On-the-fly Vertex Reuse for Massively-Parallel Software
Geometry Processing

MICHAEL KENZEL, BERNHARD KERBL, WOLFGANG TATZGERN, ELENA IVANCHENKO,
DIETER SCHMALSTIEG, and MARKUS STEINBERGER, Graz University of Technology, Austria

(a) shading rate visualization (b) game scene rendering (c) inner and outer mesh envelopes

Fig. 1. To evaluate the effectiveness and performance of our on-the-fly vertex reuse strategies, we have
implemented a variety of test applications. (a) Visualization of the shading rate achieved during shading of
the vertices of a triangle mesh (green vertices are shaded only once, red vertices six or more times). (b) A full
rasterization pipeline rendering scene geometry captured from the video game The Witcher 3: Wild Hunt. (c)
In general, many geometric algorithms can benefit from vertex reuse, such as the simplification envelopes
algorithm shown here. The Witcher 3: Wild Hunt screenshot courtesy of CD PROJEKT S.A.; used with permission.

Due to its flexibility, compute mode is becoming more and more attractive as a way to implement many of the
algorithms part of a state-of-the-art rendering pipeline. A key problem commonly encountered in graphics
applications is streaming vertex and geometry processing. In a typical triangle mesh, the same vertex is on
average referenced six times. To avoid redundant computation during rendering, a post-transform cache is
traditionally employed to reuse vertex processing results. However, such a vertex cache can generally not be
implemented efficiently in software and does not scale well as parallelism increases. We explore alternative
strategies for reusing per-vertex results on-the-fly during massively-parallel software geometry processing.
Given an input stream divided into batches, we analyze the effectiveness of sorting, hashing, and intra-thread-
group communication for identifying and exploiting local reuse potential. We design and present four vertex
reuse strategies tailored to modern GPU architectures. We demonstrate that, in a variety of applications, these
strategies not only achieve effective reuse of vertex processing results, but can boost performance by up to
2-3X% compared to a naive approach. Curiously, our experiments also show that our batch-based approaches
exhibit behavior similar to the OpenGL implementation on current graphics hardware.

CCS Concepts: » Computing methodologies — Rasterization; Massively parallel algorithms;

Additional Key Words and Phrases: Vertex Processing, GPU

Authors’ address: Michael Kenzel, michael kenzel@icg.tugraz.at; Bernhard Kerbl, bernhard.kerbl@icg.tugraz.at; Wolfgang
Tatzgern, wolfgang.tatzgern@student.tugraz.at; Elena Ivanchenko, elena.ivanchenko@icg.tugraz.at; Dieter Schmalstieg,
schmalstieg@tugraz.at; Markus Steinberger, steinberger@icg.tugraz.at, Graz University of Technology, Institute of Computer
Graphics and Vision, Inffeldgasse 16, Graz, 8010, Austria.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3233303.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

https://doi.org/10.1145/3233303
https://doi.org/10.1145/3233303

28:2 Kenzel, M. et al.

ACM Reference Format:

Michael Kenzel, Bernhard Kerbl, Wolfgang Tatzgern, Elena Ivanchenko, Dieter Schmalstieg, and Markus
Steinberger. 2018. On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing. Proc. ACM
Comput. Graph. Interact. Tech. 1, 2, Article 28 (August 2018), 17 pages. https://doi.org/10.1145/3233303

1 INTRODUCTION

Although hardware-supported, real-time rendering of 3D scenes is highly efficient, the standard
rendering pipeline implemented in hardware lacks flexibility in certain aspects. With modern
graphics processing units (GPU) inexorably rising in compute power, implementing (parts of)
custom pipelines in compute-mode, i.e., in software using CUDA, OpenCL, or compute shaders,
becomes an interesting alternative. Although certain features—like rasterization—will likely always
be multiple orders of magnitude faster in hardware and only accessible using OpenGL or Direct3D
in 3D rendering mode, others may efficiently be realized also in software. Primitive transformations,
i.e., vertex shading, is one of those applications. While implementing vertex shading stages in
software for execution on GPU compute units becomes more and more common, vertex reuse, i.e.,
reusing the result of the vertex shader when it is referenced more than once, is usually ignored.
This is in part due to vertex reuse being realized in hardware in the conventional pipeline and not
exposed for custom use in compute-mode.

However, vertex reuse should not be neglected, as it can greatly reduce the number of shader
invocations. A vertex in a mesh is, on average, referenced up to six times. The traditional solution
to enable vertex reuse is the employment of a post-transform cache. The post-transform cache stores
shaded vertex information, which can then be retrieved instead of computing the same information
multiple times [Sheaffer et al. 2004; Wang et al. 2011]. The significance of this assumption is
underlined by the wide body of research aiming at improving the ordering of vertices in meshes
to yield better cache behavior. Unfortunately, there is little publicly available information on the
implementation specifics used in current GPUs.

The adequacy of a central vertex cache in contemporary graphics pipelines is questionable
considering recent articles [Kubisch 2015; Kubisch and Boudier 2016; Purcell 2010]. Thus, the use of
such a cache in a software pipeline should also be questioned, and justifiably so: with the increasing
degree of parallelism usually present in modern GPUs, the costs of a post-transform cache can be
expected to rise drastically. Alternative design choices tailored towards massively parallel devices
may circumvent this bottleneck while achieving similar or even better reuse characteristics. In this
light, we see large potential benefits by revisiting the problem of efficient vertex reuse with an
additional focus on software rendering pipelines. In search of methods capable of scaling with the
massively parallel architecture of current and future GPUs, we make the following contributions:

(1) We investigate batch-based vertex uniquization as an alternative to post-transform caching
for achieving reuse.

(2) Next to a naive processing scheme, we discuss four batch-based approaches to identify unique
vertices on massively parallel devices.

(3) We evaluate all approaches with respect to their theoretical and practical vertex reuse
effectiveness in a variety of computer graphics applications.

2 RELATED WORK

It has been realized early on that there is significant potential for optimization by minimizing
redundancy in an input stream describing mesh geometry. The pioneering work by Deering [1995],
Evans et al. [1996], and Chow [1997] considered the problem from a data compression point of view.
However, due to this angle of approach, these methods required input geometry to always first

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

https://doi.org/10.1145/3233303

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:3

be encoded according to some compression scheme which would then be decompressed during
processing.

Hoppe [1999] was the first to explore the use of a k-FIFO post-transform vertex cache to reduce
redundant vertex processing on-the-fly during rendering of triangle meshes. They furthermore
presented a set of algorithms that automatically optimize the rendering sequence for a given mesh
to maximize utilization of their proposed cache architecture. The downside of their approach is
that it requires exact knowledge of the properties of the underlying hardware which are subject
to change. However, their work inspired a long line of followup research improving upon their
results [Chhugani and Kumar 2007; Lin and Yu 2006; Sander et al. 2007]. Arguably one of the most
impactful works is the architecture-agnostic approach by Forsyth [2006].

A more current area of research where we encounter the problem of massively parallel vertex pro-
cessing is software rendering on the modern GPU. While general pipeline architectures [Steinberger
et al. 2012, 2014] focus on managing data between rendering stages, specific software rendering
pipelines have been proposed for various applications [Laine and Karras 2011; Liu et al. 2010; Patney
et al. 2015; Sattlecker and Steinberger 2015]. Noteworthy examples of GPU software rendering
pipelines include Freepipe [Liu et al. 2010], CUDARaster [Laine and Karras 2011], and Piko [Patney
et al. 2015]. They all use the compute mode of the GPU (typically on top of the CUDA [NVIDIA
2016] ecosystem) to implement rasterization and fragment shading, but lack mechanisms for vertex
reuse. Freepipe simply executes the vertex shader every time an index is fetched. CUDARaster
and Piko run the vertex shader in a preprocessing step on the entire vertex buffer and store the
results in global memory. The need for buffering the entire intermediate output of the geometry
stage leads to costly memory bandwidth requirements. Compute mode rendering is also becoming
increasingly relevant in conjunction with hardware-supported rendering. For example, culling in a
compute preprocessing step [Haar and Aaltonen 2015; Wihlidal 2016], can significantly improve
performance. Our approach can be directly applied to such techniques.

Vertex shader result reuse is certainly considered by current GPU hardware, unfortunately, only
few details have been published by the hardware vendors. While it is often assumed that modern
GPU architectures are similar in design to Pomegranate [Eldridge et al. 2000], vertex reuse does
not play a large role in that design. It is known, that earlier GPU generations still relied on a post
transform cache [Riguer 2006], which was also features in GPU simulators of that time [Sheaffer
et al. 2004]. For current NVIDIA GPUs, it has been reported that they “create batches of up to 32
triangles and 32 vertices” [Kubisch and Boudier 2016]—indicating that current GPUs apply similar
techniques to our proposed approaches.

In order to avoid ambiguity in the following sections, we will employ the nomenclature for
parallel execution and hardware concepts according to CUDA [NVIDIA 2016]. Hence, wavefronts
of single-instruction-multiple-data (SIMD) width will be referred to as warp. Warp divergence
indicates the case where threads follow redundant execution paths, since warps advance in lockstep.
Logical groups of warps that run on the same multiprocessor share a portion of fast local shared
memory and can easily synchronize. They will be addressed as blocks.

3 VERTEX REUSE STRATEGIES

A major goal of this work is a characterization of vertex reuse in a software-based, massively parallel
context, and heightening the understanding of its influence on graphics workload. To this aim, we
formulate the following assumptions: We only consider indexed triangles as primitives, for which
the index buffer can be used to identify recurring vertices. The routine (or shader) for processing a
vertex is invoked based on an index buffer, where groups of threads are assigned to consecutive
primitives in the index buffer. In the ideal case, the vertex shader should be executed only once
for each vertex that is referenced by the index buffer. To ensure high performance, shading must

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

28:4 Kenzel, M. et al.

(a) static batching

N, =9 N, =9
000000 L L
.

(XL L 004 o000 o0d o0d 200
1 2 3 4 5 6 7
o0¢ [X J o000 o0d []) OO

—J
o000 o0o0
N,<5 N, <5

(b) dynamic batching

Fig. 2. Section of a mesh and its representation as indexed triangle list: On average, each vertex is referenced
six times. The index buffer can be divided into (a) batches of a constant size N, (static batching) or (b) batches
of a variable size where the number of unique vertices stays below a threshold N, (dynamic batching).

happen in parallel, without any need for expensive synchronization or communication across
GPU multiprocessors. In streaming pipelines, preprocessing of the vertex or index buffer should be
avoided, as the introduced read-then-write memory bandwidth can reduce overall performance.

3.1 Post-transform cache

Given the above considerations for geometry processing in a streaming pipeline, a global persistent
post-transform cache is a possible choice to reduce the number of vertex shader invocations.
However, such a cache is difficult to implement efficiently if it is required to work across all
multiprocessors on the GPU. Furthermore, even in a single multiprocessor, the high level of data
concurrency may defeat the purpose of caching. The reuse of vertex information can occur almost
instantly, if neighboring triangles are referenced in quick succession in the index buffer (e.g.,
triangle strip layout). Consequently, an advancing wave front of threads may process the same
vertex multiple times in parallel, and new cache entries become available too late to be of use.
In a software-only implementation, caching additionally suffers from high latency when using
conventional memory rather than dedicated cache hardware.

3.2 Batch-based vertex reuse

To avoid the issues raised by the use of a central cache, we propose the concept of batch-based
vertex processing, which naturally lends itself to execution on massively parallel architectures. We
define a batch as a bounded region in the index buffer, i.e, a set of triangles, which is assigned to a
single warp or block for processing. The block is responsible for executing the shader once for each
referenced vertex within its batch and assembles the output triangles. Each block must analyze
its batch, assign vertices uniquely to threads for shader invocation and finally distribute shading
results for assembling the output triangles. This implies that duplicate indices in the batch need to
be identified before executing the vertex shader.

An obvious challenge in the parallel generation of this many-to-one mapping is that the input-to-
output ratio is not known in advance. Ideally, we would like to choose a batch such that the number
of unique vertices equals the block size, and each thread runs exactly one instance of the vertex
shader. If that is not the case, under-utilization will arise, as threads receiving no vertex to process
will idle. With larger batch sizes, a larger number of duplicate indices can be detected, at the cost

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:5

2
registers %
2

(a)

Y V Berrassesnsnnninnennnss >

(d) é. » 00 Y
’ vertex "
o fdr T A
vertex | > (i)
shared map
memory

Fig. 3. Statically-batched warp voting uses all threads in a warp (5 in this example) to load indices. (b) We
exploit warp voting and shuffle instructions to unify the indices and store the result in registers. (c) This
process is repeated until all indices have been consumed, or all threads have acquired a unique index for
processing in the vertex shader. As primitive size must be considered (e), early shading results might be
discarded (e.g. for index 5 above). This entire process is repeated until the batch is consumed (gray, f-i).

of requiring multiple rounds of shader invocations to finish a whole batch. These considerations
lead to the proposal of two strategies outlined in Figure 2: static batching and dynamic batching.

3.3 Static batching

For static batching, each block simply fetches a fixed number of indices from the input buffer to
process. As a guideline for efficient processing, we use a common multiple of the block size and
the primitive size as batch size, e.g., for triangles and block size 32, we could use any multiple of
3 - 32 = 96. Since the batch size is fixed, static batching requires no preprocessing of the index
buffer and can be applied directly to the input of a streaming pipeline.

Statically-batched naive. As a baseline, we implement a naive strategy that does not attempt
any vertex reuse. Instead, every thread is directly assigned to a primitive, and invokes the vertex
shader for all its indices. As blocks always fetch the same number of indices, the static batch size
is implicitly given. Notice that, while this strategy leads to duplicate vertex shader execution, it
avoids all communication overhead. Thus, for very simple vertex shaders, this naive approach may
in fact show very good performance.

Statically-batched warp voting. For this strategy, we aim to fill up warps with triangles so that
every thread receives a unique vertex to work on, as detailed in Algorithm 1. Figure 3 provides an
example: (a-b) Every thread first loads an index from the buffer and subsequently publishes it via
register shuffle instructions to all other threads in the warp (line 10). Each thread then informs its
peers via warp voting whether a duplicate index has been found (line 11). We track the number of
unique indices observed so far and assign each new index to the available thread with the lowest
ID (line 14). We also maintain an inverse lookup-table in shared memory for fast reassembly after
shading (line 19). (c) We keep fetching indices until either all threads were assigned a unique
vertex, or the batch boundary is hit. (d,e) Next, all identified unique vertices are shaded and output
assembly is carried out, relying on the data from shared memory and again using efficient intra
warp communication (line 26-31).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

28:6

Kenzel, M. et al.

Algorithm 1: Statically-batched warp voting.

1 shared map[] // map array in shared memory

2 cStart < BatchBegin
3 while cStart < BatchEnd do

4

® N o w

10
11
12
13
14

15

16

17
18

19
20
21
22
23

24
25
26
27
28
29
30
31

32

fill < 0, done « 0, my_id <« —1, of fset « cStart
while of fset < BatchEnd and fill < WarpSize do
incoming <« —1, outgoing «— —1
if of fset + laneld < BatchEnd then
L incoming « indexBuffer[of fset + laneld] // laneld: thread’s id in warp
for i € WarpSize do
curr « shfl (incoming, i) // shfl: access ith thread incoming variable
match < ballot (curr = my_id) // ballot: warp-wide bitmask (bit set if true)
if match = 0 then
if fill = laneld then
L my_id « curr
match « BitShift (1, fill)
fill « fill +1
if i = laneld then
L outgoing « match

map[done + laneld] « ffs (outgoing)-1 // ffs(-)—1: index of the first set bit
firstmask < ballot (outgoing = 0 or incoming = —1)
additional < min (WarpSize, ffs (firstmask)
done < done + additional
of fset « of fset + WarpSize
triangles « |done/3]
if laneld < fill then
L v « shade (vertexBuffer[my_id]) // shade: vertex shader call
v0 « shfl (v, map[3 - laneld])
v1 « shfl (v, map[3 - laneld + 1])
v2 « shfl (v, map[3 - laneld + 2])
if laneld < triangles then
L output (v0,v1,v2) // output: forward triangle to next stage

cStart « 3 - triangles

(f-i) This entire process is repeated, until all indices in the batch have been processed. Note that
starting a new iteration can lead to duplicate shader invocation inside a batch, since shading results
are not carried over from the previous iteration; (g) reshades index 4 and 5. Due to the static batch
size and the iterative assignment within a warp, a varying number of triangles is generated during
each iteration; (e) produces two triangles, (i) only a single one. Furthermore, during the last iteration
potentially only a fraction of threads may perform vertex shading; (g) only shades three vertices.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:7

indices < % % % % % % % % % %
vertex | 4 vertex < o |
map 1 11 11 map \k“/N —
0 1,0,1,1,0,0,1,1,60 |\l i 416
(er @ ((\eb —
¢ \
(\é)\o)é(,e’% % % % % % (\é’\o;o(a@% e %J %J % ? %
R AQ} < @ 5 e D © <0 Aef %

| 5 %% 5 0%
4 2\ T Y 0

Fig. 4. Dynamically-batched sorting computes a pre- Fig.5. Dynamically-batched hashing uses a hash map
fix sum over sorted indices to identify unique vertices. that holds one entry per thread to remove duplicates.

3.4 Dynamic batching

We assess the potential for optimizing vertex processing by allowing for a fast, low-impact prepro-
cessing step to retrieve analytical data from the submitted index buffer. Specifically, we investigate
the performance of several dynamic batching strategies, which rely on a load-time analysis of the
input to derive optimal batch sizes. This routine splits the buffer into batches of variable length,
with the goal of maximizing thread occupancy at runtime for the loading and processing of vertices.

To this end, we define N to be a multiple of the block size and scan the index buffer front to back,
counting unique indices until we reach N, or a maximum allowed number of batch primitives is
reached. When either of these conditions is met, we start a new batch and continue scanning the
index buffer until all indices have been assigned to batches. We store the batch starting positions
in an auxiliary buffer, which allows us to feed a close-to-ideal amount of data to each block. Note
that we do not require the buffer to forward information about the unique vertices, and leave their
identification to be conducted at runtime. Hence, no information other than the splitting of the
index buffer into optimally processable portions is output at this point. Therefore, we can abstract
our preprocessing procedure to an elaborate work scheduling routine, that could very well be
realized by an initial streaming step or dedicated hardware.

Limiting the number of unique indices allows dynamically-batched approaches to handle entire
batches at once. While in the static case we had to support breaking apart the input batch under
resource overflow—a feature that is only trivially supported by some sort of serialization (cf. the
sequential assign step in warp voting). Ruling out this circumstance allows dynamically-batched
approaches to employ completely parallel strategies, such as sorting, hashing, or parallel hashing.

Dynamically-batched sorting. One way to assign unique vertices to threads is to use parallel
sorting, as outlined in Algorithm 2 and Figure 4. We load and sort a full batch of indices in shared
memory (line 2-5). Looking at pairs of sorted indices, we identify unique vertices and mark each
first occurrence (line 7). Run a prefix sum over this data, assign unique vertices to threads (line
8-11) and run the vertex shader (line 13). Using the original position in the batch which we carried
along during sorting and the mapping delivered from the prefix sum, we construct an inverted
lookup-table for assembling the output triangle (line 15). Communication uses shared memory.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

28:8 Kenzel, M. et al.

Algorithm 2: Dynamically-batched sorting.

1 shared ids[], linlds[], map[], marks[], uniquelds|[], v[]
2 for i € size(Batch) do in parallel

3 ids[i] « indexBuffer[BatchBegin + i]

L linlds[i] « i

5 RadixSort (ids, linlds)

6 for i € size(Batch) do in parallel

7 L marks[i] « 1 if ids[i] # ids[i + 1] else 0
8 numVertices «<PrefixSum (marks)

9 for i € size(Batch) do in parallel

10 map[linlds[i]] « marks[i]

11 L uniquelds[marks[i]] « ids[i]

4

12 for j € numVertices do in parallel
13 L v[j] « shade (vertexBuffer[uniquelds[;]])

14 for i € size(Batch)/3 do in parallel
15 L output (v[map[3i], v[map[3i + 1], v[map[3i + 2]])

Algorithm 3: Dynamically-batched hashing.

1 shared hashtable[], map[], v[]
2 for i € BatchSize do in parallel
L hashtable[i] « -1

w

4 for i € size(Batch) do in parallel

5 id <« indexBuffer[BatchBegin + i]

6 p < hash (id)

7 while not inserted do

8 prev «— atomicCAS (hashtable[i], -1, id)
9 if prev — 1 or prev = id then

10 ‘ loc «p

11 else

12 L p < probing (p)
13| mapl[i] = loc;

14 for j € BatchSize do in parallel
15 if hashtable[j] # —1 then
16 L v[j] < shade (vertexBuffer[hashtable[j]])

17 for i € size(Batch)/3 do in parallel
18 L output (v[map[3i], v[map[3i + 1], v[map[3i + 2]])

Dynamically-batched hashing. In this strategy, we employ a hash map in shared memory to
remove duplicate vertex indices, as outlined in Algorithm 3 and Figure 5. We choose the size of
the hash map to match the block size. Using multiplicative hashing on the index (line 6) and an
atomic compare-and-swap operation, each thread inserts its index into the hash map (line 8). If

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:9

Original

TomF

(a) NVIDIA (b) AMD (c) Intel (d) static warp (e) dynamic =

Fig. 6. Vertex reuse visualization for the Stanford Bunny model: green indicates a single shader invocation,
red indicates six shader calls. Compared to the original input, preprocessing the model with TomF enables
better overall potential for vertex reuse for both OpenGL (on NVIDIA GTX 1080Ti, AMD RX Vega 56, Intel HD
630) and our software techniques. Dynamic batching shows higher reuse than statically-batched warp voting
due to its larger batch size (1023 vs 96). Interestingly, NVIDIA shows similar reuse to our warp voting and
dynamic batching seems similar to Intel; AMD appears to be somewhere between the two.

the operation succeeds or the index is already present at this location the index assignment is
completed (line 10). If the position is used by another index, we perform linear probing (line 12).
Upon entering an index into the hash map, the loading thread records the value of the hash function,
to identify the required vertex after shading (line 13). Ideally, the hash map is fully filled after
loading a batch due to the size restrictions applied in our preprocessing step. Consequently, filling
the hash map allows us to uniquely assign vertices to threads. Subsequently, we perform shading
and triangle output again using shared memory for communication (line 16-18).

Dynamically-batched parallel hashing. One issue with the hashing approach above is that a
fully occupied hash map will likely lead to excessive probing. This may lead to pathological warp
divergence, as a single thread repeatedly tries to find the last free entry, and the remaining peers in
the warp have to join in the effort. As a remedy, we propose to perform hashing as a two-tiered
approach. First, every thread executes up to a fixed number of linear probing attempts. Second, all
threads within a warp collaborate to find available spots until all indices have been inserted. This
fast-path/slow-path strategy effectively repurposes otherwise idle threads to speed up the search
for free spots. Coordination within a warp is realized through shuffle and warp voting.

4 EVALUATION

For performance evaluation, we use a set of commonly processed models, as well as content
captured from five recent video games and an NVIDIA technical demo for which we merge all
draw calls into a single mesh: Age of Mythology (abbreviated am), Assassin’s Creed: Black Flag
(as), Deus Ex: Human Revolution (dx), Stone Giant animation (sg), Total War: Shogun 2 (sh), Rise
of the Tomb Raider (tr), and The Witcher 3 (tw). A representative rendering from our 19 different
scenes is shown in Figure 1b. As measure of vertex reuse, we report the average shading rate (ASR),
which is identical to the average cache miss ratio, commonly measured for cash-based approaches:
sum of vertex shader invocations divided by the number of triangles. To show the usefulness of

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

28:10 Kenzel, M. et al.

none Hoppe TomF random

31 31 31 31 31

21 2 1 21 2 A 2 A
o o o o o
(95} (%] (%5} w (%5}
< < < < <

11 11 11 11 11

0 0 0 0 0

(a) NVIDIA (b) AMD () Intel (d) stat.w (e) dyn.x

Fig. 7. Preprocessing the Stanford Bunny for vertex locality significantly improves its reuse potential. Inde-
pendent of the approach, the original mesh results in about two vertex shader invocations per triangle. A
random order achieves zero reuse and thus three shader invocation. Preprocessing with TomF [Forsyth 2006]
or Hoppe [Hoppe 1999] reduces the number of shader calls to similar levels; which algorithm works better
varies slightly among the reuse techniques.

our proposed approaches, we look at the ASR achievable by a cache-based approach and compare
to vertex reuse rates achieved using OpenGL on various hardware. Furthermore, we investigate
the performance of our techniques in a software streaming rendering pipeline and compare to a
non-streaming, multi-kernel setup.

Obviously, the order in which vertices are referenced in input models has an influence on the ASR
of different techniques. Popular mesh processing algorithms have been presented previously, with
the aim of reordering indices in a given mesh to increase vertex locality. As shown in Figures 6 and 7,
applying such algorithms to popular models can remove unusual discontinuities, and significantly
improve reuse potential in the hardware rendering pipeline and our techniques. In order to generate
a fair ordering and enable vertex reuse even in unstructured models, we preprocess all meshes with
the optimization algorithm by Forsyth [2006].

4.1 Caching vs Batching and OpenGL

We first determine the ideal reuse rate as the ratio of duplicate vertex indices over the total length
of the index buffer. Theoretically, a very large, global post-transform cache with instant reusability
could yield the reported ideal figures. Unfortunately, such a global vertex cache does not seem
practical for modern GPUs. Storing and retrieving data from a global device-wide cache would
require significant cache sizes and placement in a further-away layer in the memory hierarchy—
with typical latencies about an order of magnitude higher than caches on the multiprocessor.
Furthermore, as cache entries can only be generated after vertex shader execution, all threads that
concurrently receive the same non-cached index to execute, will not be captured by the cache,
precluding an immense vertex reuse potential of being utilized.

A more realistic cache-based approach, is using per-multiprocessor caches. However, such a
design only addresses the latency issue, but still faces the parallel execution problem, simply on
another scale. To rule out such a design, we simulated variously sized per-multiprocessor least-
recently-used (LRU) caches in a first experiment. For statically-batched warp voting we use a batch
size of 96, which fits the warp size of 32 on the tested NVIDIA GPUs. For all dynamic batching
approaches, we use a maximum batch size of 1023 indices and 256 unique vertices, and assign 256
threads to each batch, resulting in equal ASR values. To place the achievable vertex reuse of our
approaches in comparison to hardware pipeline implementations, we employ a simple atomically

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:11

Table 1. Scene statistics: vertices, triangles, and average shading rate (ASR; lower is better, 3.0 is worst) in an
ideal case, for a per-multiprocessor cache, OpenGL on different hardware (NVIDIA GTX 1080Ti, AMD RX
Vega 56, Intel HD 630), statically-batched warp voting, and achieved by all dynamic batching approach. The
cache experiments assume 1024 vertices being shaded in parallel and the cache size is given in elements.

Parallel Cache OpenGL Ours
vert tris ideal 1024 2048 4096 NVIDIA AMD Intel stat.w dyn.x

bunny 34k 70k 0.504 2.832 2.820 2.799 0.879 0.770 0.571 0.858 0.603
sphere 40k 82k 0.501 2.811 2.805 2.793 0.884 0.772 0.584 0.864 0.615
tree 492k 239k 2.058 2.997 2.997 2.997 2.078 2.061 2.059 2.058 2.061
buddha 544k 1.1M 0.501 2.850 2.856 2.853 0.991 0.745 0.551 0.825 0.588
dragon 3.6M 7.2M 0.501 2.823 2.823 2.823 1.163 0.765 0.568 0.861 0.615
am02 3k 6k 0.597 2.874 2.829 2.775 0.874 0.771 0.652 0.873 0.663
am03 2k 4k 0.483 2.730 2.676 2.676 0.806 0.694 0.555 0.795 0.579
as01 108k 183k 0.591 2.898 2.895 2.895 0.860 0.743 0.603 0.843 0.636
as04 598k 538k 1.113 2.949 2.946 2.946 1.256 1.186 1.120 1.275 1.140
dx29 25k 42k 0.612 2.898 2.895 2.889 0.855 0.751 0.621 0.843 0.654
dx33 37k 60k 0.615 2.916 2.913 2.913 0.847 0.738 0.618 0.846 0.648
sgl4 135k 254k 0.534 2.871 2.868 2.868 0.841 0.728 0.547 0.822 0.585
sgl6 38k 69k 0.561 2.859 2.856 2.856 0.855 0.748 0.575 0.840 0.612
sh11 812k 1.IM 0.738 2.925 2.922 2.922 0.975 0.836 0.747 0.921 0.768
sh21 521k 701k 0.747 2.913 2.913 2.913 0.954 0.861 0.767 0.957 0.789
tr04 191k 283k 0.675 2.901 2.898 2.898 0.889 0.791 0.687 0.876 0.711
tr09 78k 118k 0.660 2.907 2.907 2.907 0.890 0.787 0.672 0.885 0.693
tw03 268k 487k 0.552 2.847 2.844 2.841 0.887 0.783 0.596 0.873 0.639
tw30 695k 565k 1.233 2.940 2.940 2.940 1.390 1.320 1.243 1.404 1.263

operated invocation counter in the vertex shader. The measured ASR for this instrumentation as
well as all other techniques together with scene statistics are listed in Table 1.

As expected, parallel cache-based approaches, even in a distributed setup hardly reduce vertex
shader invocations compared to a naive approach (ASR 3.0). In contrast, our approaches are highly
effective for all kinds of scenes. As dynamic batching works on larger batches, it always achieves a
lower ASR than static batching. On average, statically-batched warp voting achieves an ASR which
is 0.3 worse than ideal and dynamic batching is off by only 0.1, which is equivalent to one more
vertex shader invocation every three and ten triangles, respectively. Interestingly, the hardware-
based reuse approaches achieve similar results to our approaches. The approach employed on
the NVIDIA GTX 1080Ti achieves a slightly worse ASR than statically-batched warp voting. Our
dynamic batching approaches achieve a slightly better ASR than observed on the AMD RX Vega 65
and slightly worse results than the Intel HD 630.

4.2 Real-time Rendering

The major motivation and use case for vertex reuse is the geometry processing stage of a real-
time 3D rendering pipeline. To test our batch-based reuse techniques, we have implemented a
configurable geometry stage in CUDA, that can be included into a streaming pipeline design. The
geometry processing stage is simply given an input stream of indices and a vertex buffer. Based
on the respective batching approach, indices are fetched from the index buffer and vertex reuse
is evaluated. As a final step, one thread per triangle is used to write the output primitive with its

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

28:12 Kenzel, M. et al.

vertices into a queue. This output queue could—when integrated into a full streaming pipeline—be
consumed by the next stage in the rendering pipeline. For a traditional real-time rendering pipeline,
this queue would form the natural point for a sort-middle approach [Molnar et al. 1994].

The runtime results for the vertex processing for selected tested techniques on an NVIDIA GTX
1080T1i are shown in Table 2; the full data set can be found in the supplemental material. To simulate
different vertex shader loads, we used a simple matrix multiplication (simple), a load of 256, 512
and 1024 fused-multiply add (FMA) instructions. We also include a non-streaming, multi-staged
processing implementation for reference. With this approach, all vertices in the vertex buffer
are processed only once by separate kernel. The output vertex data can then be directly loaded
from global memory in a separate kernel for assembling the output primitives. This approach is
employed, e.g., by Laine and Karras [2011] for rasterization of 3D scenes. Since vertices need to
be shaded exactly once, this technique can achieve ideal reuse, but only at the cost of sacrificing
the advantages of a streaming architecture. For instance, the entire intermediate data needs to
go through slow global memory. Although our test only uses five output attributes per vertex
and thus generates only little intermediate data, our vertex reuse techniques can even outperform
multi-staged geometry processing on several accounts.

As can be seen, for a very simple vertex shader, the naive, no-reuse approach is the fastest, as it
has no communication overhead. However, warp voting and sorting are on average only about
1.5% slower, and both hashing approaches are about 2.0x behind. The results indicate that among
the techniques capable of vertex reuse, warp voting has the lowest overhead. As the vertex shader
load increases, the naive approach quickly falls behind, showing that the proposed approaches can
efficiently detect vertex reuse. For a 256 FMA load, warp-voting achieves the best performance,
followed by parallel-hashing and hashing. For this load, the lower overhead of warp-voting still
outweighs its lower vertex reuse rate. However, for larger loads the two hashing approaches catch
up, and performance is overall tied between our three techniques, while sorting eventually trails
behind. We attribute the high performance of both hashing approaches and their marginal difference
to the efficient implementation of shared memory atomics on recent GPUs.

To assess the performance of the proposed approach across multiple GPU generations, we also
tested an NVIDIA GTX 780T1i, 980Ti and report the relative execution time compared to naive,
averaged over the entire test body in Figure 8. As can be seen, there is a significant difference across
GPU generations, which is mostly due to more efficient shared memory operations. While for a
simple shader, all vertex reuse approaches reduce performance in comparison to naive, the more
complex shaders again benefit greatly from reuse. Although statically-batched warp voting again
slightly loses ground in comparison to the other approaches on the GTX 1080Ti in the complex
case, it outperforms the other approaches on average over all GPUs. Additionally, statically-batched
warp voting does not require analysis of the index buffer and thus can be used in a full streaming
approach.

5 SOFTWARE APPLICATIONS

In addition to rendering, we also evaluate our techniques for their potential in context of general,
software-based processing tasks that allow for reuse. Specifically, we consider them for mesh
subdivision and morphological transformation for inner and outer envelopes on 2-manifold models.
Furthermore, we run a random walk simulation based on probabilistic input parameters. All
applications were implemented in CUDA and executed on an NVIDIA GTX 1080Ti.

5.1 Mesh Subdivision

Subdivision of meshes can be achieved by adding primitives to a mesh. The newly introduced
primitives are determined by analyzing their topological neighborhood. An easily parallelizable

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:13

Table 2. Processing times achieved with different vertex reuse techniques for rendering of geometry on a
GTX 1080Ti. We also include a non-streaming, multi-kernel technique (multi) for comparison.

naive warp hash phash sort multi naive warp hash phash sort multi
sphere 0.07 0.13 0.16 0.13 0.20 0.10 0.22 0.13 0.16 0.15 0.22 0.11
tree 0.34 040 042 041 051 0.38 0.66 0.33 0.47 042 0.66 049
dragon 4.59 10.38 12.89 11.00 6.36 6.24 14.71 5.38 9.27 842 8.19 6.62
buddha 0.81 1.69 2.05 1.82 1.21 1.02 @ 257 093 160 159 1.69 114
% as01 0.14 0.24 0.27 0.23 0.31 0.19 E 047 0.19 030 0.26 037 023
§ dx33 0.05 0.11 0.12 0.10 0.13 0.08 S 0.17 0.11 0.14 0.12 0.15 0.09
sgl4 0.19 034 046 039 041 0.26 N 064 026 049 041 051 031
sh1l 0.83 139 147 132 1.18 1.09 257 093 139 128 156 124
tr04 0.21 0.36 0.40 0.35 0.34 0.30 0.72 0.27 040 033 054 036
tw03 0.35 0.61 0.74 0.65 0.61 047 1.18 0.43 0.69 0.66 0.87 0.54
sphere 0.39 0.17 0.19 0.18 0.26 0.13 0.71 0.25 0.24 0.23 031 0.16
tree 1.10 0.53 0.62 0.55 0.83 0.68 2.02 098 1.00 0.91 125 108
dragon 25.22 6.38 11.2 8.48 9.57 7.82 46.88 10.90 10.91 10.29 12.45 10.24
@ buddha 455 1.13 178 1.64 1.94 1.36 & 809 178 198 201 234 1.80
E as01 0.84 0.27 032 0.29 041 0.27 % 1.56 0.43 042 0.37 049 0.36
; dx33 0.29 0.14 0.16 0.15 0.16 0.11 X 0.53 0.21 0.22 0.20 0.21 0.14
b sgl4 1.13 0.35 0.51 044 053 0.38 S 2.09 056 063 0.57 0.64 051
sh11 445 1.27 14 132 189 157 743 2.14 198 1.86 253 216
tr04 1.27 0.38 0.44 0.37 0.56 0.44 2.25 0.65 0.58 0.54 0.73 062
tw03 2.10 0.56 0.79 0.74 0.98 0.65 375 095 09 0.89 117 087
naive warp hash phash sort
8 2.0 2.0
6 1.5 1.5
4 10 1.0
2 0.5 0.5
0 0.0 0.0
(a) GTX 780Ti simple (b) GTX 980Ti simple (c) GTX 1080Ti simple
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
0.25 0.25 0.25
0.00 0.00 0.00
(d) GTX 780Ti 512 cycles (e) GTX 980Ti 512 cycles (f) GTX 1080Ti 512 cycles

Fig. 8. Reported runtimes of the vertex processing stage in our software renderer, averaged over the entire test
body (19 original scenes) and plotted relative to naive. Different GPU architectures behave quite diversely:
note the poor performance of hash, compared to our optimization p.hash on older architectures (GTX 780Ti),
which is mostly due to the performance of shared memory atomics. Overall, statically-batched warp voting
seems to be the most reliable approach.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

28:14 Kenzel, M. et al.

bunny sphere buddha

naive 0.70 0.79 11.1
warp 0.58 0.68 8.5
hash 0.58 0.68 8.15
p-hash 059 0.69 8.17
sort 0.57 0.64 8.61

(a) Buddha statue (b) Wireframe close-up (c) Runtimes in ms

Fig. 9. Running Loop subdivision on a simplified buddha (a) with vertex streaming, creates a smoother,
subdivided output (b). Performance gains can be observed across all models applying our approach (c).

subdivision algorithm has been presented by Loop [1987]. Loop subdivision produces a piecewise
linear approximation of smooth surfaces based on B-spline and multivariate spline theory. For each
edge and vertex, vertices are added in each subdivision iteration. The position of new vertices is
computed from a convex combination of the adjacent primitives. Starting the processing from the
view-point of output primitives, allows to consider vertex reuse for the output mesh, which mostly
results in reducing memory accesses to the input. Figure 9 shows results for subdividing a simplified
version of the original Happy Buddha model. We ran one iteration of the Loop subdivision with
different vertex reuse strategies on the bunny, sphere and buddha models.

We evaluated a wide variety of different parameters for batch and block size, and chose those
producing the best results for our final consideration. For naive and warp, a batch size of 96 was
used. For both hash and p.hash, we chose batches containing up to 192 indices and 64 unique
indices/threads per block. For sort, best results were achieved at a batch size of 768, with a block
size of 256 unique indices/threads. The Loop subdivision algorithm is arguably quite simple, and
hence the cost of re-shading vertices comparably inexpensive. However, the reduction in runtime
with our vertex reuse techniques can still be as high as 26%. Without exception, all vertex reuse
techniques outperform the naive approach for the tested scenes (see Figure 9c).

5.2 Simplification Envelopes

The inner/outer envelopes of a mesh are defined to occupy a strict spatial sub-/superset of the input.
Resulting meshes can be used, e.g., as input to a variety of simplification algorithms, manipulation
of subdivision or for conservative intersection/collision testing with tolerance [Cohen et al. 1996;
Zhou et al. 2007]. An envelope is obtained by moving vertices along their vertex normal towards the
inside or the outside of the model. Provided that the original mesh does not contain self-intersections,
an inner or outer envelope must also retain this property. Hence, before moving each vertex, we
need to determine a safe distance € to ensure that no intersections will occur as a result of its
transformation. We have implemented the analytical approach presented by Cohen et al. [1996] in
a streaming rendering scenario, where our vertex reuse strategies can be applied to the processed

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:15

Table 3. Runtimes for parallel envelope creation, given in ms. Due to the particularly high shader cost, models
with good vertex reuse (sphere) can achieve 3X the performance obtained with naive streaming alternatives.

naive warp hash p.hash sort

bunny 71.73 29.41 22.21 21.74 21.85
sphere 15.08 5.55 4.02 4.03 4.03
buddha 5021.80 211245 1595.31 1516.15 1509.76

triangles. Potential intersections are identified and resolved efficiently by providing an octree
representation of the scene as auxiliary input. Inner and outer envelopes for the bunny model are
shown in Figure 1c for a target € equal to 2% of the mesh’s bounding box diagonal.

We again report results with the best configuration found for each technique. As with subdivision,
batch/block sizes for naive and warp were chosen as 96/32 and 96/64, respectively. For all dynamic
methods, we use a block size of 128, with a batch size of 576 for hash, and 768 for both p.hash and
sort. The envelope creation routine is comparably complex, and the incurred cost for each "shaded"
vertex in the creation of envelopes is high: computing an intersection-free offset for a vertex to
move by requires traversing the octree, which entail significant global memory. Similarly to our
experiments for rendering with high shader loads, a speed-up of more than 3X can be achieved over
naive streaming. Table 3 lists reported runtimes in milliseconds for processing 2-manifold models.

5.3 Parallel Random Walk

A random walk [Pearson 1905] describes a stochastic or random process, where a path is chosen
on top of a graph structure or given domain, based on successive randomized steps. Random walks
are used, e.g., to simulate the paths of molecules traveling through liquids, the random search path
of animals, or messages traversing through a social network.

To evaluate whether on-the-fly reuse computations can increase the performance of such random
processes, we implemented a parallel walk on a discrete domain that follows a Levy flight [Kleinberg
2000]. We use a grid size of 256 X 256 and place 300 000 agents on this grid. To simulate their activity,
we overlay multiple Gaussian functions on this domain. The likelihood for agents to move a certain
distance is then computed based on the activity input to the Fokker—Planck equation. To evaluate
the movements, we run through all potential moves with a maximum distance of 16 and keep only
those 8 with the highest likelihood. Then, every agent draws a random number to choose one of the
stored options, whereas each is chosen with a probability proportional to their relative likelihood.

Reuse can be implemented in this scenario as follows. We encode the current agent location as
a combined integer, using half of the bits for each dimension, yielding a single 32-bit word. This
number serves as a virtual “index” for the reuse computations, combining agents that are currently
placed on the same grid location. Given that the movement probability only depends on the current
position, all agents with combined “indices” will see identical movement likelihoods, which can be
computed only once. The final step, which involves drawing a random number and choosing the
most likely move, has to be carried out separately.

Initializing all 300 000 agents randomly and running 10 simulation steps on the 256 X 256 grid
showed that our reuse strategies can significantly increase the performance of the parallel random
walk. Naive, warp, hash, p.hash and sort took 0.30 ms, 0.10 ms, 0.09 ms, 0.13 ms and 0.10 ms for
one time step, respectively. The batch sizes that achieved the best performance were large (1536 for
dynamic and 576 for static batching). At first glance, the great performance of reuse is not surprising,
as the likelihood computations are rather time complex, and a high benefit can be expected for
expensive vertex shaders. However, note that the agents are also likely to significantly diverge

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

28:16 Kenzel, M. et al.

throughout the random walk. A further analysis revealed that a small amount of reuse already
entails a significant performance gain, as the large batch sizes can still reduce the computations.

6 CONCLUSION

Ever since its introduction by Hoppe [1999], a vertex cache has been the de facto standard approach
to avoid redundant vertex shading. However, caching seems to be less applicable to modern,
massively parallel devices. We have presented four inherently parallel, batch-based approaches,
providing a suitable alternative to a conventional vertex cache. Our methods are straightforward to
implement in software, and operate directly on an indexed triangle mesh representation, with little
to no preprocessing required. Especially for complex shading routines, we showed that batching
can achieve high reuse and increase performance by up to 3x over non-reuse approaches. We have
evaluated both static and dynamic batching methods on a variety of applications and test cases.
Due to its use of fast, warp-level communication, our static warp-voting technique is well-suited
for basic shading tasks, while a dynamic, hash-based batching approach usually performs best
with shaders of high complexity. Considering that vertex shaders often exhibit low-to-medium
complexity and the fact that it does not require a preprocessing step, warp-voting appears to be
the recommended choice for streaming pipelines written in a compute language.

Our results are obtained from experiments and test applications in CUDA, but similar approaches
should also lend themselves to implementation in hardware. As vertex reuse needs to interface
with vertex shading, batch sizes and efficiency considerations for warp-based execution should
also be transferable into hardware design. Furthermore, vertex reuse techniques such as the ones
presented here are potentially applicable to more general mesh processing and parallel graph
traversal problems, where node dependencies require a similar treatment. Building on the results of
this work, we were able to implement a complete streaming software graphics pipeline capable of
achieving real-time rendering performance on a modern GPU [Kenzel et al. 2018]. A more detailed
investigation into the vertex reuse behavior of the hardware graphics pipeline implementation on
current GPUs can be found in Kerbl et al. [2018]. The source code for our experiments and test
applications is publicly available at https://github.com/GPUPeople/vertex_reuse.

ACKNOWLEDGMENTS

This research was supported by the Max Planck Center for Visual Computing and Communication,
by the German Research Foundation (DFG) grant STE 2565/1-1, and the Austrian Science Fund
(FWF) grant 13007. The Witcher game © CD PROJEKT S.A.

REFERENCES

Jatin Chhugani and Subodh Kumar. 2007. Geometry Engine Optimization: Cache Friendly Compressed Representation of
Geometry. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games (I3D °07). ACM, New York, NY,
USA, 9-16. https://doi.org/10.1145/1230100.1230102

Mike M. Chow. 1997. Optimized Geometry Compression for Real-time Rendering. In Proceedings of the 8th Conference on
Visualization 97 (VIS ’97). IEEE Computer Society Press, Los Alamitos, CA, USA, 347-ff. http://dl.acm.org/citation.cfm?
1d=266989.267103

Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj Agarwal, Frederick Brooks, and
William Wright. 1996. Simplification Envelopes. In Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH *96). ACM, New York, NY, USA, 119-128. https://doi.org/10.1145/237170.237220

Michael Deering. 1995. Geometry Compression. In Proceedings of the 22Nd Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH *95). ACM, New York, NY, USA, 13-20. https://doi.org/10.1145/218380.218391

Matthew Eldridge, Homan Igehy, and Pat Hanrahan. 2000. Pomegranate: A Fully Scalable Graphics Architecture. In
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SSGGRAPH °00). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 443-454. https://doi.org/10.1145/344779.344981

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

https://github.com/GPUPeople/vertex_reuse
https://doi.org/10.1145/1230100.1230102
http://dl.acm.org/citation.cfm?id=266989.267103
http://dl.acm.org/citation.cfm?id=266989.267103
https://doi.org/10.1145/237170.237220
https://doi.org/10.1145/218380.218391
https://doi.org/10.1145/344779.344981

On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing 28:17

Francine Evans, Steven Skiena, and Amitabh Varshney. 1996. Optimizing Triangle Strips for Fast Rendering. In Proceedings
of the 7th Conference on Visualization *96 (VIS '96). IEEE Computer Society Press, Los Alamitos, CA, USA, 319-326.
http://dl.acm.org/citation.cfm?id=244979.245626

Tom Forsyth. 2006. Linear-speed vertex cache optimisation.

Ulrich Haar and Sebastian Aaltonen. 2015. GPU-Driven Rendering Pipelines. SSIGGRAPH 2015: Advances in Real-Time
Rendering in Games Talk.

Hugues Hoppe. 1999. Optimization of Mesh Locality for Transparent Vertex Caching. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques (SSIGGRAPH °99). ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 269-276. https://doi.org/10.1145/311535.311565

Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg, and Markus Steinberger. 2018. A High-Performance Software Graphics
Pipeline Architecture for the GPU. ACM Trans. Graph. 37, 4, Article 140 (Nov. 2018), 15 pages. https://doi.org/10.1145/
3197517.3201374

Bernhard Kerbl, Michael Kenzel, Elena Ivanchenko, Dieter Schmalstieg, and Markus Steinberger. 2018. Revisiting The Vertex
Cache: Understanding and Optimizing Vertex Processing on the modern GPU. Proc. ACM Comput. Graph. Interact. Tech.
1, 2, Article 29 (Aug. 2018), 16 pages. https://doi.org/10.1145/3233302

Jon M Kleinberg. 2000. Navigation in a small world. Nature 406, 6798 (2000), 845.

Christoph Kubisch. 2015. Life of a triangle — NVIDIA’s logical pipeline. Technical Report. NVIDIA Corporation. https:
//developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline

Christoph Kubisch and Pierre Boudier. 2016. GPU-Driven Rendering. GTC Talk.

Samuli Laine and Tero Karras. 2011. High-performance Software Rasterization on GPUs. In Proc. High Performance Graphics
(HPG *11). 79-88.

G.Lin and T. P. Y. Yu. 2006. An improved vertex caching scheme for 3D mesh rendering. IEEE Transactions on Visualization
and Computer Graphics 12, 4 (July 2006), 640-648. https://doi.org/10.1109/TVCG.2006.59

Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. 2010. FreePipe: A Programmable Parallel Rendering
Architecture for Efficient Multi-fragment Effects. In Proc. I3D (I3D ’10). 75-82.

Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Ph.D. Dissertation.

Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. 1994. A Sorting Classification of Parallel Rendering. IEEE
Comput. Graph. Appl. 14, 4 (July 1994), 23-32. https://doi.org/10.1109/38.291528

NVIDIA. 2016. CUDA C Programming Guide. NVIDIA Corporation.

Anjul Patney, Stanley Tzeng, Kerry A. Seitz, Jr., and John D. Owens. 2015. Piko: A Framework for Authoring Programmable
Graphics Pipelines. ACM Trans. Graph. 34, 4, Article 147 (July 2015), 13 pages. https://doi.org/10.1145/2766973

Karl Pearson. 1905. The problem of the random walk. Nature 72, 1867 (1905), 342.

Tim Purcell. 2010. Fast Tessellated Rendering on the Fermi GF100. In High Performance Graphics Conf., Hot 3D presentation.

Guennadi Riguer. 2006. The Radeon X1000 Series Programming Guide.

Pedro V. Sander, Diego Nehab, and Joshua Barczak. 2007. Fast Triangle Reordering for Vertex Locality and Reduced Overdraw.
ACM Trans. Graph. 26, 3, Article 89 (July 2007). https://doi.org/10.1145/1276377.1276489

Martin Sattlecker and Markus Steinberger. 2015. Reyes Rendering on the GPU. In Proceedings of the 31st Spring Conference
on Computer Graphics (SCCG ’15). ACM, New York, NY, USA, 31-38. https://doi.org/10.1145/2788539.2788543

Jeremy W. Sheaffer, David Luebke, and Kevin Skadron. 2004. A Flexible Simulation Framework for Graphics Architectures.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS *04). ACM, New York,
NY, USA, 85-94. https://doi.org/10.1145/1058129.1058142

Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswiesner, Michael Kenzel, and Dieter Schmalstieg. 2012.
Softshell: Dynamic Scheduling on GPUs. ACM Trans. Graph. 31, 6, Article 161 (Nov. 2012), 11 pages. https://doi.org/10.
1145/2366145.2366180

Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dokter, and Dieter Schmalstieg. 2014. Whippletree:
Task-based Scheduling of Dynamic Workloads on the GPU. ACM Trans. Graph. 33, 6, Article 228 (Nov. 2014), 11 pages.
https://doi.org/10.1145/2661229.2661250

Po-Han Wang, Chia-Lin Yang, Yen-Ming Chen, and Yu-Jung Cheng. 2011. Power Gating Strategies on GPUs. ACM Trans.
Archit. Code Optim. 8, 3, Article 13 (Oct. 2011), 25 pages. https://doi.org/10.1145/2019608.2019612

Graham Wihlidal. 2016. Optimizing the Graphics Pipeline with Compute. GDC Talk.

Kun Zhou, Xin Huang, Weiwei Xu, Baining Guo, and Heung-Yeung Shum. 2007. Direct Manipulation of Subdivision Surfaces
on GPUs. ACM Trans. Graph. 26, 3, Article 91 (July 2007). https://doi.org/10.1145/1276377.1276491

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 28. Publication date: August 2018.

http://dl.acm.org/citation.cfm?id=244979.245626
https://doi.org/10.1145/311535.311565
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/3233302
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://doi.org/10.1109/TVCG.2006.59
https://doi.org/10.1109/38.291528
https://doi.org/10.1145/2766973
https://doi.org/10.1145/1276377.1276489
https://doi.org/10.1145/2788539.2788543
https://doi.org/10.1145/1058129.1058142
https://doi.org/10.1145/2366145.2366180
https://doi.org/10.1145/2366145.2366180
https://doi.org/10.1145/2661229.2661250
https://doi.org/10.1145/2019608.2019612
https://doi.org/10.1145/1276377.1276491

	Abstract
	1 Introduction
	2 Related work
	3 Vertex reuse strategies
	3.1 Post-transform cache
	3.2 Batch-based vertex reuse
	3.3 Static batching
	3.4 Dynamic batching

	4 Evaluation
	4.1 Caching vs Batching and OpenGL
	4.2 Real-time Rendering

	5 Software Applications
	5.1 Mesh Subdivision
	5.2 Simplification Envelopes
	5.3 Parallel Random Walk

	6 Conclusion
	Acknowledgments
	References

