Photogrammetry and Remote Sensing, vol. 143, pp. 167 – 180, 2018.

[35] S. Chen, Active sensor planning for multiview vision tasks. Springer, 2008.

[36] E. Dunn, J. P. van den Berg, and J. Frahm, “Developing visual sensing

strategies through next best view planning,” in 2009 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pp. 4001–4008,

2009.

[37] C. Freundlich, P. Mordohai, and M. M. Zavlanos, “A hybrid control

approach to the next-best-view problem using stereo vision,” in ICRA,

pp. 4493–4498, 2013.

[38] O. M. Maldonado, S. Hadfield, N. Pugeault, and R. Bowden, “Taking the

scenic route to 3d: Optimising reconstruction from moving cameras,” in

ICCV, pp. 4687–4695, 2017.

[39] R. Huang, D. Zou, R. Vaughan, and P. Tan, “Active image-based modeling

with a toy drone,” in ICRA.

[40] B. Hepp, M. Nießner, and O. Hilliges, “Plan3d: Viewpoint and trajectory

optimization for aerial multi-view stereo reconstruction,” ACM Trans.

Graph., vol. 38, no. 1, 2019.

[41] C. Hoppe, M. Klopschitz, M. Rumpler, A. Wendel, S. Kluckner,

H. Bischof, and G. Reitmayr, “Online feedback for structure-from-motion

image acquisition,” in BMVC, 2012.

[42] G. Klein and D. Murray, “Parallel tracking and mapping for small AR

workspaces,” in ISMAR, 2007.

[43] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr, and D. W.

Murray, “Very High Frame Rate Volumetric Integration of Depth Images

on Mobile Device,” IEEE TVCG, vol. 22, no. 11, 2015.

[44] R. Kusner, W. Kusner, J. C. Lagarias, and S. Shlosman, “Configuration

spaces of equal spheres touching a given sphere: The twelve spheres

problem,” arXiv preprint arXiv:1611.10297, 2016.

[45] L. Gruber, T. Richter-Trummer, and D. Schmalstieg, “Real-time Photo-

metric Registration from Arbitrary Geometry,” in ISMAR, 2012.

[46] G. Farnebäck, “Two-frame motion estimation based on polynomial ex-

pansion,” in Proceedings of the 13th Scandinavian Conference on Image

Analysis, SCIA’03, (Berlin, Heidelberg), pp. 363–370, Springer-Verlag,

2003.

[47] T. Richter-Trummer, J. Park, D. Kalkofen, and D. Schmalstieg, “Instant

mixed reality lighting from casual scanning,” in ISMAR, 2016.

[48] S. Fuhrmann, F. Langguth, and M. Goesele, “Mve-a multi-view recon-

struction environment.,” in GCH, pp. 11–18, 2014.

[49] R. J. Weilharter, F. Schenk, and F. Fraundorfer, “Globally consistent dense

real-time 3d reconstruction from rgbd data,” in OAGM Workshop, 2018.

[50] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” IEEE Transac-

tions on Image Processing, vol. 13, pp. 600–612, apr 2004.

[51] M. Meilland, C. Barat, and A. Comport, “3D High Dynamic Range dense

visual SLAM and its application to real-time object re-lighting,” in ISMAR,

pp. 143–152, 2013.

10

