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ABSTRACT 

Accurate segmentation and measurement of brain tumors plays an important role in clinical practice and research, as it is 

critical for treatment planning and monitoring of tumor growth. However, brain tumor segmentation is one of the most 

challenging tasks in medical image analysis. Since manual segmentations are subjective, time consuming and neither 

accurate nor reliable, there exists a need for objective, robust and fast automated segmentation methods that provide 

competitive performance. Therefore, deep learning based approaches are gaining interest in the field of medical image 

segmentation. When the training data set is large enough, deep learning approaches can be extremely effective, but in 

domains like medicine, only limited data is available in the majority of cases. Due to this reason, we propose a method 

that allows to create a large dataset of brain MRI (Magnetic Resonance Imaging) images containing synthetic brain tumors 

- glioblastomas more specifically - and the corresponding ground truth, that can be subsequently used to train deep neural 

networks. 
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1. DESCRIPTION OF PURPOSE 

In current clinical practice, the interpretation of medical images is mainly done by human experts such as radiologists and 

physicians [1]-[7]. MRI (Magnetic Resonance Imaging) images are assessed either based on qualitative criteria, for 

example characteristic hyper-intense tissue occurrence in contrast-enhanced T1-weighted MRI images, or by relying on 

basic quantitative measures as the largest axial diameter of the tumor [8]. Since manual segmentation of brain tumors is 

time consuming, subjective and prone to error, there exists a need for fast, objective and precise automated segmentation 

methods. Therefore, deep learning based approaches gain increasing interest in the field of medical image segmentation.  
 

When the training data set is large enough, deep learning approaches can be extremely effective. However, in the medical 

field there are usually only limited data samples available, since medical data is heavily protected due to privacy concerns. 

Hence, one big challenge of using deep learning approaches for medical image segmentation lies in augmenting the 

available data set to build deep models without overfitting the training data. A basic common and accepted technique for 

augmenting image data is to perform geometric and color augmentations [1], [9]. Instead of using these basic data 

augmentation techniques, our approach generates synthetic glioblastomas and insert them into MRI scans of healthy 

subjects. The resulting "hybrid" MRI images can subsequently be used to train a deep neural network for automatic tumor 

segmentation.  
 

Glioblastomas (GBMs) are rather large tumors that have thick, irregular-enhancing margins with a central necrotic core 

[10], [11]. Since it is not possible for the brain to move outside the surrounding skull and thereby make room for a growing 

mass, tumors displace and compress the surrounding brain tissue. This process is called the tumor mass effect [12]. In 

clinical practice of oncology and diagnostic medicine, typically only the enhancing tumor and necrotic core are 

segmented, since these regions are of primary interest. Segmentations of structures other than brain tumor are usually not 

done, since the segmentation of edema etc. is extremely challenging and will therefore not represent truth very well [13]. 

Hence, with the proposed method, only the enhancing tumor and necrotic core of a glioblastoma are simulated as well as 

the tumor mass effect. 
 

For the implementation of the proposed method, we used MeVisLab, a rapid prototyping and development platform for 

medical image processing, visualization, and image interaction. Image processing and interactive image manipulation can 

be achieved by building networks that are constructed of preexisting modules, macro modules created via Python 

scripting, and individual modules implemented in C++ [14]-[17]. 
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2. METHODS 

The tumor generation algorithm was based on a special type of polyhedron, namely an icosahedron. A regular icosahedron 

has 12 polyhedron vertices, 30 polyhedron edges and 20 equivalent equilateral polyhedron faces [18]. In order to receive 

an approximation of a sphere, the icosahedron was recursively refined, by dividing each of the existing faces into three 

equivalent equilateral triangles and repeating the procedure five times [19]-[21]. This results in a polyhedron with 2432 

polyhedron vertices, which is called the “tumor base”. In order to obtain the typical irregular shape of a glioblastoma, a 

special displacement algorithm was applied to the vertices of the tumor base. The idea behind this displacement algorithm 

is to randomly choose one vertex (𝑉𝑐ℎ𝑜𝑠𝑒𝑛) of the polyhedron, according to a uniform distribution. Then, the distance 

between 𝑉𝑐ℎ𝑜𝑠𝑒𝑛  and the center of the polyhedron is increased. This results in an elevation of the corresponding vertex. 

To make the deformation look natural, also the remaining vertices are displaced accordingly. In order to determine the 

strength of displacement for each vertex - which decreases by distance to 𝑉𝑐ℎ𝑜𝑠𝑒𝑛  - all vertices are categorized in 

displacement levels k, according to the minimum number of edges that are required to reach 𝑉𝑐ℎ𝑜𝑠𝑒𝑛 (for example, direct 

neighbor vertices of 𝑉𝑐ℎ𝑜𝑠𝑒𝑛 are in displacement level k=1). Finally, the displacement of 𝑉𝑐ℎ𝑜𝑠𝑒𝑛 and the remaining vertices 

is achieved by multiplying the x, y and z coordinate of each vertex with factor 𝜀(𝑘) , that is defined by formula (1), where 

k denotes the displacement level of the corresponding vertex, d (which is randomly chosen according to a uniform 

distribution on the interval [1, 2.5]) indicates the initial strength of displacement and m is a decay factor of 0.97. 
 

𝜀(𝑘)  = {   
1 + 𝑑,               𝑘 = 0
1 + 𝑑 ∙ 𝑚,         𝑘 = 1

1 + 𝑑 ∙ 𝑚2𝑘 ,     𝑘 > 1
     (1) 

 

This process of randomly choosing a vertex, displacing it and subsequently displacing the remaining vertices is repeated 

for altogether seven times. A simplified tumor mass effect was simulated by deforming the brain MRI image around the 

artificial glioblastoma according to a displacement field. For this purpose, the "ImageWarp" Module of MeVisLab - which 

performs backwards deformation – was applied. A simple sphere with variable radius was used to calculate the dense 

vector field. Since the force, that is applied to the brain by a tumor mass, is an outward radial force, that originates from 

the initial tumor region and weakens by distance [13], the required displacement field was constructed in the following 

way: First, the 3D Euclidean distance transform of the sphere was calculated to receive a gradually decreasing intensity 

from the tumor center to the edges. Then, a gradient filter was applied to the Euclidian distance transform, leading to a 

dense vector field. Afterwards, the Euclidian distance transform was normalized and multiplied with a factor, that can be 

varied depending on the desired strength of deformation. Finally, the result was multiplied with the previously calculated 

gradient field. This leads to a displacement field that lets the strength of the deformation weaken by distance. The network 

implemented in MeVisLab can be seen in Figure 1. An existing MRI image of a healthy subject is loaded into the 

framework and is subsequently reformatted to axial view. Additionally, the intensity range of the image is adjusted 

according to a reference. The SetSeedPoint module is used to manually set a seed point (by simply clicking on the desired 

position in the MRI scan) at which the artificial glioblastoma will be inserted. This is done to ensure that the tumor is 

located within the brain region. The individual GenerateTumor module is used to generate artificial glioblastomas by 

using the previously described algorithm. The synthetic tumor is provided at the output as visual scene graph (Inventor 

Scene) and has to be voxelized and further processed to comply with the basic radiographic features of real glioblastomas 

as they are visible in post-contrast T1-weighted (T1Gd) brain MRI scans. This is done with the ProcessTumor module. 

First, the tumor has to be translated according to the selected seed point. Then, a filled voxelization (fill color is a dark 

gray, which represents necrosis) is applied. Afterwards, a border is added to the tumor surface (color is a light gray, which 

represents the contrast enhanced surface). The voxelized tumor is slightly blurred to smooth the edges between the fill 

color and the edge color. Uniform noise is added to achieve a realistic looking appearance of the tumor. Furthermore, the 

ProcessTumor module is used to insert the synthetic glioblastoma into the existing MRI image and create the 

corresponding ground truth by using the IntervalThreshld module of MeVisLab. The internal network of this module can 

be seen in Figure 2. The DeformationOfBrainMass Module is used to simulate the tumor mass effect according to the 

previously described algorithm. In order to manually set a seed point (again by clicking on the desired position in the 

MRI scan) that defines the center of the brain mass deformation, the SetSeedPointDeform module can be used. The final 

brain MRI image (containing the synthetic glioblastoma) and the corresponding ground truth are saved as single slices in 

TIFF format using the SaveSlices module, which is an adapted version of the SaveAsSingleSlices module from related 

work [22]. The corresponding MeVisLab network and the C++ / Python source code is freely available [23]. MRI data 

used in this work was obtained from the Human Connectome Project (HCP) database [24]-[26]. The 1200 Subjects Data 

Release contains 3T MR imaging data from 1206 healthy young adult participants (1113 with structural MR scans). 
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Fig. 1: Network for generating synthetic brain tumor MRI data, implemented in MeVisLab. 

 

Fig. 2: The internal network of the ProcessTumor module. 
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3. RESULTS 

In Figure 3, four examples of brain MRI images with real glioblastomas and a real tumor mass effect (upper row) and 

four brain MRI images containing synthetic glioblastomas with a simulated tumor mass effect (lower row) can be seen. 

The typical radiographic features of glioblastomas (thick, irregular-enhancing margins with a central necrotic core) are 

clearly visible in the synthetic brain MRI data. As can be seen by comparing the real MRI images in the upper row and 

the synthetic MRI images in the lower row, the proposed method allows to generate quite realistic looking glioblastomas, 

that comply with the basic radiographic features of real glioblastomas, and to simulate a simplified tumor mass effect. 
 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Brain MRI images with real glioblastomas and a real tumor mass effect (upper row) and brain MRI images 
containing synthetic glioblastomas with a simulated tumor mass effect (lower row). 

 

 

A brain MRI image containing a synthetic tumor (left) and the corresponding ground truth (right) can be seen in Figure 
4. In Figure 5, the impact of the tumor mass effect can be seen by comparing a brain MRI image containing an artificial 
glioblastoma without a simulated tumor mass effect (left) and the same MRI image containing the same artificial 
glioblastoma with a simulated tumor mass effect (right). 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Brain MRI image containing a synthetic tumor 

(left) and the corresponding ground truth (right). 

 

Fig. 5: Brain MRI image without tumor mass effect 

(left) and with tumor mass effect (right). 
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4. CONCLUSIONS 

With the proposed method it is possible to generate realistic looking glioblastomas, insert them into brain MRI images of 

healthy subjects and create the corresponding ground truth in a very precise way. Furthermore, it is possible to simulate 

the tumor mass effect. The goal of the proposed method was to empirically generate sufficiently realistic brain MRI 

images and the corresponding ground truth that can subsequently be used to train a deep neural network. The accurate 

modeling of brain tumor growth on cell level is beyond the scope of this work. The proposed method is simple, but still 

has the ability to simulate all crucial characteristics of glioblastomas (appearance of the enhancing tumor and the necrotic 

core) in T1 weighted contrast-enhanced MRI images. In addition, an easy application via MeVisLab is presented (one 

click seed point selection). One advantage of inserting artificial brain tumors into MRI images of healthy subjects is that 

the position, shape and size of the tumor is already exactly known. Therefore, a very precise ground truth can easily be 

created without any required action of a human expert. Additionally, it is possible to insert several artificial tumors into 

the same brain MRI image, thereby maximizing the size of the resulting dataset. Since the brain MRI images of healthy 

subjects, that are used to insert the artificial tumors, are not contrast enhanced by the contrast agent Gadolinium, further 

adaptations of the proposed approach could be to simulate the effect of Gadolinium to the brain in MRI images [27]. 

Another adaption could be the simulation of edema or fiber bundles [28], [29]. The proposed approach may also be 

applied for other areas of clinical oncology and diagnostic medicine (e.g. simulation of liver tumors [30]). 
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