
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Exploit <sup>18</sup>F-FDG
enhanced urinary bladder in PET
data for deep learning ground truth
generation in CT scans

Christina  Gsaxner, Birgit  Pfarrkirchner, Lydia  Lindner,
Norbert  Jakse, Jürgen  Wallner, et al.

Christina  Gsaxner, Birgit  Pfarrkirchner, Lydia  Lindner, Norbert  Jakse,
Jürgen  Wallner, Dieter  Schmalstieg, Jan  Egger, "Exploit <sup>18</sup>F-
FDG enhanced urinary bladder in PET data for deep learning ground truth
generation in CT scans," Proc. SPIE 10578, Medical Imaging 2018:
Biomedical Applications in Molecular, Structural, and Functional Imaging,
105781Z (12 March 2018); doi: 10.1117/12.2292706

Event: SPIE Medical Imaging, 2018, Houston, Texas, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/14/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Exploit 18F-FDG Enhanced Urinary Bladder in PET Data for 

Deep Learning Ground Truth Generation in CT Scans 

Christina Gsaxnera,b, Birgit Pfarrkirchnera,b, Lydia Lindnera,b, Norbert Jaksec, Jürgen Wallnerb,c 

Dieter Schmalstiega and Jan Eggera,b,d 

 
a TU Graz, Institute for Computer Graphics and Vision, Inffeldgasse 16c/II, 8010 Graz, Austria 

b Computer Algorithms for Medicine (Cafe) Laboratory, 8010 Graz, Styria, Austria 
c Medical University of Graz, Department of Maxillofacial Surgery, Auenbruggerplatz 12, 8036 Graz, Austria 

d BioTechMed-Graz, Krenngasse 37/1, 8010 Graz, Austria 

 

ABSTRACT 

Accurate segmentation of medical images is a key step in medical image processing. As the amount of medical images 

obtained in diagnostics, clinical studies and treatment planning increases, automatic segmentation algorithms become 

increasingly more important. Therefore, we plan to develop an automatic segmentation approach for the urinary bladder 

in computed tomography (CT) images using deep learning. For training such a neural network, a large amount of labeled 

training data is needed. However, public data sets of medical images with segmented ground truth are scarce. We overcome 

this problem by generating binary masks of images of the 18F-FDG enhanced urinary bladder obtained from a multi-modal 

scanner delivering registered CT and positron emission tomography (PET) image pairs. Since PET images offer good 

contrast, a simple thresholding algorithm suffices for segmentation. We apply data augmentation to these datasets to 

increase the amount of available training data. In this contribution, we present algorithms developed with the medical 

image processing and visualization platform MeVisLab to achieve our goals. With the proposed methods, accurate 

segmentation masks of the urinary bladder could be generated, and given datasets could be enlarged by a factor of up to 

2500. 

Keywords:  Medical Image Segmentation, Urinary Bladder, Deep Learning, Combined PET/CT, 18F-FDG, Data 

Augmentation. 

1. DESCRIPTION OF PURPOSE 

Since imaging modalities like computed tomography (CT) are widely used in diagnostics, clinical studies, treatment 
planning and evaluation, automatic algorithms for image analysis have become an invaluable tool in medicine. In 
particular, deep learning approaches have made a large impact on the field of medical image analysis over the past view 
years. Machine learning algorithms can be applied to problems like image detection or recognition, segmentation, 
registration or computer-aided diagnosis and disease quantification, just to name a few [1]. Image segmentation algorithms 
are of special interest, since segmentation plays a vital role in many medical applications, like the quantification of tissue 
volumes [2]-[5], localization of pathologies [7]-[10], treatment planning (especially in radiotherapy) [11], and computer-
integrated surgery [12]. To this day, delineation is often done manually or semi-manually, especially in regions with 
limited contrast and for organs or tissues with large variations in geometry. This is a tedious task, since it is time-consuming 
and requires a lot of experience. Furthermore, the process of manual segmentation is prone to errors and, since it is highly 
dependent on the operator, not reproducible [13]. 

Therefore, we aim to develop an automatic approach for medical image segmentation, specifically for 
segmentation of the urinary bladder in CT images, based on deep learning. One limitation of neural networks is that a large 
amount of labeled training data is needed to provide enough information to specify all the network's connections, especially 
if the network is large and deep. For general-purpose image processing tasks, this is not a problem anymore, since open 
databases containing millions of labeled images exist. For medical data, however, this is a major drawback, since public 
medical databases are generally small [14]. Furthermore, already segmented CT images are even harder to find in open 
databases.  

Therefore, two goals can be defined for this project: Generate binary masks of the urinary bladder as a reference 
standard for training a deep neural network and enlarge the size of available datasets. We address the first problem by 
using combined positron emission tomography and computed tomography (PET-CT) scans. PET imaging is based on 
measuring radiation emitted by a radiotracer injected into the patient. Radiotracers are chosen to accumulate in regions 
relevant for specific screening, like inflammatory sites or tumor cells. By backtracking the measured radiation to its source, 
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such regions can be imaged [15]. Unlike CT, PET images exhibit high contrast and are therefore comparably easy to 
segment automatically [16]. Therefore, PET scans can easily be exploited to generate binary masks as a reference standard 
for training a neural network. We found a simple thresholding sufficient for segmentation 

To achieve the second goal, namely, increasing the amount of training data, data augmentation is used. The basic 
idea of data augmentation is to create plausible changes, which preserve label information, to the existing data [17]. The 
application of geometric transformations, the addition of noise or color jittering are utilized to generate new, additional 
training data that is similar to, but not the same as the existing data. In our approach, rotation and scaling are applied to 
CT images as well as to the masks generated from the corresponding PET images. Furthermore, different noise types can 
be added to CT images. Since the size and shape of the urinary bladder is highly variable between patients and individual 
slices, these augmentations seem meaningful. A huge amount of training sets can be generated with this approach.  

For the implementation of the proposed algorithms, we used the medical imaging framework MeVisLab [18]-
[25]. MeVisLab is a modular framework for the development of medical image processing algorithms and visualization 
of medical data. It allows development via visual programming using preexisting modules, macro module-creation via 
Python scripting, and module implementation in C++. 

2. METHODS 

For this study, the reference image database to evaluate therapy response (RIDER) [26] data sets of PET/CT images were 
used. RIDER contains a total of 65 scans of lung cancer patients. As radiotracer, fluorine-18-labelled fluorodeoxyglucose 
(18F-FDG), which always accumulates in the urinary bladder, was used in all PET scans. Patient data with very high noise 
levels in either the CT or PET data or with unusually low contrast in the region of interest were rejected. The general 
network implemented in MeVisLab can be seen in Figure 1. 

Fig. 1: General Network for loading, processing and visualizing PET and CT data, implemented in MeVisLab. 

 

Corresponding PET and CT data is loaded into the framework and fed into the DataPreperation macro-module 
for processing. The remaining modules are for visualization purposes. The internal network of the DataPreperation 
module can be observed in Figure 2. The network consists of two groups, one for CT and one for PET image processing. 
First, general information about the input image is extracted via the Info module. This module provides information like 
image size, image type, maximal and minimal pixel value. The Reformat module transforms the PET dataset to the local 
coordinate system of the CT dataset using trilinear interpolation. The SubImage module allows the extraction of sub 
regions from input images. By iterating over the z-coordinate of a dataset, while leaving the other parameters unchanged, 
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individual transversal slices can be selected. Next, the extracted PET slices are segmented by the application via the 
Threshold module. A fixed threshold is calculated for each dataset in the Python script. Every pixel above the threshold is 
considered foreground; all other pixels are labeled as background. The output of this module is a binary image of the 
urinary bladder. Data augmentation of the binary masks and CT slices is performed using the AffineTransformation2D 
module. This module enables the application of several affine transformations in 2D. For this macro module, rotation and 
scaling is enabled. Further, the AddNoise module enables the addition of noise from various distributions to CT slices. The 
Scale module allows scaling and conversion of the image file type. The contrast for soft tissue in CT images is adjusted 
by applying windowing using the Window module. At last, the produced slices are saved in TIFF format using the 
ImageSave module. Interactions between these modules and with inputs and outputs, as well as module parameters, were 
realized via Python scripting. Furthermore, a user interface was created using the MeVisLab Definition Language (MDL) 
script file [27]. The code is freely available for download [28]: 

https://github.com/cgsaxner/DataPrep_UBsegmentation 

 

Fig. 2: The internal network of the DataPreperation macro module. 

 

3. RESULTS 

After removing patient data with low contrast and high noise from the RIDER database, a total of 33 patient datasets were 
obtained. The CT datasets offer between 122 and 358 transversal slices (297 in average), yielding to a total of 9819 images. 
Since these scans cover the whole torso, the urinary bladder is only visible in a fractional amount of the images. The 
average number of slices showing the bladder is 26, resulting in a total of 853 slices. To visualize the results of the PET 
segmentation using thresholding, Figure 3 shows and overlay of CT slices (in grayscale) and their corresponding binary 
masks of the urinary bladder generated from the respective PET datasets (in red). Representative datasets were chosen for 
illustration. 
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Fig. 3: Overlay of CT data and binary mask of two RIDER PET/CT datasets. The selected slices were taken from the beginning, 

middle and end of the urinary bladder. The binary mask obtained by thresholding the PET data is shown in red. 

 

Fig. 4: Original and augmented datasets (upper row) and corresponding binary masks of the urinary bladder (lower row, 
white). Image (a) shows the original dataset without augmentations. Image (b) shows the dataset after applying a rotation 
of 45° and scaling to a scale factor of 0.9 in x-direction and 1.1 in y-direction to both the CT image and the binary mask. 
In image (c), zero-mean Gaussian noise with a standard deviation of 500 gray values was added to the CT image. The 
binary mask remains unchanged by the addition of noise. 
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With the default parameters specified in Table 1, 32 augmented datasets can be created from each slice in the input data. 
With the urinary bladder showing an average of 26 slices per dataset, this results in 832 augmented images and binary 
masks per patient data. With 853 slices of the urinary bladder obtained from the 33 selected original patient datasets, this 
results in a total of 27,296 positive training datasets. Setting the number of generated slices in each augmentation step to 
their maximal value results in 2500 augmented datasets obtained from each input slice. With these settings, a total of 
2,132,500 positive training datasets could be achieved. Figure 4 shows two examples of augmented training datasets. 

 

Tab. 1: Parameters for data augmentation. This table shows all parameters specifiable by the user, as well as their 
default, minimal and maximal values. 

 

4. CONCLUSIONS 

In this contribution, a macro-module in MeVisLab for the preparation of training data for a deep neural network to segment 
the urinary bladder in CT images has been presented. For generating the ground truth to train a deep neural network, PET 
data was automatically segmented using a thresholding algorithm. In addition, the dataset was enlarged by applying data 
augmentation, specifically by the application of affine transformations (rotation and scaling) and by the addition of noise 
(uniformly distributed, zero-mean Gaussian and salt-and-pepper noise). Agreement between the binary masks generated 
from PET image data and CT image data was overall good, with slices showing a large area surface of the urinary bladder 
yielding accurate results. It can be observed that the shape, size and position within the image of the urinary bladder is 
highly varying between datasets, which might pose a difficulty for automatic segmentation approaches. With a maximal 
amount of 2,132,500 training datasets generated, the proposed data augmentation algorithm has the capacity to greatly 
enlarge the given original database. 

Beside these results, there are some areas left for an upcoming future work, in particular the evaluation of the 
generated data with an actual deep neural network. When too much training data is produced from a small original database 
using data augmentation, there is the risk that using them as training data will not increase the accuracy of a neural network. 
Furthermore, the augmented datasets might get distorted too much, consequently losing their anatomical meaningfulness. 
Moreover, computational effectiveness has to be taken into account. The larger the training dataset, the more 
computationally expensive and time consuming the training of a neural network will get, while its performance might not 
increase significantly. 
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