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Abstract—The design of interactive algorithms for robotic
total stations often requires hardware-in-the-loop setups during
software development and verification. The use of real-time
simulation setups can reduce the development and test effort
significantly. However, the analysis of the simulation uncertainty
is crucial for proper design of simulation setups and for the
interpretation of simulation results. In this paper, we present a
real-time simulation method for modern robotic total stations. We
provide details for an exemplary robotic total station including
models of geometry, actuators and sensors. The simulation
uncertainty was estimated analytically and verified by Monte
Carlo experiments.

Index Terms—Simulation, Vision-Based Robots, Virtual Real-
ity Systems

I. INTRODUCTION AND RELATED WORK

A robotic total station (RTS) is commonly used for measur-
ing 3D points with high precision and accuracy [1]. Designing
and testing interactive algorithms for these robotic devices
usually requires hardware-in-the-loop (HIL) approaches during
various software development phases. An efficient alternative
is to use simulator-in-the-loop (SIL). However, special care
must be taken in the RTS simulation design to guarantee
meaningful simulation results. Numerical imprecision of the
simulation, especially when using game engines tuned for
speed rather than precision, can effect the outcome. In par-
ticular, finite precision of floating-point arithmetic may not be
negligible, and therefore has to be carefully examined.

We are not the first to investigate the benefits of game
engines for robot design and simulation. Mattingly et al. [2]
describe the use of Unity3D as their primary authoring tool.
They show how one can easily build and simulate a skeletal
structure with rigid-body kinematics.

Andaluz et al. [3] present a teleoperation simulator in
Unity3D and MATLAB, based on their earlier mathematical
model of the robotic manipulator [4]. Their work focus on
simulating the robotic arm along with a low-level closed-loop
control systems.

Meng et al. [6] introduced ROSUnitySim, a simulator based
on the Robot Operation System (ROS) and Unity3D, which
can simulate multiple unmanned aerial vehicles, including im-
age sensors and light detection and ranging (LIDAR) sensors.
The authors demonstrated an autonomous search task for mul-
tiple drones, including simultaneous localization and mapping
(SLAM) and 3D path planning. A more complete description
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Fig. 1. Simple geometric model of an RTS with a camera module, as used
by Klug et al. [5].

of the system is provided in another publication [7], but no
details about sensor and device modeling are included.

To the best of our knowledge, we are the first to consider an
uncertainty analysis in real-time simulation of robotic systems.
None of the mentioned previous approaches consider this
aspects probably because the accuracy of measurements is
not a major success factor for the applications considered in
previous work.

The contribution of this work is the description of a RTS
simulator in Unity3D for the PLT 300 and a methodology for
measurement uncertainty analysis. We determine a conserva-
tive uncertainty characterization of the simulator and verify the
results using Monte Carlo (MC) experiments. Both approaches
are useful for distinct purposes. The analytical equations can
be applied prior to the design of computer-aided design (CAD)
simulation scenes, whereas the MC experiments can easily be
added to particular simulation. Our methodology is not limited
to the PLT 300 device, but can be generalized to any RTS and
other devices with similar hardware and sensor combinations.

II. GEOMETRIC HARDWARE MODEL

An RTS is an electrical theodolite which consists of an
optical telescope, an electronic distance meter (EDM) and one
or more cameras [1]. Modern devices support teleoperation;
hence, the telescope has become optional and is commonly
replaced by a camera module without any eyepiece. For
example, the PLT 300 [8] contains no optical telescope, but
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Fig. 2. (a) RTS simulation scene. (b) Simplified Unity3D scene graph.

a single camera, which supports RGB and infrared video
streaming, and one EDM. In this work, we use the spherical
geometric RTS model described by Klug et al. [5], shown in
Fig. I. The stationary frame is referred as instrument frame and
serves as reference frame for measured 3D points. The end-
effector of the robotic device is called the telescope frame; it is
virtually aligned with the camera frame and the EDM frame.

While this model does not consider nonlinear properties or
inaccuracies in manufacturing and device calibration, it is suf-
ficient for basic RTS simulation. We assumes that systematic
errors are compensated through factuatory calibration, whereas
remaining errors are treated as measurement uncertainties.
This assumption reflects realistic RTS scenarios, where the
incomplete knowledge of systematic effects or insufficient
corrections add to the random variations of the observations.
The simulation and analysis of systematic effects is beyond the
scope of this work [1]. In the following, a short overview of
the geometric relationship between sensor data and 3D points
is provided.

Let {θ, ϕ, d} be a measurement tuple, where θ, φ describe
the horizontal and vertical angle of the RTS and d is the cor-
responding EDM measurement. The simple geometric model
for all actuators and sensors of the RTS is given as follows:

x̃I = MT x̃T , ũ = PM−1T x̃I , MT = Rz(−θ)Rx(−ϕ) (1)

Here, x̃I is a homogeneous 3D point; MT is a 4× 4 matrix,
which describes the pose of the telescope frame with respect
to the instrument frame; x̃T in the corresponding 3D point
with respect to the telescope frame, P is the camera projection
matrix, and ũ is the corresponding image coordinate. An EDM
distance d is measured along the z-axis of the telescope frame;
it can be written as x̃T =

[
0 0 d 1

]
.

An RTS without explicit optical telescope is mainly con-
trolled by image-based targeting. The conversion of 2D image
coordinates to spherical coordinates delivers the required servo
control parameters {θ, ϕ}, which can be extracted from re-
projected image rays and Eqn. 1 [5].

III. UNITY3D AS SIMULATOR FRONT-END

The game engine Unity3D was used as a front-end for
a real-time simulation. It conveniently allows creating the
measurement setup as a scene graph consisting of nodes
for sensors, actuators and measurement targets with attached
behavior scripts for faithfully simulating the firmware behav-
ior, environmental influences and timing constraints. Fig. 2a

 

z 

x 

y 

z 

y 

x 

far u 

v 

a) 

b) 

model camera 

space 

(right handed) 

Unity3D camera space 

(left handed) 

OpenGL camera space 

(default: right handed) 

image space 

near 

clipping 

volume  

z 

y 

x 

Fig. 3. Transformation between RTS model, Unity3D and OpenGL: a) convert
camera space RTS model to Untiy3D, b) convert camera space from Untiy3D
to OpenGL.

shows an exemplary simulation scene, and Fig. 2b shows
the corresponding scene graph. Unity3D uses a left-handed
coordinate system, while most RTS models are based on
right-handed coordinate systems [1], [9]. Hence, kinematic
models and simulation results of the Unity3D module must be
converted accordingly. The related axis conversions are shown
in Fig. 3.

A. Modeling RTS sensors, actuators and targets

The geometric environment of the RTS was modeled as
triangle meshes in a scene graph (Fig. 2b): The instrument
node represents the instrument frame of the RTS, which
can be freely positioned within the scene. Telescope frame,
camera sensor and EDM were modeled as child nodes of
the instrument node. The environment node is a placeholder
for different measurement targets. Environments may include
CAD models of reflective and non-reflective measurement
targets, individual rooms, complete buildings or urban areas.
The EDM was determined as the smallest distance d between
the ray origin and the closest ray intersections with a scene
object.

The reader is referred to the Unity3D User Manual [10] for
implementation details.

B. Modeling sensor uncertainties

The analysis and report of measurement uncertainties of
physical sensors is crucial for assessing simulation and mea-
surement results. The JCGM 100:2008 Guide to the Expres-
sion of Uncertainty (GUM) [11] standardizes the evaluation
and report of measured physical quantities, using measurement
uncertainties to guarantee reliable and repeatable experiments.
We follow GUM in the analysis of uncertainty given in the
following.

RTS manufacturers specify sensor uncertainties for normal
distributed random variables in following general form:

p(|x′ − x| ≤ kuc(x′)) = CIk (2)

Here, x is the measured quantity, uc(x′) is the combined
standard uncertainty of the measurement result x′, k is the
coverage factor, and CIk is the corresponding confidence
interval.
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Fig. 5. Sensor hardware noise simulations. (a) Uncertainty verification
concept. (b) Unity3D setup for simulation uncertainty verification. (c) EDM
noise: u1(x′) = 0.75×10−3m, u2(x′) = 10×10−6. (d) angle sensor noise:
u1(x′) = 5′′ ≈ 24.241×10−6rad, u2(x′) = 0.

For RTS sensors, one can estimate the combined standard
uncertainty according as follows:

uc(x
′) ≈

√
u1(x′) + (xu2(x′))

2 (3)

Here, u1(x′) is the bias and u2(x′) is the scale, both provided
by the device manufacturers or through sensor calibration.
Usually, the true value x is not known, and the current mea-
surement x′ is used instead in Eqn. 3 to estimate the combined
standard uncertainty uc(x

′). In this work, the error model
given in Eqn. 2 was applied to simulate EDM and angular
sensor uncertainties. The measurement uncertainty distribution
was assumed to have normal distribution and zero mean. In
addition, the servo actuator and angular sensor were split,
thereby increasing the flexibility of simulation. Fig. 4 shows
the sensor uncertainty model of the RTS simulator, Fig. 5
shows the verification setup for the simulation uncertainty.
We used the Box-Muller transform [12] to generate the sensor
reading x′ from uniformly distributed random values a, b and
the simulated true value x:

x′ = x+
√
−2 ln(a) cos (2πbuc(x′)) (4)

RTS camera
CAD room model

world frame

laser ray

instrument frame

Fig. 6. Simple scene setup for the uncertainty analysis of floating-point
effects.

Here, the desired standard uncertainty uc(x
′) is taken from

Eqn. 3.

IV. SIMULATOR UNCERTAINTIES

In Section III-B, a simple model for sensor uncertainty sim-
ulation was provided, used for simulating realistic hardware
sensors. However, the limitations of the real-time simulation
itself have not been considered yet.

We will derive a simple a-priori estimate of the uncertainty
of a particular simulation setup. For this particular investi-
gation, we assumed the ideal geometric model presented in
Section II without any systematic modeling error and with
ideal sensors. Hence, all sensor uncertainties discussed in
Section III-B were set to zero. As a result, only the variability
of the simulation in Unity3D itself is considered here. Unless
otherwise stated, arithmetic rules, naming convention and
format specification conform to the IEEE 754-2008 standard
for floating-point arithmetic [13] and follow GUM [11].

A. Uncertainty sources of the RTS simulator

Unity3D allows the placement of scene objects anywhere in
the coordinate system. Unlike CAD tools, game engines rely
on fast single-precision (32-bit) floating-point representations
for handling geometric entities.

In this work, we used 64-bit floating-point format when
working with the real device and as a data interchange format,
but relied on the 32-bit floating-point format of Unity3D
for scene graph simulation and rendering. Hence, we must
consider rounding errors of numerical operations on mesh
vertices and scene objects with large distances to the world
frame origin. Further uncertainty sources are data input and
format conversions of meshes and RTS control parameters.

B. Analytical uncertainty estimation

Fig. 6 shows an example simulation setup with metric scale
and realistic object positions. The simulator follows a graphics
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pipeline [14] with three major blocks of uncertainty (Fig. 7):
Block I transforms CAD vertices and normals {x,n} to the
word frame; Block II transforms the RTS object to the world
frame; Block III calculates the EDM distance using ray casting.
The ray casting result was interpreted as spherical coordinate
vector with optional conversion to the Euclidean space. The
latter was carried out with 64-bit floating-point arithmetic,
which we regarded as having negligible error for our purposes.
For better readability, the enumeration indices of vertices and
normals were omitted in the following.

Input vertices are originally stored at 64-bit precision, but
loaded in block I with 32-bit floating-point precision. The
expected rounding error is mainly influenced by the distance
between vertex and origin and the limits of the data format.
Fig. 8 shows the memory layout of the 32-bit binary floating-
point format, including 1-bit sign, an 8-bit exponent, and a
23-bit mantissa plus one implicit leading bit. If the format
precision p denotes the maximum number of digits at radix
(base) 10 which can be represented, vertices and normals in
Unity3D have a format precision of p = 7.

Let ξ be an input number at radix 10. The rounded floating-
point format ξ′ and the round-off error eξ are given as follows:

ξ′ = bξ · 10Nfrace · 10−Nfrac eξ = ξ − ξ′ (5)

Nfrac = p−Nint Nint =

{
blog10 |ξ|c+ 1, ξ 6= 0

0, otherwise
(6)

Here, Nint and Nfrac are the number of integer and fractional
digits, respectively. If the true value ξ is not known, the
uncertainty bounds a+ − a− = 2a of the rounded vertex ξ′

are given by a rectangular distribution:

ξ − a− ≤ ξ′ ≤ ξ + a+ a = 0.5 · 10−(Nfrac+1) (7)

Here, a− and a+ are the lower and upper limit, respectively.
The standard uncertainty of a simulated vertex without any

applied transformation is then given as follows [11]:

u(ξ′) ≈ 0.5√
3
· 10−(Nfrac+1) (8)

Let x be an input vertex x with corresponding normal n,
given in 64-but. Let x′ and n′ be the corresponding entities
in 32-bit floating-point precision. Then, the uncertainties for
each element of the vertex and normal are given as follows:

u(x′) ≈ u(ξ′)|ξ=xb
u(n′) ≈ u(ξ′)|Nfrac=7 (9)

Here, u(x′) defines the element-wise uncertainties of a vertex
x′, and u(n′) defines the element-wise uncertainties of the
normal n′. A conservative approximation for all vertices is
given by ξ = xb, where xb is the maximum absolute value of
all components of the scene bounding box. Assuming ||n|| =
1, the fractional digit count for the normals in Eqn. 9 is given
by Nfrac = 7.

To reduce the calculation complexity, we used following
approximations: Scene transformations were reduced to Eu-
clidean transformations to avoid homogeneous matrix opera-
tions. Where feasible, concatenated transformations as a single
transformation only.

The quadratic variance propagation for a single output and
multiple input variables was used to combine the uncertainty
sources, which can be written in the following form [15], [16]:

uc(χ) =
√

gTVg g = ~∇χ =
[
∂χ
∂β1

. . . ∂χ
∂βN

]T
β = {βi}

(10)

Here, uc(χ) is the combined standard uncertainty of some
function χ(β), and V is the covariance matrix for N input
variables βi with i ∈ {1 . . . N}.

The transformation of a model space vertex x′ and normal
n′ to the corresponding world space vertex x′′ and normal n′′

is given as follows:

x′′ = R′x′ + t′ n′′ = Rn′ (11)

Here, R′ is the 32-bit floating-point representation of a
3 × 3 rotation matrix R and t′ is the 32-bit floating-point
representation of a 3 × 1 translation vector t. To reduce the
uncertainty transfer function output for block I to a single
variable, the same scalar uncertainty uc(x′′) was used for the
x, y and z component of vertex x′′, and all components were
treated as independent. Analogously, the translational standard
uncertainty u(t′) ≈ u(x′) was assumed to be equal for all axes.
The fractional digit count Nfrac in Eqn. 8 can be estimated
using |x| = xb.

Let r′ij be the elements of the rotation matrix R′, u(rij)
be the element-wise standard uncertainty, and rij the ele-
ments of the true rotation matrix R. Rotation matrix rows
are normalized to one, which leads to |rij | ≤ 1. Conse-
quently, the uncertainty value for each matrix element r′ij
can be approximated by u(r′ij) ≈ u(ξ) with Nfrac = 7,
as defined in Eqn. 8. Without known rotation parameters,
a liberal approximation for the variance propagation of the
rotational part is given by substituting the identity matrix as



rotation matrix R. However, a conservative approximation is
preferable, substituting |rij | = 1 for all matrix elements1.
Consequentially, the standard uncertainty for each element of
x′′ can be estimated from the first component of x′′ only,
which is given by the first row of Eqn. 11 according to

x′′1 = r′11x
′
1 + r′12x

′
2 + r′13x

′
3 + t′1 x′ =

[
x′1
x′2
x′3

]
t′ =

[
t′1
t′2
t′3

]
(12)

where x′′1 is the first component of vertex x′′.
According to Eqn. 10, the partial derivatives of x′′1 with

respect to β can be calculated as follows:

g = ~∇x′′1 β = {x′1 . . . x′3, r′11 . . . r′13, t′1} (13)

Here, β is the set of 7 scalar variables. The corresponding
[7× 7] covariance matrix V is given as follows:

V = diag(1T3 u(x
′),1T3 u(r

′
ij),1

T
3 u(t

′)) (14)

Here, 1T3 is a 1 × 3 vector with all elements equal one. All
input variables are assumed to be independent which makes
the covariance matrix diagonal. By substituting |xi| = xb,
|rij | = 1, the estimation of uc(x′′) can be reduced to the
following:

uc(x
′′) ≈ 1

k

√
3u(r′ij)

2x2b + 3u(x′)2 + u(t′)2 (15)

Here, the regularization term k takes the conservative assump-
tions into account. Therefore, it can be interpreted as coverage
factor. Using k = 3 avoids overestimation of uncertainty
effects and turns the expanded uncertainty of Eqn. 15 into
the standard uncertainty as defined in GUM [11].

The element-wise combined standard uncertainty uc(n′′) of
a transformed vertex normal n′′ can be directly derived from
Eqn. 15. From ||n′|| ≈ 1 follows that the bounding box for
all normal elements in Eqn. 15 can be set to xb = 1. Normals
are not affected by translation, hence u(t′) in Eqn. 15 is zero,
and uc(n′′) can be estimated as follows:

uc(n
′′) ≈ 1

k

√
3u(r′ij)

2 + 3u(n′)2 (16)

Block II models the EDM by transforming the RTS control
parameters to a ray in world space. Let the instrument space
ray be defined by the ray origin q and the ray direction v. We
approximated the chain of RTS transformations by a single
Euclidean transformation as done in block I2. Assuming the
same bounding box for all vertices, scene objects and the RTS
position, the combined uncertainty values for the transformed
world space ray origin q′′ and the transformed world space ray
direction v′′ can be approximated by the combined uncertainty
values calculated for block I:

uc(q
′′) ≈ uc(x′′) uc(v

′′) ≈ uc(n′′) (17)

1This leads to an invalid rotation matrix, but the results are more trustworthy
for conservative approximations without explicit knowledge of the rotation
parameters.

2A more detailed, but also more complex approximation of the variance
propagation would consider all control parameters in block II as shown in
Fig. 7.

Here, uc(q′′) and uc(v
′′) are the element-wise combined

standard uncertainties for the transformed ray origin and ray
direction, respectively.

For the analysis of Block III, the EDM ray casting was
simplified to plane-ray intersection. The simulated distance d′′

between the ray origin q′′ and the scene intersection point can
be calculated as follows:

d′′ =
(x′′ − q′′)

T
n′′

v′′Tn′′
=

(x′′ − q′′)
T
n′′

||v′′|| ||n′′|| cosα
(18)

Here, d′′ is the ray length, calculated with finite precision
arithmetic, n′′ is the plane normal, x′′ is a point on the plane,
and α is the angle of incidence between the ray direction
and the plane normal. The propagated combined standard
uncertainty uc(d′′) can be estimated by solving Eqn. 10 with
χ = d′′, using the input parameters β:

β = {x′′,n′′,q′′,v′′} (19)

Here, β is interpreted as set of 12 scalar variables. The
corresponding [12 × 12] covariance matrix V is given as
follows:

V = diag(1T3 uc(x
′′),1T3 uc(n

′′),1T3 uc(q
′′),1T3 uc(v

′′)) (20)

The denominator of Eqn. 18 shows a significant dependency
between the combined uncertainty of the distance measure-
ment, uc(d′′), and the incident ray angle α. A first or second
order Taylor approximation of the denominator could be used
for angles close to zero, but would be insufficient for larger
angles. As an alternative, a rough estimation of uc(d′′) can be
derived by substituting an independent variable g with zero
variance as denominator. Hence, Eqn. 18 can be written in the
following form:

d′′ =
(x′′ − q′′)

T
n′′

g
||v′′|| ≈ ||n′′|| ≈ 1⇒ g ≈ cos(α)

(21)

Using the same considerations as for blocks I and II, uc(d′′)
can be approximated by solving Eqn. 10 with χ = d′′, where
β, V and d′′ are given in Eqns. 19 - 21, respectively. The
conservative substitutions of |n′′i | = 1 for all elements of n

and x′′−q′′ =
[
2xb 2xb 2xb

]T
lead to the following form:

uc(d
′′) ≈ 1

| cos(α)|

√
12uc(n′′)2x2b + 3uc(x′′)2 + 3uc(q′′)2

(22)

Here, xb denotes the maximum absolute element of the scene
bounding box.

Optionally, the simulated distance measurement d′′ and
the angle control parameters {θ, ϕ} can be converted to an
Euclidean point x′′′ using Eqn. 1 with 64-bit floating-point
arithmetic. If the norm of all columns of an Euclidean rotation
matrix equals one, the combined uncertainty for each element
of the measured point can be estimated as follows:

uc(x
′′′) ≈ muc(d

′′)√
3

1 ≤ m ≤
√
3 (23)



Here, m is a correction factor which avoids underestimation
for special scene setups. For example, when measuring far dis-
tances along a single axis, the combined standard uncertainty
uc(x

′′′) of the significant axis can be analyzed with m =
√
3.

V. EXPERIMENTAL RESULTS

We evaluated our setup with MC experiments based on
random placements of the simulated RTS and associated
targets.

A. Uncertainty estimation using Monte Carlo experiments

The uncertainty propagation functions developed in Section
IV-B can be verified using MC experiments. Let yi be the
true intersection point of a laser distance measurement and qi
the laser ray origin, both calculated with 64-bit arithmetic.
The standard uncertainty u(d′′) for the simulated distance
measurement can be estimated by N repeated measurements,
using the following:

u(d′′) ≈

√∑N
i=1 (d

′′
i − di)

2

N
di = ||yi − qi|| (24)

The simulator setup for the MC experiments is shown in
Fig. 9. For each experiment, the CAD model, RTS pose and
measurement target pose were randomly generated. The CAD
model of each experiment consists of a single triangle, the
measurement target, with arbitrary rotation, a circumradius of
one, and the centroid placed randomly on the bounding box.
In the world space frame, the RTS was placed on the negative
and the measurement target was placed on the positive y = 0
plane of the bounding box. Each experiment was evaluated
using the simulator and compared with results of an 64-bit
precision arithmetic model.

B. Uncertainty estimation results

We estimated the element-wise combined standard uncer-
tainties uc(x′′′) of the intersection point x′′′ for the distances
d ∈ {0.5, 1, 101, 102, 103} meter. The world space bounding
box was assumed to be xb ≈ ±d2 in x, y and z direction,
respectively. The RTS was placed near the border of the
bounding box as shown in Fig. 9. The rays’ incident an-
gles were set to α ∈ {0, π12 ,

π
6 ,

π
4 ,

π
3 ,

2π
5 ,

9π
20 ,

9π
40 ,

9π
1000}. The

Euclidean transformations Minstr and Mmesh describe the
world space transformation for the RTS and the measurement
target, respectively. For each experiment, both matrices were
randomly generated, placing the RTS and the measurement
target near the scene bounding box. The CAD model for
each experiment consisted of single triangle, the measurement
target, randomly placed within the CAD bounding box. Each
triangle was created by randomly picking three points near the
CAD bounding box. In addition, Minstr and Mmesh include
jitter for the poses of each experiment; the jitter was created
using random translations with ±0.5m in x,y and z direction
and random rotations with ±0.05rad for each Euler rotation
angle. In addition, a local RTS rotation around the z axis of
the instrument frame was applied, using randomized angles
between 0 and 2π. Fig. 10 shows the resulting uncertainty
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Fig. 9. Setup of MC uncertainty experiments for analyzing influences of
floating-point arithmetic. (a) object frames and transformations. (b) Varying
incident angle experiments (top view, EDM ray and measured plane, instru-
ment frame).

TABLE I
ANALYTICAL AND SIMULATED (SIM) UNCERTAINTY RESULTS FOR THE

REALISTIC RTS SIMULATOR SETUP. THE SCENE BOUNDING BOX WAS
DEFINED USING xb ≈ 10M. THE SIMULATOR APPLICATION

PROGRAMMING INTERFACE (API) IS DERIVED FROM THE ORIGINAL
DRIVER AND DOES NOT PROVIDE ACCESS TO INTERMEDIATE VARIABLES,

HENCE u(n′), u(x′) AND u(n′′) WHERE NOT ACCESSIBLE (NA).

Method u(n′) [m] u(x′) [m] uc(n′′) [m] uc(x′′) [m] uc(d′′) [m]

Analytical
α = 0.33π

2.89×10−8 5.00×10−7 2.36×10−8 3.44×10−7 1.87×10−6

MC
α = 0.33π

NA NA NA NA 2.41×10−6

Analytical
α = 0.45π

2.89×10−8 5.00×10−7 2.36×10−8 3.44×10−7 6.00×10−6

MC
α = 0.45π

NA NA NA NA 7.34×10−6

MC, realistic
α ≈ 0.46π

NA NA NA NA 5.82×10−6

characterization curves, estimated analytically and by using
MC experiments. The run-time of the analytical uncertainty
evaluation was 4.2×10−3s, implemented and executed with
MATLAB 2017, under Microsoft Windows 10 on an Intel
Core i7 processor with 64GB RAM. The MC simulation took
2.5×103s (≈ 0.7h), using 100 samples for each configuration.

In addition, we estimated the simulation uncertainty for the
realistic measurement setup shown in Fig. 6. We assumed a
scene bounding box with xb ≤ 10m and expected incident ray
angles of α ≈ {π3 , 0.45π} in Eqn. 22. The uncertainty results
of the MC experiments with the realistic setup showed an
average incident angle of 0.46π and an average EDM distance
of 7.2m. Results are provided in Tab. I.

The classification curves provided in Fig. 10 allow uncer-
tainty estimations prior to the design of simulation setups
and related CAD models. The analysis shows a linear rela-
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Fig. 10. Uncertainty estimations of EDM intersection points for the RTS
simulator. Analytical uncertainty: with respect to the scene bounding box (a),
with respect the the incident angle (b). Uncertainty using MC experiments:
with respect to the measured scene bounding box (c), with respect to the
incident angle (d). Analytical uncertainty uc(d′′) (continuous lines) compared
with MC experiments (dashed lines), plotted with respect to the incident angle
(e,f).

tionship between the logarithm of the simulation uncertainty
and the logarithm of the scene bounding box; furthermore, a
significant influence of the angle of incidence is observable.
Fig. 10e shows the overlay of the analytic approach and
the MC experiment; Fig. 10f shows the difference between
the two methods. Both diagrams indicate that the analytical
uncertainty estimation is a reasonable prior approximation.
With increasing incident angle, the difference between the two
methods increases.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have presented a Unity3D based RTS
simulator for graphical and non-graphical algorithm devel-
opment, test and verification, including a simple geometric
models for the PLT 300, actors, sensors and uncertainties. We
provided an analytical a-priori method for assessing simulation
uncertainty, which is useful for the design of simulation setups.
We validated the results with MC experiments, which provide
more detailed uncertainty estimations for a particular setup,
but at the cost of increased execution time. We verified the
results using a realistic simulation setup. With our concept,
real-time algorithms and workflows can be designed without
hardware-in-the-loop setups; custom simulation environments

can be implemented, and various measurement effects can be
simulated.

While the simplified geometric models in this work are
sufficient for many setups, detailed sensor, actuator and en-
vironment models could be used to simulate further physical
effects. The simulator uncertainty could be reduced by increas-
ing the numerical precision of certain geometric operations.
This may include scaling the nominal world units, splitting
and scaling object space or image space regions into multiple
parts, or implementing methods like ray casting explicitly
using higher precision arithmetic. Furthermore, physical and
behavioral models of human operators could be included in
the scene graph. More realistic scenes and comparison with
RTS measurements of laboratory setups could further increase
the reliability of the simulation and uncertainty evaluation.

REFERENCES

[1] J. Uren and B. Price, Surveying for Engineers. Basingstoke England
New York: Palgrave Macmillan, 2010.

[2] W. A. Mattingly, D. j. Chang, R. Paris, N. Smith, J. Blevins, and
M. Ouyang, “Robot design using Unity for computer games and robotic
simulations,” in 2012 17th Int. Conf. Comput. Games, Jul. 2012, pp.
56–59.

[3] V. H. Andaluz, F. A. Chicaiza, C. Gallardo, W. X. Quevedo, J. Varela,
J. S. Sánchez, and O. Arteaga, “Unity3D-MATLAB simulator in real
time for robotics applications,” in Augment. Reality, Virtual Reality,
Comput. Graph. Third Int. Conf. AVR 2016, Lecce, Italy, June 15-18,
2016. Proceedings, Part I, L. T. De Paolis and A. Mongelli, Eds. Cham:
Springer International Publishing, 2016, pp. 246–263.

[4] V. H. Andaluz, P. A. Canseco, A. Rosales, F. Roberti, and R. Carelli,
“Multilayer scheme for the adaptive cooperative coordinated control of
mobile manipulators,” in IECON 2012 - 38th Annu. Conf. IEEE Ind.
Electron. Soc., Oct. 2012, pp. 2737–2743.

[5] C. Klug, D. Schmalstieg, and C. Arth, “Measuring human-made corner
structures with a robotic total station using support points, lines and
planes,” in Proc. 12th Int. Jt. Conf. Comput. Vision, Imaging Comput.
Graph. Theory Appl. - Vol. 6 VISAPP, (VISIGRAPP 2017), INSTICC.
SciTePress, 2017, pp. 17–27.

[6] W. Meng, Y. Hu, J. Lin, F. Lin, and R. Teo, “ROS+Unity: An efficient
high-fidelity 3D multi-UAV navigation and control simulator in GPS-
denied environments,” in IECON 2015 - 41st Annu. Conf. IEEE Ind.
Electron. Soc., Nov. 2015, pp. 2562–2567.

[7] Y. Hu and W. Meng, “ROSUnitySim: Development and experimenta-
tion of a real-time simulator for multi-unmanned aerial vehicle local
planning,” Simulation, vol. 92, no. 10, pp. 931–944, Oct. 2016.

[8] Hilti Corporation, “PLT 300,” https://www.hilti.com/measuring-systems/
optical-tools/r4728599, 2017, [Online; Accessed 28 July 2017].

[9] J. Awange and E. W. Grafarend, Solving Algebraic Computational
Problems in Geodesy and Geoinformatics: The Answer to Modern
Challenges. Springer Berlin Heidelberg, 2005.

[10] Unity Technologies, “Unity manual,” https://docs.unity3d.com/Manual,
2017, [Online; Accessed 28 July 2017].

[11] “JCGM 100:2008 - Evaluation of measurement data - Guide to the
expression of uncertainty in measurement,” Int. Organ. Stand. Geneva
ISBN, Standard, 2008.

[12] G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates,” Ann. Math. Stat., vol. 29, no. 2, pp. 610–611, 1958.

[13] “IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic
(Revision of IEEE Std 754-1985),” IEEE Computer Society, Standard,
2008.

[14] M. Segal and K. Akeley, “The OpenGL graphics system: A specification.
version 4.5 (core profile),” https://www.khronos.org/registry/OpenGL/
specs/gl/glspec45.core.pdf, Jun. 2017, [Online; Accessed 28 July 2017].

[15] R. Barlow, Statistics: A Guide to the use of Statistical Methods in the
Physical Sciences. Chichester, England New York: Wiley, 1989.

[16] J. Tellinghuisen, “Statistical error propagation,” J. Phys. Chem. A, vol.
105, no. 15, pp. 3917–3921, 2001.


	Introduction and related work
	Geometric hardware model
	Unity3D as simulator front-end
	Modeling RTS sensors, actuators and targets
	Modeling sensor uncertainties

	Simulator uncertainties
	Uncertainty sources of the RTS simulator
	Analytical uncertainty estimation

	Experimental results
	Uncertainty estimation using Monte Carlo experiments
	Uncertainty estimation results

	Discussion and conclusions
	References

