
Unified Patterns for Realtime 
Interactive Simulation in 

Games and Digital Storytelling
Dieter Schmalstieg

Graz University of Technology

Abstract—This paper discusses the state of the art in realtime interactive simulation

patterns, which are essential in the development of game engines, digital storytelling, and

many other graphical applications. We show how currently popular patterns have evolved

from equivalent, or, at least, very similar concepts, and are deeply related. We show that

game engines do not need to choose a particular pattern, but can easily combine all

desired properties with little or no overhead.

simulation should be flexible in accommodating

new entities and new tasks.

Contemporary game engines, such as Uni-

ty3D, favor the entity/component/system (ECS)

pattern,2 which makes it easy to extend enti-

ties and tasks independently. ECS decouples

entities and tasks, which is often seen as a

major advantage over traditional object-ori-

ented programming techniques. However, it

does not support communication between

entity groups. Mercury3 has recently shown

how Unity3D can be extended with group com-

munication based on dataflow, but Mercury

still requires to know communication patterns

in advance.

Realtime interactive simulations, such as 
computer games or cosimulations,1 typically use 
entities and tasks as their building blocks. A 
game world or other graphical environment is 
populated by entities such as creatures or treas-
ures. Many entities coexist, over longer periods 
of time, and the digital narrative emerges as a 
consequence of their simulated interactions. 
The challenge from a programming point of view 
is scalability: We want to make it convenient for 
the programmer to express the desired simula-

tion in terms of entities and tasks, and the



register its interest with many subjects, and a

subject can receive interest from many observ-

ers. Moreover, multiple observers can be

arranged in sequence, allowing indirect notifica-

tion, provided that events are automatically for-

warded to the next observer in the chain. The

resulting structure is a dataflow graph (or pipes-

and-filters pattern),5 a directed graph with enti-

ties as nodes and subject-observer relationships

as edges.

A naive dataflow schedules nodes in depth-

first order, as with direct method invocations.

Alternatively, a more sophisticated scheduling

can interpret the nodes as states in a state

machine. Notification starts at a source node and

is propagated based on state machine rules (see

Figure 2). For example, breadth-first scheduling

would require that all nodes with a shorter dis-

tance to the source must be processed first,

before a given nodemay be processed. More com-

plex rules can impose arbitrary topological order-

ing on the notifications. For example, one may

require that a node has events pending on some

or all of its incoming connections. Such a flexible

scheduling can be implemented using a visitor pat-

tern,4 an iterator which traverses a graph accord-

ing to a rule set and delivers notifications by

invoking a virtual function on each visited node.

Dataflow has been used in many interactive

applications. Visualization or image processing

pipelines can be set up as dataflow,6 represe-

nting filters, transformations, and encodings as

nodes. Input processing in virtual and augm-

ented reality is often specified as dataflow,7 to

stream input from multiple sensors through fil-

ters, fuse operations, and apply geometric

transformations.

Figure 1. Relationship of the architectures (blue boxes) discussed in this article. Arrows denote the addition

of a particular concept.

In this article, we compare several popular
communication patterns and show how the com-

bination of ECS with dynamic group communica-

tion unifies all previously proposed patterns
into a coherent whole (Figure 1).

NOTIFICATION
In object-oriented languages, entity types are

typically derived from an abstract base class,
while tasks are implemented as entity methods.

Direct method invocations implies that the invok-
ing entity must frequently poll the invoked entity
to learn about any new information. Polling is
wasteful, if there are many entities or infrequent
changes. Moreover, the schedule in which tasks
are carried out is bound to the invocation

sequence. We could inadvertently trigger a deep
sequence of method invocations, starving more

urgent tasks.
Consequently, we replace polling with noti-

fication: Entities communicate by passing mes-

sages about events that happened in the

simulated world. In order to receive events, an
observer entity registers itself with a subject
entity to receive notifications.4 Notification sepa-
rates event creation and consumption. Notifica-
tions can be delivered in a different order than
the one in which the corresponding events

were created. This freedom of reordering notifi-
cations enables the development of a large vari-
ety of scheduling strategies, suiting the needs of
diverse flavors of simulation.

DATAFLOW
The observer pattern makes it easy to control
notification propagation. A single observer can



A scene graph,8 a common data structure for

visualization and games, can be interpreted as a

special case of dataflow (see Figure 3). The

visual representation of a scene naturally lends

itself to a hierarchical representation, with

nodes representing scene objects (triangles, tex-

tures, shaders, etc.) or geometric transforma-

tions. A visitor traverses the nodes of the scene

graph, accumulates a transformaton matrix and

calls a rendering method on each node.

PUBLISH/SUBSCRIBE
Dataflow supports indirect notification, but

still requires explicitly setting up the links

between entities to send notifications between

entities. Setting up links for static relationships is

easy, but, if entities act autonomously, associa-

tions change in dynamic, unpredictable patterns.

In such cases, we would like to specify enti-

ties to be notified by filtering attributes or speci-

fying interests, rather than by enumerating

entities directly. Instead of a visitor, we need

a publish/subscribe architecture:5 Entities pub-

lish to a notification channel, while other entities

subscribe to this channel. The subscription can

be determined by explicitly associating entities

with channels, but a more powerful scheme

determines subscription based on dynamic fil-

tering of attributes, such as proximity. An inter-

mediary object, the broker, collects events and

delivers notifications. The broker can implement

arbitrary scheduling strategies and even provide

persistent storage.

When the broker collects and buffers many

events from many entities, temporal ordering

of events becomes essential. Proper temporal

ordering requires that notifications for events

are delivered in the half-order induced on the

events’ time-stamps.

MODEL/VIEW/CONTROLLER
If event processing and rendering are cou-

pled together in the same loop, either one of

the two tasks can become a bottleneck.

Figure 2. (Top) Augmented reality in a folklore museum. Left: The visitor retrieves the flat iron for finding out

the initials of the bridal pair; Middle: The visitor heats the iron in the tailor’s oven. Right: The visitor learns about

the “wedding rider” custom. (Bottom) Finite state machine expressing the application logic of the folklore

museum experience.



node to node during visitation, a conventional

visitor cannot be used. Such a case requires

double dispatch,10 the ability to vary both entity

and task dependent on the use case. There are

several ways how double dispatch can be

implemented:

� Multiple inheritance can support double dis-

patch to some degree, but can lead to compe-

tition among inherited implementations

(“deadly diamond of death”).

� Reflection can extract a method signature

from events and invoke a corresponding

method. Reflection can either be natively sup-

ported by the language (e.g., C#) or emulated

by parsing a textual event representation.

Using reflection is generally considered too

costly for processing large amounts of events.

� A signal/slot pattern can be used, which

allows registering methods of the notified

object to a particular signal (event). If the

programming language does not support a

signal/slot construct, it can be implemented

by using templates or building a table of func-

tion pointers.

� The VIGO (views/instruments/governors/obj-

ects) pattern11 extends MVC with a form of

double dispatch where behaviors are split

across two independently varied types of

controllers, called “governors” and “instru-

ments.” Instruments represent tasks, while

governors are mediators4 facilitating appro-

priate reactive behaviors of entities.

� Inheritance can be replaced by aggregation.

The entity/component pattern12 takes the lat-

ter approach, by aggregating components inside

an entity. Each component is responsible for a

Figure 3. Flow visualization around a space shuttle (left) is modeled as a hybrid of scene graph (middle) and

a dataflow graph (right).

Simulations should, therefore, incorporate a
decoupled simulation pattern9 that assigns sep-
arate threads of control to concurrent tasks.
In a decoupled simulation, a broker may place
its event queues in shared memory, accepting
events from entities belonging to one thread
and notifying entities belonging to another

thread. Provided we use a strictly asynchro-
nous scheduling, where no return notifications
are required, each task may iterate over the
received notifications at its own pace, without

blocking other tasks.
In a simple architecture, a main thread may

be responsible for brokering events, while other,
secondary threads are spawned on demand for
compute-intensive activities and retire after they
have fulfilled their goal. In a more complex archi-
tecture, multiple threads may permanently tend
to activities such as rendering, AI, animation,

physics, and so on.
The model/view/controller (MVC) pattern5 

describes a common form of decoupled simula-

tion. The model is a common store for the enti-
ties, while controller and view are tasks

observing of the model. The view is responsible
for rendering, while the controller is responsible
for processing notifications. If needed, MVC can
also use multiple views and multiple controllers
per model.

ENTITY/COMPONENT/SYSTEM
While MVC can easily provide decoupled sim-

ulation of multiple tasks, a conventional visitor
is designed for one specific task. The visitor
needs to know which virtual method to call on
the visited entities. If the set of tasks is not
known in advance, or the task changes from



specific task. Entities and components are

derived from an entity base class and a compo-

nent base class, respectively. Hence, implemen-

tations of entity and component can be varied

independently to achieve double dispatch.

When an entity receives an event, the entity

searches its component directory for a suitable

component and passes the event.

The entity/component pattern provides an

elegant solution for double dispatch, but it is not

ideal for data locality, since it organizes the data

by an entity and not by task. Encapsulation of

components inside entities implies that poten-

tially very different data elements are aggregated

inside one entity. A better data organization

would result from following data-oriented pro-

gramming principles and organizing data by

task, not by an entity. This principle is known

from column-oriented stores or the structure-of-

arrays pattern.

We can combine the entity/component

pattern with aspects of the MVC pattern to

obtain the ECS pattern.2 Entities become noth-

ing more than a unique entity id. Tasks are

split into a model part (the component) and a

controller part (the system). A rendering sys-

tem corresponds to the view of MVC.

Entities communicate by double-dispatch, as

in entity/component, but with inverted order:

first, on the system (task) level and, second, on

the component (entity) level. Like in MVC, every

system can run in its own independent thread,

facilitating decoupled simulation. Inside a sys-

tem, only components belonging to the same

task are represented, leading to enhanced data

locality if a task requires many entities to

collaborate.

An alternative implementation of ECS can

let systems handle events directly, rather than

delegating the event to a component.13 In this

variant of ECS, the system more closely resem-

bles the controller of MVC, by using compo-

nents as mere data containers. The system

cannot benefit from double dispatch afforded

by a class hierarchy of components. However,

using containers as pure data stores has dis-

tinct advantages. First, it becomes easier to

use relational databases for persistent storage.

Second, a task that needs to run intensive

processing on a large number of identically

structured components (e.g., finite element

simulation) is more efficiently carried out on

the system level without invoking virtual meth-

ods. Third, a system that just wraps around an

existing library is essentially implementing a

mediator pattern4 and has no use for

components.

BROKERED ECS
From the architectures discussed so far

(see Figure 4), we arrive at three distinct pat-

terns: (1) ECS is the preferred implementation

pattern for modern game engines. (2) Publish/

subscribe is a pattern often employed in net-

worked systems, such as the internet of things

or multiuser virtual reality. (3) Dataflow is

commonly used in visualization and interac-

tion. Mercury3 combines ECS with dataflow,

Figure 4. ECS pattern (bottom) can be explained as a combination of concepts from the model/view/

controller (left) and the entity/component (right) pattern. In ECS, a given set of entities and tasks (top) is

represented inside per-task systems.



all discussed approaches: It supports all forms 
of notification, topological and temporal order-
ing, decoupled simulation, double dispatch, 
and data-oriented programming. Since a bro-
kered ECS is only marginally more complex to 
build than the previous approaches, we con-
clude that making a hard choice between old 
and new programming style in realtime interac-
tive simulation is not necessary.

REFERENCES

1. C. Gomes, C. Thule, D. Broman, P. G. Larsen, and

H. Vangheluwe, “Co-simulation: State of the art,”

CoRR, abs/1702.00686, 2017.

2. S. Bilas, “A data-driven game object system,” Blog

Post, 2002. Available at: http://gamedevs.org/uploads/

data-driven-gameobject- system.pdf

3. C. Elvezio, M. Sukan, and S. Feiner, “Mercury: A

messaging framework for modular ui components,” in

Proc. CHI Conf. Hum. Factors Comput. Syst., 2018,

pp. 588:1–588:12.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design Patterns: Elements of Reusable Object-

Oriented Software. Boston, MA, USA: Addison-

Wesley, 1995.

5. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

and M. Stal, Pattern-Oriented Software Architecture -

Volume 1: A System of Patterns. Hoboken, NJ, USA:

Wiley, 1996.

6. W. Schroeder, K. M. Martin, and W. E. Lorensen. The

Visualization Toolkit (4th Ed.): An Object-oriented

Approach to 3D Graphics, 2006.

7. G. Reitmayr and D. Schmalstieg, “Opentracker - A

flexible software design for three-dimensional

interaction,” Virtual Reality, vol. 9, no. 1, pp. 79–92,

Dec. 2005.

Figure 5. Dataflow architecture can be integrated into a publish/subscribe architecture by extending the

broker. In the Brokered ECS variant, direct notification is replaced with the extended broker.

but lacks a more powerful publish/subscribe 
mechanism. This observation prompts the 
questions how difficult it would be to combine 
all three patterns.

Let us consider a combination of dataflow 
and publish/subscribe (see Figure 5, left). Obvi-
ously, notification can be sent to direct and indi-
rect neighbors of an entity through a channel. 
The channel access may require an additional 
lookup compared to a callback mechanism, but 
if we assume at least one such lookup is required 
for using a virtual method, the overhead of 
going through a channel can be hidden with 
proper programming techniques. Moreover, an 
extended broker can enforce topological order-
ing by checking the constraints imposed on a 
node before an event is delivered. Hence, we can 
easily integrate dataflow, state machines and 
publish/subscribe.

Inserting such an extended broker into an ECS 
completes our system integration (see Figure 5, 
right). A brokered ECS routes notifications 
between components inside separate systems 
through a channel. Membership in channels facil-
itates arbitrary group notification. All forms of 
notification benefit from the double dispatch 
capability inherited from Entity/Component.

CONCLUSION
This paper establishes a unified view on 

several popular architectural patterns for 
game engines and other graphical simulations. 
We show that these patterns are not compet-

ing, but deeply related. Consequently, we 
arrive at an integrated approach, brokered 
ECS, which combines the desired properties of

http://gamedevs.org/uploads/data-driven-gameobject- system.pdf
http://gamedevs.org/uploads/data-driven-gameobject- system.pdf


8. P. S. Strauss and R. Carey, “An object-oriented 3d

graphics toolkit,” SIGGRAPH Comput. Graph., vol. 26,

no. 2, pp. 341–349, Jul. 1992.

9. C. Shaw, M. Green, J. Liang, and Y. Sun,

“Decoupled simulation in virtual reality with the mr

toolkit,” ACM Trans. Inf. Syst., vol. 11, no. 3,

pp. 287–317, Jul. 1993.

10. D. H. H. Ingalls, “A simple technique for handling

multiple polymorphism,” in Proc. Conf. Proc. Object-

Oriented Program. Syst., Languages Appl., 1986,

pp. 347–349.

11. Michel Beaudouin-Lafon Clemens Klokmose. “Vigo:

Instrumental interaction in multi-surface environments,”

in Proc. ACMCHI, 2009, pp. 869–878.

12. C. Stoy, “Game object component system,” in Game

Programming Gems 6, 2006.

13. A. Martin, “Entity systems are the future of mmog

development,” Blog Post, 2007. [Online]. Available:

at: http://tmachine.org/index.php/2007/09/03/entity-

systemsare- the-future-of-mmog- development-part-1/

http://tmachine.org/index.php/2007/09/03/entity-systemsare- the-future-of-mmog- development-part-1/
http://tmachine.org/index.php/2007/09/03/entity-systemsare- the-future-of-mmog- development-part-1/



