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Figure 1: (left) Hierarchical bucket queues enable the implementation of foveated, Reyes-style micropolygon rendering in real-time on the
GPU. By dynamically reducing the number of split recursions in areas distant from the user’s current fixation point (red), rendering quality can
adaptively be decreased where not needed, leading to speedups of more than 100%. (right) Using prioritization in a GPU path tracer, compute
power can be directed primarily to areas of high variance to achieve faster convergence. The overlay visualizes the number of traced paths.

Abstract

While the modern graphics processing unit (GPU) offers massive parallel compute power, the ability to influence the scheduling
of these immense resources is severely limited. Therefore, the GPU is widely considered to be only suitable as an externally
controlled co-processor for homogeneous workloads which greatly restricts the potential applications of GPU computing.
To address this issue, we present a new method to achieve fine-grained priority scheduling on the GPU: hierarchical bucket
queuing. By carefully distributing the workload among multiple queues and efficiently deciding which queue to draw work from
next, we enable a variety of scheduling strategies. These strategies include fair-scheduling, earliest-deadline-first scheduling,
and user-defined dynamic priority scheduling. In a comparison with a sorting-based approach, we reveal the advantages of
hierarchical bucket queuing over previous work. Finally, we demonstrate the benefits of using priority scheduling in real-world
applications by example of path tracing and foveated micropolygon rendering.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture—Parallel

processing

1. Introduction

While advances in semiconductor fabrication continue to follow
Moore’s Law, increases in clock speed have been stagnant due to
physical limitations. Instead, hardware and software have turned
towards parallelization as an answer to the ever growing demand
for more compute power. The graphics processing unit (GPU) has
evolved into a hardware architecture which offers an extreme level
of parallelism. Execution on the GPU is, however, dictated by a
simple, hardwired first-in, first-out (FIFO) scheduler which cannot
be influenced dynamically. Thus, the GPU is commonly used as a
co-processor for large, homogeneous workloads controlled by the
central processing unit (CPU). For many applications which depend
on sophisticated scheduling to, e. g., dynamically adapt power usage,
enable fair resource sharing, or meet real-time constraints, the GPU
is not considered a viable option.
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The static nature of GPU execution is a severe limitation even
in its core application of interactive graphics. For example, virtual
reality applications demand low-latency, real-time rendering for
high-resolution, head-mounted displays (HMD). Long latencies or
spikes in rendering time can lead to severe discomfort. According to
current beliefs [Hun15], foveated rendering—adaptively rendering
regions around the user’s fixation point in higher resolution—is one
way to address these issues. However, using a traditional rendering
API, one can only rely on predictions about how long rendering
might take to decide upfront on an allocation of compute power
that might meet a given deadline, without guarantee. One solution
could be a progressive renderer with dynamic priorities. It could
adaptively focus compute power around the current fixation point.
Rendering can stop, as the deadline of acceptable latency is reached,
maximizing the quality achieved within a given time frame.



B. Kerbl, M. Kenzel, D. Schmalstieg, H.P. Seidel and M. Steinberger / Hierarchical Bucket Queuing on the GPU

Using a current rendering API such as OpenGL or Direct3D, com-
mands are simply streamed to the GPU and executed more or less
in order. Similarly, compute jobs (kernels) dispatched to the GPU
using a compute API, such as OpenCL [SGS10] or CUDA [Nvi08],
are inserted into opaque queues, from which they are launched on
the GPU. Once a job has been dispatched, it cannot be modified
and must run to completion. This regime only permits very coarse-
grained control of execution on the GPU. The lack of fine-grained
control led researchers to start looking for ways to work around the
rigid hardware scheduling. By launching a large kernel in what is
often called a persistent threads approach, all compute units can be
occupied with a single program, which can manually draw work
from a software queue [AL09]. However, the focus of virtually all
work in this area so far is on dynamic load balancing, while the idea
of priority scheduling has received little to no attention.

Although scheduling for the CPU is well researched, strategies
that work on the CPU hardly translate to the GPU, due to the vast
architectural differences. Computation on the GPU is based on
single instruction, multiple data (SIMD) execution of small groups
of threads called warps. A kernel is launched as a grid of blocks,
with each block consisting of the same number of warps that all fit
on one of the GPU’s multiprocessors. Scheduling a task on the GPU
means mapping it to blocks or warps. A large number of tasks is
typically required to provide enough work to make efficient use of
the massively parallel GPU. At the same time, the execution time of
each task is kept short to avoid branch divergence. Memory access
is particularly costly on the GPU. Moreover, there is no support for
task preemption and thread context restoration in software.

The sum of these facts makes priority scheduling a difficult prob-
lem on the GPU: There is a large number of short tasks to be man-
aged, thus, scheduling decisions must be made very often. Making
scheduling decisions involves reading information about the exe-
cution state from memory, which is very costly. Due to the mas-
sive parallelism and short task durations, tasks enter and leave the
scheduling system in parallel at a high rate. Constant reorganization
of shared data structures such as sorted queues or heaps is prob-
lematic, as locking must be avoided. Due to the nature of execution
on the GPU, a priority queue in the original sense is not even a
theoretical possibility as there is no absolute order that could be
established on the large number of concurrent operations carried out
at any given point in time. Thus, priority scheduling can only aim to
execute tasks with higher priority before tasks with lower priority
on average.

However, even a relaxed priority scheduling approach can enable
a variety of applications and needs to overcome the aforementioned
issues. We tackle them with our approach based on a hierarchical
organization of buckets and make the following contributions:

e We present a flexible, hierarchical queuing structure for the GPU
that can be configured to implement a variety of scheduling poli-
cies and is efficient for massively parallel access.

e We expose our bucket queues through a scheduling control model
consisting of three simple entry points that allows for an easy
and efficient implementation of different scheduling policies. Our
model can be plugged into any persistent threads solution and
would also lend itself to implementation in future hardware.

e We investigate different methods to implement fair-scheduling,
earliest-deadline-first scheduling, and user-defined scheduling
policies on top of our approach and compare the performance of
each policy in a set of synthetic tests.

e We show how priority scheduling can be used for guaranteed-
latency, foveated micropolygon rendering as well as adaptive path
tracing.

2. Related Work

External GPU Priority Scheduling Recent GPU architectures can
execute multiple kernels concurrently [Nvil2] given that sufficient
resources are available. This feature relies on multiple work queues
situated on the GPU, each feeding all available multiprocessors.
While priorities are not supported for these queues, future architec-
tures might add them, as outlined in the provisional OpenCL 2.1
standard [KG15]. These priorities will likely be static and only
applicable to entire kernels, unlike our approach, which supports
fine-grained priorities.

For current architectures, a variety of external priority schedulers
exist. They can be viewed as an extension to the driver, controlling
which kernels are forwarded to the GPU at which point in time.
Timegraph [KLRI11], for example, delays and reorders kernels sent
to the GPU according to deadlines. Further, the use of a single
global priority queue [EA12] or a directed acyclic graph [MLH*12]
has been explored, as has been the possibility to include multi-
ple CPU and GPU nodes [WWO14]. The major issue with these
approaches is that they consider jobs as large, opaque entities. Mem-
ory transfers [KLK*11] as well as kernels [BK12] can be split into
smaller jobs to reduce the time until the GPU is responsive again.
By scheduling blocks instead of entire kernels, using knowledge
about how many multiprocessors are available, a better real-time
scheduling performance can be achieved [LAF14]. Yet, all such
approaches influence the scheduling only indirectly, which leads to
several disadvantages: a long delay between making a scheduling
decision and its effect on the GPU, the need to synchronize CPU
and GPU, and the inherent inefficiency of submitting kernels too
small to fully occupy the GPU. Additionally, dynamic priorities and
work generation on the GPU are not supported.

Dynamic Scheduling on the GPU Due to the limited possibilities
for influencing GPU execution from the CPU, software scheduling
on the GPU itself received attention. Cederman et al. [CT08] im-
plemented a first software scheduler based on work queues on the
GPU. At about the same time, the term “persistent threads” was
coined [ALO09], which describes the idea of performing software
scheduling on the GPU by occupying all available multiprocessors of
with worker threads. These worker threads draw new work from cus-
tom work queues and finish only once all work has been completed.
Work queues can be made to allow work to be inserted from the CPU
[CVKGI10], and support work stealing [CGSS11] and work dona-
tion [TPO10]. Persistent threads approaches in combination with
work queues have been used in a variety of application areas: sparse
matrix-vector multiplication [BG09], sorting algorithms [SHGO09],
scan algorithms [Bre10], and construction of kd-trees [VHBS16].

While all the approaches above show that a variety of problems
can be tackled using software solutions, none of them address the
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Figure 2: To keep the multiprocessors of the GPU busy, work is
usually managed in queues located on the GPU. These queues can
be filled by the CPU as well as the GPU.

problem of priority scheduling. Scheduling is mostly interesting
in combination with multi-tasking. To add multi-tasking to a per-
sistent threads approach, all tasks have to be compiled into one
large megakernel [HarO4]. While there are certain downsides to
megakernels [LKA13], they are often outweighed by better schedul-
ing and the potential to exploit data locality [SKB*14]. Persistent
threads megakernels have been used in the Optix raytracing frame-
work [PBD*10] as well as the dynamic task scheduling frameworks
of Softshell [SKK*12] and Whippletree [SKB* 14]. These sched-
ulers are probably the approaches closest to ours. While not their
main focus, they provide some ways of prioritizing workloads on the
GPU: Softshell uses a monolithic queue, which can be progressively
sorted, slowly moving high priority tasks to the front of the queue. In
our evaluation, we demonstrate that the reaction time to high priority
tasks is rather long, when only sorting progressively. Whippletree
uses multiple queues to concurrently schedule warp and block level
tasks as well as collect tasks of the same type. At the same time,
Whippletree considers priorization of these queues, which can be
used to, e. g., keep queue lengths short during pipeline execution.
Our hierarchical bucket queuing can be seen as a superset to the
Whippletree and Softshell scheduler and supports significantly more
sophisticated scheduling behaviors.

The main limitation of current approaches for dynamic scheduling
on the GPU is the lack of facilities for preemption. While preemp-
tion is to be considered very costly on the GPU, there have been
proposals to add it to the hardware by either saving the entire thread
state or waiting for the current block to finish [TGC* 14]. To reduce
the cost of preemption, already computed results can be partially
or entirely discarded, and blocks simply be restarted later [PPM15].
Our work is complementary to these extensions. We do not consider
preemption and instead rely on tasks completing in a sufficiently
short amount of time. However, our scheduling strategies could be
extended to take advantage of preemption.

3. GPU Priority Scheduling

Work queues are widely accepted as the standard tool for task man-
agement on the GPU. They are used by software schedulers and
the GPU hardware scheduler, as shown in Figure 2. They can be
filled by the CPU and also directly by kernels executing on the
GPU [Jon12]. Work queues are further useful as they allow for work
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aggregation [SKB*14]. The goal of our work is to design a prior-
ity scheduling scheme that can integrate with and enhance these
existing practices. We identify the following set of requirements a
queueing system must fulfill to achieve this goal:

R1 While one application might require a single queue and permit
mixing different tasks, another application might need multiple
queues to aggregate tasks of different types.

Thus, priority scheduling mechanisms and the queuing back-end
must be customizable.

R2 When a multiprocessor requests work, the GPU-wide scheduling
must not block, as this would halt other multiprocessors concur-
rently requesting work.

Consequently, a separate, serial priority scheduler between
queues and multiprocessors cannot be used.

R3 Current strategies for GPU scheduling allow tasks to be generated
and inserted into the queues at any point by any thread on the
GPU. To avoid stalls, producers must be able to add work in
parallel without interference.

Hence, complex data structures that require locking whenever a
new task is generated are not an option.

R4 Peak performance can only be achieved if a multiprocessor does
not stop executing tasks unless all tasks have been processed.
Thus, execution must not be halted for priority scheduling, i.e.,
it is not possible to use periodic rebuilds of data structures or
very complex scheduling algorithms.

3.1. Hierarchical Buckets

To fulfill these requirements, we propose the use of multiple in-
stances of an efficient queue, organized into a hierarchical structure
of buckets. By making the hierarchy configurable by the application,
it is possible to cover a variety of scenarios. Every node of the con-
structed hierarchy can have an arbitrary number of children, i. e., it
is possible to place any number of buckets within another bucket.
Leaf nodes in the resulting tree, i. e., the final buckets, correspond
to queues holding tasks. Buckets can be limited to certain types of
tasks, allowing each queue to be optimized for the subset of data
types it has to hold. Adding an element to a bucket queue hierarchy
corresponds to walking down the tree until a leaf node is found and
pushing into the corresponding queue.

To demonstrate the merit of such a configurable system, we
have provided several examples in Figure 3: (a) The simplest con-
figuration corresponds to a single bucket containing all types of
tasks, which is analogous to previous-generation GPU command
queues and simple persistent threads approaches, as well as Soft-
shell [SKK*12]. (b) A one-level hierarchy with multiple child buck-
ets all taking the same task type corresponds to current-generation
GPU work queues. (c) A one-level hierarchy where every bucket
only accepts tasks of a single type corresponds to the behavior of
Whippletree [SKB*14]. (d) By using a two-level hierarchy, the first
level can implement a discrete set of priorities, while the second
level can collect tasks of different type. This way, it is possible to
combine priority scheduling and work aggregation. (e) In a more
complex setup, tasks for two different processes can be stored (PO
and P1). While PO enqueues all tasks indiscriminately, P1 supports
organizing tasks with different priorities. Note that in this example,
certain priorities are only assumed by particular tasks (high: red and
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Figure 3: Hierarchical bucket queues can (a,b) capture simple setups
similar to the work-dispatching mechanisms found on the GPU, (c)
collect tasks according to their type, (d) combine prioritization with
work aggregation, and (e) capture complex setups. Note that colored
buckets can be specifically optimized for the subset of datatypes
they are supposed to hold.

blue, mid: orange, blue, green, low: orange, green). At the lowest
level, the queues can distinguish between small tasks (S) that need
to be aggregated to fully utilize a multiprocessor and larger tasks
that can be stored in a combined queue (C) with other task types.

3.2. Customizable Priorities

While the fundamental concept of a queuing hierarchy enables a
variety of applications in itself, we need to define an efficient and
easy-to-use scheme for establishing priority scheduling on top of it.
Taking into account R2-R4, we propose a configurable, lightweight
priority scheduling model based on the observation that a persis-
tent threads megakernel fed from a queueing hierarchy enables the
following three forms of scheduling:
1. When a new task is generated, the bucket hierarchy is traversed
and the appropriate queue to store this task in can be selected.
2. When a multiprocessor finishes a task (or a set of tasks), the
bucket to retrieve the next task from can be selected.
3. During execution, a small number of maintainer threads can
update the queues by reorganizing elements in the background.

Given these possibilities, a variety of scheduling strategies can be
realized. Being able to choose one of several queues during enqueue
allows for (discrete) sorting according to arbitrary criteria. Being
able to choose which queue to dequeue from allows the system to
make decisions based on the current execution state, which might
have changed since the tasks were enqueued. For example, tasks
could be sorted into queues according to which process they belong

to when they are generated. As a working block dequeues the next
task, it could choose according to how much processing power
each process has consumed in the meanwhile to, e. g., achieve fair
scheduling. In addition to these fundamental control mechanisms,
dedicated maintainer threads can be deployed to continuously adjust
the order of tasks within queues according to a constantly changing
metric.

With our approach, we imagine all three forms of scheduling to be
freely programmable, similar to the way shaders bring programma-
bility to a graphics pipeline: before execution, task types are defined,
the bucket queue hierarchy is set up and user-defined callback func-
tions that implement each type of scheduling decision are registered.
These functions are called whenever (1) a new task is generated,
(2) a multiprocessor requests new data, or (3) during queue main-
tenance. Our current implementation employs a persistent threads
megakernel approach similar to Whippletree [SKB* 14], using their
basic megakernel with our own scheduling mechanism added in. We
also use their basic queue implementation in the leaves of the bucket
hierarchy. Note that any other persistent threads approach and queue
could be used instead.

3.3. Enqueue

Whenever a new task is generated, we want to enqueue it efficiently,
while still allowing for control by the application. Given that the
bucket hierarchy is known at compile-time, enqueue can be com-
pleted with a single traversal of the hierarchy. Callbacks registered
with every bucket in the hierarchy are called during traversal of
the tree to decide which sub-bucket to choose. When a leaf node is
reached, we enqueue the task into the corresponding queue.

Consider the example in Figure 3e: The callback for the first
bucket returns which process the task belongs to. In case the task
comes from P1, the next callback determines if it is of high, medium,
or low priority, before deciding if the task is large enough to be
stored in a combined queue or if it should be merged with others of
the same kind. Note that we could also only provide a single callback
determining the final queue. However, enforcing a hierarchy makes it
easy to reuse and extend an existing scheduling policy. For example,
if another process with a different set of queues is added, it will be
represented by a new branch under the first bucket, and no changes
to the remaining parts of the hierarchy are needed.

As long as the underlying queue implementation supports con-
current enqueue operations, our priority scheme fulfills R3. In case
that there is no space available in the queue, there are different
possibilities to recover. We can walk back up the hierarchy while
executing the callbacks with a limited set of possibilities, return that
the enqueue failed due to lack of free storage, or keep retrying the
enqueue operation until space becomes available. Since the first op-
tion is difficult to implement for the user and the third option bears
the risk of deadlocking, we opt for the second option and consider
the case of a failed enqueue an exception that the application has to
handle.

Tasks can also be generated from the CPU, e. g., via a traditional
kernel launch, or an initial set of tasks that initiate a more complex
dynamic algorithm. In this case, we can either traverse the bucket
hierarchy on the CPU and transfer the tasks to the appropriate queues
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on the GPU, or launch a kernel where each thread is responsible
for generating and enqueuing one or more tasks. While the first
option can generate tasks even while the persistent megakernel is
running [CVKG10], the second option allows to handle multiple
tasks in parallel. As the first option usually involves a performance
overhead and the Whippletree programming model only supports
the second, we also limit our implementation to that case.

To optimize the traversal process, we skip the evaluation of any
callbacks if there is only a single viable choice, e. g., a multi-bucket
setup where each bucket is constrained to a specific task type (com-
pare Figure 3c). Even if callbacks are evaluated, their execution is
usually very efficient, since the task’s payload will normally have
already been loaded into local memory and no additional memory
transactions are required. If the underlying system were to be imple-
mented in a hardware scheduler, we would still expect the callbacks
to be evaluated on the compute cores of the GPU. As task generation
(or kernel launches via Dynamic Parallelism) happens during kernel
execution, the thread generating the task can immediately perform
the traversal.

3.4. Dequeue

Similar to enqueue, we expect callbacks for dequeue to be registered
with every bucket. When a multiprocessor finishes its previous work
and requires new tasks to be dequeued, a possible solution would
be to traverse the hierarchy top-down. However, empty queues are
to be expected a common case during dequeue, especially with a
large number of buckets, prolonging the search for available tasks.
Furthermore, due to the SIMD nature of execution on the GPU, there
is always at least a full warp of threads available when fetching new
tasks. Hence, we can make use of these otherwise idle threads to
implement a parallel bottom-up traversal for dequeue: every thread
starts at a different leaf and walks up the hierarchy. At each bucket,
the information coming from each of its children is combined by the
respective callback until the final scheduling decision is computed
at the root. This whole process basically corresponds to a parallel
reduction.

Once the queue to dequeue from has been chosen, we compute
the number of tasks to be fetched such that the currently available
threads on the multiprocessor all receive sufficient work. Next, we
try to dequeue the respective number of tasks from the queue. How-
ever, other worker blocks may have consumed all tasks from that
queue during the time spent in traversal. In this case, we restart
the dequeue process and mark the now empty queue. We found
this trial-and-error approach to be much more efficient than locking
queues during traversal (R2).

The bottom-up approach is not only more efficient when dealing
with a large number of queues, but turns out to be a good approach
for implementing many more complex scheduling strategies in gen-
eral. Consider two single-threaded task types, each having its own
bucket—one high priority, the other low. Assume that there is one
task in the high priority queue and several in the low priority queue.
A sophisticated scheduler might want to choose to execute multiple
low priority tasks instead of a single high priority task, as it can
make better use of the available processors. If we used a naive top-
down traversal, it would be difficult to implement such a behavior
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Figure 4: Dequeue example: (1) the callback for the leaf buckets
returns the number of elements in the queue; (2) the callback for the
inner buckets selects the queue with the highest element count; (3)
the root bucket selects the child with the highest priority reporting a
non-empty queue. In this example, dequeue would choose the green
bucket with MID priority.

across multiple hierarchy levels, as this would require descending
into every leaf and keeping track of all the results computed along
the way. With the bottom-up approach, however, such behavior can
be achieved in a very simple and natural way.

If this bottom-up scheme were to be implemented in hardware,
we would also consider performing the traversal on the compute
units of the GPU, since that would make the full instruction set
available to the callbacks. Considering that some warps usually
finish before others, there is potential to hide the added latency from
the evaluation of the callbacks, by having the first warp to complete
the previous task immediately start evaluating the dequeue callbacks.
This is likely to lead to new tasks already being available as soon as
the remaining warps complete.

3.5. Maintain

While a large number of important scheduling strategies can be
implemented by enqueuing and dequeuing logic alone, there are
cases that require changing the order of elements already in queues,
i. e., sorting the queues. While fully sorting the queues is not a viable
option (cf. R4), Steinberger et al. [SKK*12] showed that progressive
sorting can be used to gradually rearrange queue contents in a non-
blocking fashion. We adopt this approach, allowing each queue to
be flagged for automatic maintenance by registering a callback for
it. Given a task that is currently stored in the queue, the callback
must return a numerical priority value that can be used for sorting.

If any queue is marked for maintenance, we dedicate a config-
urable number of GPU threads to continuous sorting. Instead of
sorting the entire queue at once, only tasks within a limited sorting
window are considered at each point. A sorting pass progressively
advances the sorting window from the back of the queue to the
front, as proposed in the original approach [SKK*12] and outlined
in Figure 5. Once a sorting pass is finished, sorting is restarted at
the back of the queue. To avoid stalling dequeue operations, we
uphold a safety margin to the very front of the queue. Multiple
queues are handled by simply cycling through them. Some queues,
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Figure 5: Progressive sorting of a queue using a sorting window
(orange) with safety margin to the front, while tasks are concurrently
removed from the queue; time steps (a)-(f): (a) for all tasks in the
sorting window, the callback delivers priorities (dark blue to white);
(b) the returned values are sorted locally; (c) tasks are exchanged
according to the local sorting; (d) the sorting window is advanced to
the front; (e) the next segment is sorted; (f) the safety margin reaches
the front of the queue, sorting cannot continue without stalling the
execution and must be canceled and restarted at the back.

however, might require more attention than others. Therefore, we
record the actual number of exchange operations carried out during
one sorting pass and the number of new elements received since
last restarting the sort. Using these values, we prioritize the sorting
of those queues which we expect to contain the highest number of
unsorted elements.

In practice, we reserve a single GPU worker block to be used as a
dedicated maintainer. For an integration with a hardware scheduler,
a programmable unit would be required if the callback needs to be
reevaluated during each sort, i. e., if priorities of queued tasks are
allowed to change. In this case, we would suggest assigning a small
block of threads to maintenance, similar to the current software ap-
proach. However, if priorities are static, dedicated maintainer threads
can be avoided. Instead, the priority of each task can be computed
when it is enqueued and stored alongside the task. The priorities can
then be read from memory and sorting can be implemented by a
hardwired unit instead.

3.6. Application Programming Interface

Since we use Whippletree’s execution model, our API builds upon
its template-based CUDA/C++ interface. In Whippletree, a task can
be defined as follows (slightly simplified):

1 | struct Task f{

2 static const int NumThreads;
3 typedef int Payload;
static

4 __device__
5 void execute(int tid, Payload& data);

v }s

When chosen for execution, the task’s execute method is called
by the requested number of threads, all receiving the dequeued
payload as input.

Following the spirit of a C++ interface, the bucket hierarchy and
callback functions are also set up using templates in the API we
provide. Both buckets (Bucket) and queues (Queue) expect a
template class that specifies the callback functions:

1 | template<class LeafCB, class... Tasks>

2 | struct Queue;

4 |template<class BucketCB, class.. Children>
5 | struct Bucket;

For leaf nodes, two callbacks can be provided:

1 struct LeafCallback ({

2 template <class Queue>

__device__ static

CustomType checkLeaf(const Queue& q);

template <class Task>
device static

8 Comparable maintain (Task:: Payload& data);
9 };

The checkLeaf callback is called during dequeue and provides
the information that is propagated up the hierarchy. The maintain
callback is optional. Only if it is present will the maintainer attempt
to sort the queue. Note that the return value of this method can be
chosen freely, the only requirement is that a suitable comparison
operator exists.

The bucket’s t raverse callback for enqueuing and its propa—
gate callback for dequeuing have the following signature:

struct BucketCallback {
template <class Task>
int traverse (Task::Payload& data);

w N -

4

6 1}

int propagate (CustomTypex infos);

Note that t raverse itself is a template and can be specialized for
different tasks. Also note that CustomType can be of any type as
long as it is compatible with the return type of checkLeaf.

Once a user has set up the callback functions, the queuing hierar-
chy can be established. The following example shows how Figure 3d
can be defined with just a few lines of code, using the callback def-
initions LeafHasData, RoundRobin, and Discrete, which
we discuss in the upcoming section:

1 | typedef Queue<LeafHasData, Taskl> Queuel;
2 | typedef Queue<LeafHasData, Task2> Queue2;
3 | typedef Queue<LeafHasData, Task3> Queue3;
4 | typedef Bucket<RoundRobin<3, AlwaysFirst>,
5 Queuel , Queue2, Queue3> B3;

6 | Bucket<Discrete <3>, B3, B3, B3> Root;

Note that each queue only stores the payload for a single task type.
B3 defines a bucket that has three queues as children. By adding
B3 three times to the root node, three instances of B3 are created as
immediate sub-buckets of the root.

Given the bucket hierarchy root node, our implementation gen-
erates the scheduling logic from the user-provided callbacks and
combines it with the task execute functions into a megakernel. If
at least one maintainer callback is provided, additional routines are
added to the megakernel for turning the block with id *0’ into the
maintainer upon kernel launch.
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4. Scheduling Policies

We now show how the discussed queuing framework can be brought
to use in practice. First, we demonstrate how simple scheduling
mechanisms, e. g., discretized prioritization and round-robin can be
set up with bucket queues. After that, we focus on more advanced
examples such as fair scheduling, earliest-deadline-first, and user-
defined policies, and compare our results to previous work. For
our evaluation, we used an Intel i7-4771 with 16GB RAM running
Windows 10 and an NVIDIA Geforce GTX 980Ti.

4.1. Discretized Priorities

A simple way to build priority scheduling is using a fixed number
of buckets, each for a different priority. Whenever a new task is
created, its priority value is computed and it is inserted into the
appropriate bucket. During dequeuing, available buckets are probed
in descending order of priority. Assuming priorities, e. g., in the
range [0,1), we discretize them linearly according to the overall
number of buckets (see Figure 6). The corresponding callbacks are
straightforward to set up:

I | template<int NumChildren>

2 | struct Discrete {

template <class Task>

__device__ static

int traverse (Task:: Payload& payLoad){
return payLoad. priority * NumChildren;

o U W

7 }

8 __device__ static

9 int propagate(bool* infos) {

10 for(int i = NumChildren—1; i >= 0; --i)
11 if (infos[i])

12 return i;

13 return 0;

14 }
15 |}

1 | struct LeafHasData {

2 template <class Queue>
__device__ static

4 bool checkLeaf(const Queue& q){
return q.count() > 0;

6l )

Tk

traverse discretizes the priority and returns the id of the bucket
with appropriate priority. checkLeaf determines if data is avail-
able in the queue, and propagate runs through the buckets in
descending order of priority, choosing the first non-empty bucket.

4.2. Round-Robin

Another common strategy that is straightforward to implement is per-
multiprocessor round-robin. Consider a setup with one root bucket
and an arbitrary number of sub-buckets that should be executed in
a round-robin fashion. Every multiprocessor stores the id of the
last sub-bucket chosen for dequeue in shared memory. During each
invocation of the propagate method, the id is incremented to identify
the next bucket for dequeuing.
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Figure 6: Discretized priorities can be configured with very sim-
ple callback functions. During enqueue, the appropriate bucket is
chosen, while dequeue takes tasks from the bucket with the highest
priority that is not empty.

1 | template<int NumChildren, class Traverser>
2 | struct RoundRobin public Traverser {

3 __device__ static

4 int& getLast(){

5 __shared__ int last;

6 return last;

‘ }

8 __device__ static

9 int propagate (bool* infos){

10 int &next = getLast();

11 next = (next + 1) % NumChildren;

12 for(int i = 0; i < NumChildren; ++i){
13 if (infos[next])

14 return next;

15 next = (next + 1) % NumChildren;

6 }

17 return O;

18 }

19014

Note that the Round-Robin class requires another class as template
argument that is supposed to provide the t raverse method. De-
riving the scheduling policy from a custom template facilitates the
reuse of existing Round-Robin mechanics for dequeue and mixing
them with any kind of enqueue policy. The initial queue is chosen
randomly through additional operations that have been omitted here
for the sake of brevity. For better control, we support an optional
initializer method that is called right after kernel launch.

4.3. Fair Scheduling

In a system that supports the execution of multiple processes, one
common goal is to provide a fair scheduler to assign an equal amount
of processor time to each process. A process can either be an indi-
vidual task that is respawned multiple times, or an entire group of
different tasks that are capable of instancing each other. We consider
two solutions for fair scheduling with our framework, by either
using multiple separate buckets or a single sorted bucket.

Separate Buckets A first way to implement fair scheduling is by
using separate sub-buckets that are pooled by a fair-scheduling root
bucket. To implement this concept, we associate a counter with each
sub-bucket and record the total time that processes from this bucket
have consumed so far. During dequeue, the fair scheduling bucket
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selects the child whose counter is currently lowest. Keeping track of
the total time consumed allows us to either assign equal compute
times to all buckets or enforce predefined target quotas for individual
processes.

Sorted Bucket Alternatively, quota-driven fair scheduling can also
be set up by utilizing the queue maintainer. Mixing all tasks in
the same queue, we can simply use the deviation in runtime from
their desired target quota as sorting criterion. However, as sorting
the queues takes time and the priorities are constantly changing,
scheduling might significantly lag behind.

To measure the time spent on each task, we queried the built-
in cycle counter present on each multiprocessor before and after
executing a task. Note that this measure is not guaranteed to capture
the exact time a task was actually executing instructions, as the
hardware warp scheduler switches between all warps present on
a multiprocessor based on their ready state. Thus, all tasks being
executed on the same multiprocessor can influence the execution
time measure of each other. If a more accurate time measurement
is needed, the megakernel can be configured to use a single, large
thread block per multiprocessor. Whippletree can then make uniform
scheduling decisions among the entire multiprocessor, and all tasks
executed concurrently belong to the same bucket. In this case, the
consumed clock cycles capture the time an entire multiprocessor
was assigned to a certain process and the measurements can be
considered fair.

Evaluation To evaluate both fair scheduling implementations and
compare our approach with previous work, we set up five processes
and launched 1 000 initial tasks for each. Each task was primed to
execute a random number of fused-multiply-add (FMA) instructions
and memory (MEM) operations to simulate diverse workload char-
acteristics. In order to evaluate how behavior is influenced by the
overall rate at which scheduling decisions need to be made, we set
up two scenarios to generate different per-task loads: 500 FMA +
5 MEM and 8 000 FMA + 80 MEM on average. After executing,
each task immediately enqueued a copy of itself to ensure that the
system remained fully occupied. We recorded 10 000 scheduling
decisions, capturing the time spent on each process. To measure
the overhead of scheduling, we executed the same tasks with con-
ventional CUDA kernel launches and recorded the difference to the
average task throughput. We compared bucket queuing with Whip-
pletree [SKB* 14] without scheduling and Softshell [SKK*12] with
priority sorting as references. The results are shown in Figure 7.

Results obtained from Whippletree indicate that handling light-
weight tasks with 500 FMA and only a few memory transactions
provide a challenging scenario for dynamic scheduling approaches.
The overhead of storing and fetching task payloads in a queue led
to a slowdown of about 20% in comparison with CUDA. However,
in the 8 000+80 scenario, the overhead became negligible. Whip-
pletree follows a simple FIFO approach and thus did not consider
the desired quotas (dotted lines), assigning processing resources to
one task after the other. Using the maintainer (Sorted Bucket) shows
that progressive sorting caused hardly any overhead compared to
Whippletree (less than 2%), which is not surprising, considering
that only one out of 88 employed thread blocks was used for sorting
on the Geforce GTX 980Ti. In the 500+5 scenario, sorting did not
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Figure 7: Quota driven scheduling with target time quotas (dashed
lines) of 7%, 13%, 20%, 27% and 33%. Efficacy and overhead of
our framework are compared against Softshell and Whippletree for
reference. While separate buckets can quickly adjust the scheduling
to match the desired quota, sorting takes significantly longer and
oscillates around the targets.

meet the quotas within 10 milliseconds, since tasks were consumed
too quickly from the front of the queue to enable thorough sorting in
the back. In the 8 000+80 scenario however, scheduling converged
after approximately 100 milliseconds with noticeable oscillations
around the target quotas. Softshell uses dynamic memory alloca-
tion for the payload and a hash map to combine payloads. Thus,
its overhead is immense in comparison to a simple CUDA kernel
(only 20% and 25% achieved throughput). However, as expected,
its scheduling strategy (although slower) behaves similar to the sort-
ing implemented by the maintainer. Using separate buckets clearly
achieved the best scheduling behavior in the examined scenarios. In
comparison with Whippletree’s FIFO execution, a slight increase in
scheduling overhead could be observed in both scenarios, which we
ascribe to the additional effort of checking multiple queues during
dequeue.
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4.4. Earliest-Deadline-First

Earliest-deadline-first is a common strategy in hard real-time sce-
narios, where all processing power is dedicated to the job with the
closest deadline. Using our bucket queuing framework, we find mul-
tiple ways to implement earliest-deadline-first scheduling. As our
first approach, we can set up a maintainer that sorts tasks according
to the deadline of their associated job (Sorted). Second, we simply
use separate buckets for each job and always choose the job with
the earliest deadline (PerJob). Third, given an application that takes
a known, finite amount of time to run, we can discretize the entire
runtime into buckets (Discretized). Hence, each bucket corresponds
to a specific time frame of the program’s execution and tasks can
be enqueued accordingly, while dequeue will always draw from
the bucket with the closest upcoming deadlines. All tasks within a
bucket must be executed before its associated time frame passes to
ensure that no task deadline is missed.

In many applications, tasks that failed to meet their deadline can
generally be skipped. Thus, as an optimization of our third approach,
we can still work in discretized time but instead keep a ringbuffer of
buckets that only holds tasks up to a certain interval into the future
(WrapAroundBuckets). As time progresses, the oldest buckets can
then be reused for upcoming deadlines.

Evaluation To test earliest-deadline-first scheduling, we ran a con-
troller block separate from the megakernel to periodically create
tasks for six recurring task types at intervals between 1ms and 8ms.
For each task type, between one and four tasks were recurrently
created, each running between 0.1ms and 4ms to execute a mixture
of FMA and MEM instructions. Each scheduling algorithm was
evaluated by gradually increasing the number of tasks by up to a
factor of 128 of the initial load and measuring how many tasks
still completed within their deadline. For WrapAroundBuckets, we
used a future window of 10ms and 256 buckets. Again, we compare
overall behavior and performance to both Whippletree and Softshell.
The results for these tests are shown in Figure 8.

Except for Softshell, all approaches managed to respect dead-
lines for low workloads. Unfortunately, Softshell’s overhead was
simply too high to cope with a load multiplier above 1. Tasks were
issued periodically one interval’s time before the deadline. Thus,
their occurrence, to a certain extent, followed the deadline and
simple FIFO scheduling (employed in Whippletree) with its lower
overhead could keep up with the other approaches. However, at
higher loads (starting at a load multiplier of about 30), differences
emerged. Whippletree and Discretized did not (or could not) iden-
tify the job with the closest deadline and were the first approaches
to miss deadlines. Soon after, PerJob and Sorted also dropped in
performance. PerJob’s drop is comparatively steep, which can be
explained by the fact that PerJob still tries to schedule tasks that
already missed their deadline. Also, PerJob showed a relatively high
overhead, which we ascribe to the necessity of finding the queue
with the earliest deadline to dequeue items. However, the average
lateness increased similarly for Discretized, Whippletree, PerJob
and Sorted. WrapAroundBuckets performed better than all other
approaches, with comparatively high ratio of tasks on time and ex-
hibiting a smaller increase in average lateness with increasing load.
It is the only approach that clearly outperformed the simple FIFO
scheduling implemented by Whippletree.
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Figure 8: Earliest-deadline-first results for different scheduling im-
plementations with details on the bottom. (left) The fraction of tasks
executed on time by each method as the workload increases. (right)
The average lateness shows by how much time on average tasks
miss their deadline. The minimum and maximum lateness for each
method is overlayed as well.

4.5. Application Defined Priorities

Finally, we evaluated the capabilities of bucket queues in applica-
tions that involve tasks with arbitrary priorities. A possible example
for such a scenario can be given by any adaptive algorithm where
the importance of a particular operation is difficult or impossible
to predict in advance, e. g., Reyes-style subdivision or adaptive im-
age sampling. We compared the performance of queue sorting to
discretized-priority buckets. In our test setup, we launched W initial
tasks and assigned uniformly distributed, random priorities to them.
Every task executed a variable workload of FMA and MEM opera-
tions and spawned another task with a random priority. This way,
an average of W tasks were contained within the queuing structure
at all times during the evaluation. We recorded the order in which
tasks were executed, as well as their associated priority. The test was
stopped as soon as N tasks had finished. We computed the achieved
scheduling accuracy as
s 1 N W
= . §i s
NW —1) ,-;),-:o bl
where i and j may represent any two tasks that were simultaneously
queued for execution. s; j = 1 for tasks i and j, iff the task with
the higher priority was chosen first; otherwise, s; ; = 0. Note that
the restriction to simultaneously enqueued tasks is necessary for a
meaningful assessment, since a high-priority task n that was only
generated after a low-priority task m finished could not possibly be
processed before m. For random priorities, no scheduling at all leads
to an expected accuracy of ~50%. If all elements are executed in the
correct order, scheduling accuracy equals 100%. As multiprocessors
execute in parallel, 100% accuracy may never be reached in practice.

Evaluation The measured scheduling accuracy is shown in Fig-
ure 9. As reference for comparison, we again include Softshell and
Whippletree. Softshell and Bucket Sorted exhibited similar behav-
ior. Queue sorting turned out to be ineffective under low and high
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Figure 9: Scheduling accuracy with varying task execution times
(FMA+MEM Softshell and Bucket Sorted) and threads per block.
Bucket queues either use 16 or 128 buckets.
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Figure 10: Softshell shows up to 10x the execution time of the other
approaches. Bucket Sorted and Buckets 16 show only a small exe-
cution time overhead. Using a high number of buckets without our
upward propagation optimization significantly increases execution
time (up to 2x).

loads. With only a few elements in the queue, sorting was not able to
start as there was no sufficient safety margin and thus the achieved
accuracy was about 50%. On the other hand, with a high number
of elements in the queue, progressive sorting was not fast enough
to move high priority elements to the front. Consequently, sorting
accuracy quickly deteriorated with rising number of elements in
flight W. The comparably high scores recorded for Softshell are
misleading; due to its immense scheduling overhead, a lot more
time could be spent on sorting relative to time spent on task execu-
tion and thus higher accuracies were achieved for the same W. The
performance of these two techniques is also dependent on the task
duration, since long-running tasks (e. g. 4096+16 or 16394+64) are
dequeued less frequently, and, thus, remain longer inside the queue
and undergo additional sorting passes. In contrast, the accuracy of
Buckets was not affected significantly by task runtime, nor by W.

We observed a slight drop in performance for very large W. Since
discretized prioritization leads to fast consumption of high-priority
tasks, a larger number of tasks accumulated in low-priority queues
and could not be accurately distinguished. Overall, the error of
bucket queues approximately equaled the expected discretization
error. With 16 buckets, we achieved an accuracy of up to 94%; with
128 buckets, this figure rose to 99%. Bucket Sorted only achieved
such high accuracies with more than 512 threads being used for
sorting, and about 10000 elements in the queue. Since Whippletree
does not consider priorities in its scheduling at all, it yielded an
accuracy of 50%. Softshell failed to run to completion for 512 and
1024 threads per block.

The impact on execution time is shown in Figure 10. The log-
scale plot demonstrates that Softshell took roughly ten times longer
than all other techniques to finish any of the test cases. Bucket
Sorted again only added a small overhead to the execution time
compared to Whippletree. As Buckets did not run a sorting algo-
rithm, it conserved more bandwidth and processing power for task
execution. However, with an increasing number of buckets, more
time was spent on traversing the bucket hierarchy. Processing the hi-
erarchy top-down with only a single thread (Buckets noopt) instead
of bottom-up (see Section 3.4) more than doubled the execution time
(256+1 and 4096+16). Using our bottom-up approach (Buckets), the
overhead was significantly reduced, underlining the usefulness of
this design choice in the first place. In this case, the 16 bucket ver-
sion reached execution times on par with Whippletree and achieved
a scheduling accuracy of up to 94%.

5. Use Cases

To show that hierarchical bucket queuing is applicable to rendering,
we present two use case scenarios: micropolygon rendering and path
tracing. For both applications, we assume soft real-time constraints.

5.1. Micropolygon Rendering

Virtual reality applications demand low-latency, high-resolution
image synthesis, especially when using an HMD output device.
Frame latency is a particularly sensitive issue in such applications
and must be kept below a certain threshold. One potential way to
address this problem would be to use a rendering method that allows
gradual refinement of the image until the deadline for maximum
tolerable latency expires, thus maximizing the image quality within
a given timeframe.

One rendering technique that produces such gradual refinement
is micropolygon rendering, as used in the Reyes pipeline [CCC87].
While Reyes-style micropolygon rendering has been implemented
on the GPU before [TPO10,SKB* 14], using our priority scheduling,
we can now take advantage of foveated rendering [CCLO02] to sig-
nificantly improve image quality by prioritizing refinement around
the user’s fixation point.

Ideally, we want a smooth transition from fine to coarse patches
and reasonable visual quality throughout the entire image to avoid
popping artifacts during motion. For each patch, we evaluate its split
priority based on its projected patch size and distance to the current
fixation point, thus prioritizing large patches that are close to the fix-
ation point. Dynamic priority scheduling is essential in this example,
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Figure 11: Foveated micropolygon rendering. (a) The color intensity
on the right side indicates the degree of subdivision applied, which
is highest at the fixation point (yellow ring mark) and gradually
falls off with increasing distance. (b) Schematic visualization of the
bucket queue setup to achieve the desired prioritization.

since we cannot predict the projected extents of all patches resulting
from recursive splits in advance. Building on the Whippletree Reyes
implementation [SKB* 14], we set up a three-level bucket hierarchy,
as shown in Figure 11b. The first bucket distinguishes between split
tasks and all other task types. It prioritizes the execution of the initial
bound tasks, shading and dicing over patch splits. This leads to an
early creation of all initial split tasks and drains the pipeline of all
intermediate data that is ready to be rendered. On the second level,
split tasks are inserted into discretized priority buckets. Below each
priority bucket, a round-robin scheduler switches between splits
along the u and v direction, which are implemented as separate tasks.
Before we enqueue patches to be split, we check if the procedure is
likely to execute before the target latency is reached. If this is not
the case, we stop the recursion and directly forward the patch to the
dicing and rendering stages. For time measurement we again rely on
the per-multiprocessor cycle counts, which we synchronize before
each frame by writing their current state to a global buffer.

We test our approach with two animated scenes: Killeroo and Tea,
shown in Figures 1 and 11, as well as our supplemental video. We
chose a viewport with a resolution of 3840 x 2160. Conventional
Reyes rendering of the Killeroo scene at full image quality takes
between 30ms and 60ms, the Tea scene takes between 15ms and
22ms. With foveated rendering, we can limit the Killeroo scene to a
guaranteed 20ms and the Tea scene to 10ms by adaptively generating
full image quality only around the fixation point and lower quality
in the remaining image. Figure 12 demonstrates the details of our
approach for the Killeroo scene.

5.2. Pathtracing

While Monte Carlo pathtracing on the GPU is becoming increas-
ingly popular, generating high-quality images quickly remains a
challenging task due to the notorious noise, which is most promi-
nent in the early stages of image synthesis. For implementations on
the CPU, adaptive, priority-based solutions have been proposed to
reduce noise and enhance image quality with a low sample budget,
e. g., by distributing more samples to image regions with a high
estimated local error [HIW*08, ODR09]. Since the error estimate
and the rate of convergence in an image region may change with
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(e) Splits: full quality (f) difference enhanced 200 x
Figure 12: (a, top) Using the projected patch size as priority, the
processing power is distributed evenly; (a, bottom) using the distance
to the focus point instead leads to very localized refinement. (b) A
combination of both creates a reasonable falloff. (c and e) A full-
quality render pass produces high geometric detail, but consumes
a considerable amount of time. Using foveated rendering, only the
focus area (red ring mark) is rendered at full quality but image
generation is sped up significantly. (f) Visualization of the difference
between full quality and foveated rendering.

each new sample, adaptive sampling usually relies heavily on a
continually maintained priority queue to always identify the region
with the highest error estimate before casting new samples.

Porting the adaptive sampling approach to the GPU is non-trivial,
since massively parallel execution generally provides little support
for efficient and adequately sorted queues. However, with bucket
queue scheduling, different prioritization schemes can efficiently be
incorporated. As a demonstration, we implemented a path tracer for
static scenes, with support for low-discrepancy sequence sampling,
depth-of-field (DOF) and an arbitrary number of light sources. Our
implementation uses a single task type, which casts four rays with a
random number of maximum bounces for each pixel upon execution.
To avoid write conflicts, each task is assigned to a dedicated 8§x8
pixel region of the output image. On completion, each task enqueues
a copy of itself, thus allowing the persistent thread blocks to con-
stantly fetch new work for execution. This approach has been shown
to achieve high occupancy on GPUs [AL09]. We force the persis-
tent threads execution to pause every 50ms to display the current
image via OpenGL. Using this one task in Whippletree establishes
our base-line implementation, which, in practice, performs uniform
sampling of the image domain.



B. Kerbl, M. Kenzel, D. Schmalstieg, H.P. Seidel and M. Steinberger / Hierarchical Bucket Queuing on the GPU

(a) Chessboard scene with DOF (b) Sample distribution
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Figure 13: Comparison of uniform and adaptive sampling using the
expected gain error estimate as priority. (a) Pathtraced chessboard
scene with DOF and 9 light sources rendered at resolution 1024 x
750. (b) Sample distribution with prioritization after 4s, brighter
means more. (c,d) Comparison of the result of uniform and adaptive
sampling after 4s to ground truth (2048 samples/pixel) in marked
regions: left: ground truth; center: uniform; right: adaptive.

In order to enable adaptive sampling through prioritization, we
set up a single-level hierarchy with 128 individual buckets. The
priority of each task is computed based on an error metric and
discretized into these 128 buckets. To evaluate our approach, we
test two different per-pixel error metrics. First, we use the expected
error reduction constructed around the Monte-Carlo error estimate

E x 6/v/N:

o o
AE R —— — ——

VN N+4

where ¢ is the current variance estimate over all N samples for
a pixel so far. We call this error metric ’expected gain’. Second,
we use the error metric devised by Mitchell [Mit87] for obtaining
antialiased images. Per-pixel estimates are added up to obtain the
local error estimate for a 8 x 8 region. Both metrics require at least
two samples to compute an initial variance estimate. Thus, we set
the priority of the initial tasks to the maximum, forcing four samples
to be computed for each pixel before relying on priorities for further
sampling.

Figure 1 and 13 outline the adaptive behavior when using the ex-
pected gain metric for sampling the scenes. At equal run times, our
prioritized rendering clearly reduces noise in comparison with uni-
form sampling. In Figure 14, we show the development of the mean
squared error (MSE) over time for the two prioritization schemes
after the initial four samples have been computed. Adaptive sam-
pling quickly reduces the MSE by up to 45% for the Chessboard
scene and 35% for the Sponza scene when compared with uniform
sampling. While both metrics perform equally well for low sample
counts, the expected gain metric seems to perform slightly better at
early frames, but loses its advantage after the initial noise has been
cleared up.
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Figure 14: Progression of the MSE during path tracing. (a, c) With
priority scheduling, the MSE reduces more rapidly. (b, d) The ra-
tio of the MSE relative to baseline uniform sampling shows that
prioritized sampling reduces the MSE by up to 45% in early frames.

6. Conclusion and Future Work

Using hierarchical bucket queues on the GPU, it is, for the first
time, possible to set up a variety of scheduling policies directly
on the GPU. Bucket queues can be tailored to the needs of the
application, not only for priority scheduling, but also to combine
tasks or integrate multiple processes into a single scheduler. Bucket
queues are easily configured by defining a small number of callback
functions. They enable simple scheduling strategies, like FIFO or
round-robin scheduling, as well as more complex strategies, like
earliest-deadline-first or fair scheduling. According to our tests,
priority scheduling using bucket queues always outperformed pre-
vious approaches based on sorting, making it the preferred choice
on the GPU. We integrated our bucket queues into the Whipple-
tree [SKB™14] framework and were able to show that even in chal-
lenging situations our approach only adds a small overhead (between
1% to 5%) compared to the original Whippletree. While being di-
rectly applicable to any persistent threads approach, our design also
lends itself well to a potential implementation in hardware.

Rendering can also profit from priority scheduling as we have
demonstrated for latency controlled, foveated micropolygon render-
ing and priority-driven pathtracing. Foveated rendering is enabled by
the ability to direct the processing power to a focus region. With path
tracing, prioritizing the image areas that are expected to reduce the
image error the most can reduce the difference to the ground truth by
up to 45% in comparison to uniform sampling. While priority-based
rendering is certainly interesting for future virtual reality systems, it
will require additional work to integrate priorities deeper into the
rendering pipeline. Actually, we believe it is necessary to rethink
the execution of rendering pipelines on the GPU, including dynamic
sample distributions and adaptive geometry refinement. To this aim,
we believe an experimentation framework for designing rendering
pipelines is needed, including a priority scheduler similar to ours.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, M. Kenzel, D. Schmalstieg, H.P. Seidel and M. Steinberger / Hierarchical Bucket Queuing on the GPU

Acknowledgements

This work was partially funded by FFG (contract 849901) and EU
FP7 (contract 611526), and supported by the Max Planck Center for
Visual Computing and Communication. The chess scene in Figure
13 was first presented in the work of Hachisuka et al. [HIW*08] and
was modeled by Wojciech Jarosz.

References

[ALO9] AILA T., LAINE S.: Understanding the efficiency of ray traversal
on GPUs. In Proc. High Performance Graphics (New York, NY, USA,
2009), HPG *09, ACM, pp. 145-149. 2, 11

[BGO9] BELL N., GARLAND M.: Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proc. High Perfor-
mance Computing Networking, Storage and Analysis (New York, NY,
USA, 2009), SC *09, ACM, pp. 18:1-18:11. 2

[BK12] BASARAN C., KANG K.: Supporting preemptive task executions
and memory copies in GPGPUs. In Proc. Euromicro Conference on
Real-Time Systems (Washington, DC, USA, 2012), ECRTS ’12, IEEE
Computer Society, pp. 287-296. 2

[Brel0] BREITBART J.: Static GPU threads and an improved scan algo-
rithm. In Proc. Conference on Parallel Processing (Berlin, Heidelberg,
2010), Euro-Par ’10, Springer Berlin Heidelberg, pp. 373-380. 2

[CCC87] CoOK R. L., CARPENTER L., CATMULL E.: The Reyes image
rendering architecture. SSIGGRAPH Comput. Graph. 21, 4 (Aug. 1987),
95-102. 10

[CCLO2] CATER K., CHALMERS A., LEDDA P.: Selective quality render-
ing by exploiting human inattentional blindness: Looking but not seeing.
In Proc. ACM Symposium on Virtual Reality Software and Technology
(New York, NY, USA, 2002), VRST *02, ACM, pp. 17-24. 10

[CGSS11] CHATTERIJEE S., GROSSMAN M., SBIRLEA A. S., SARKAR
V.: Dynamic task parallelism with a GPU work-stealing runtime sys-
tem. In Proc. Languages and Compilers for Parallel Computing (Berlin,
Heidelberg, 2011), LCPC 11, Springer Berlin Heidelberg, pp. 203-217.
2

[CTO8] CEDERMAN D., TSIGAS P.: On dynamic load balancing on
graphics processors. In Proc. Symposium on Graphics Hardware (Aire-la-
Ville, Switzerland, 2008), GH ’08, Eurographics Association, pp. 57-64.
2

[CVKG10] CHEN L., VILLA O., KRISHNAMOORTHY S., GAO G.: Dy-
namic load balancing on single- and multi-GPU systems. In Proc. Parallel
Distributed Processing (2010), IPDPS ’10, IEEE, pp. 1-12. 2,5

[EA12] ELLIOTT G., ANDERSON J.: Globally scheduled real-time multi-
processor systems with GPUs. Real-Time Systems 48, 1 (2012), 34-74.
2

[Har04] HARGREAVES S.: Generating shaders from HLSL fragments. In
ShaderX3: Advanced rendering with DirectX and OpenGL. Charles River
Media, Inc., Rockland, MA, USA, 2004. 3

[HIW*08] HACHISUKA T., JAROSZ W., WEISTROFFER R. P., DALE
K., HUMPHREYS G., ZWICKER M., JENSEN H. W.: Multidimensional
adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph.
27,3 (Aug. 2008), 33:1-33:10. 11, 13

[Hunl5] HUNT W.: Virtual reality: The next great graphics revolution.
High Performance Graphics, Keynote, 2015. 1

[Jon12] JONES S.: Introduction to dynamic parallelism. Nvidia GPU
Technology Conference, May 2012. 3

[KG15] KHRONOS-GROUP: The OpenCL specification 2.1, 2015. 2

[KLK*11] KATO S., LAKSHMANAN K., KUMAR A., KELKAR M.,
ISHIKAWA Y., RAJKUMAR R.: RGEM: A responsive GPGPU execution
model for runtime engines. In Proc. Real-Time Systems Symposium (Wash-
ington, DC, USA, 2011), RTSS ’11, IEEE Computer Society, pp. 57-66.
2

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

[KLRI11] KATO S., LAKSHMANAN K., RAJKUMAR R., ISHIKAWA Y.:
Timegraph: GPU scheduling for real-time multi-tasking environments. In
Proc. USENIX Annual Technical Conference (Berkeley, CA, USA, 2011),
USENIXATC ’11, USENIX Association, pp. 2-2. 2

[LAF14] LEE H., AL FARUQUE M.: GPU-EvR: Run-time event based
real-time scheduling framework on GPGPU platform. In Proc. Design,
Automation and Test in Europe Conference and Exhibition (2014), DATE
’14, IEEE, pp. 1-6. 2

[LKA13] LAINE S., KARRAS T., AILA T.: Megakernels considered
harmful: Wavefront path tracing on GPUs. In Proc. High-Performance
Graphics (New York, NY, USA, 2013), HPG *13, ACM, pp. 137-143. 3

[Mit87] MITCHELL D. P.: Generating antialiased images at low sampling
densities. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 65-72. 12

[MLH*12] MEMBARTH R., LUPP J.-H., HANNIG F., TEICH J., KORNER
M., ECKERT W.: Dynamic task-scheduling and resource management
for GPU accelerators in medical imaging. In Architecture of Computing
Systems, vol. 7179 of ARCS ’12.2012, pp. 147-159. 2

[Nvi08] NVIDIA C.: Programming guide, 2008. 2

[Nvil2] NvVIDIA: Next generation CUDA computer architecture Kepler
GK110,2012. 2

[ODR0O9] OVERBECK R. S., DONNER C., RAMAMOORTHI R.: Adaptive
wavelet rendering. ACM Trans. Graph. 28, 5 (Dec. 2009), 140:1-140:12.
11

[PBD*10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MORLEY
K., ROBISON A., STICH M.: Optix: a general purpose ray tracing engine.
ACM Trans. Graph. 29, 4 (July 2010), 66:1-66:13. 3

[PPM15] PARK]J.J. K., PARK Y., MAHLKE S.: Chimera: Collaborative
preemption for multitasking on a shared GPU. SIGARCH Comput. Archit.
News 43, 1 (Mar. 2015), 593-606. 3

[SGS10] STONEJ. E., GOHARA D., SHI G.: OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems. Computing in
science & engineering 12, 1-3 (2010), 66-73. 2

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing efficient
sorting algorithms for manycore GPUs. In Proc. International Symposium
on Parallel & Distributed Processing (Washington, DC, USA, 2009),
IPDPS ’09, IEEE Computer Society, pp. 1-10. 2

[SKB*14] STEINBERGER M., KENZEL M., BOECHAT P., KERBL B.,
DOKTER M., SCHMALSTIEG D.: Whippletree: Task-based scheduling of
dynamic workloads on the GPU. ACM Trans. Graph. 33, 6 (Nov. 2014),
228:1-228:11. 3,4,8, 10, 11, 12

[SKK*12] STEINBERGER M., KAINZ B., KERBL B., HAUSWIESNER
S., KENZEL M., SCHMALSTIEG D.: Softshell: dynamic scheduling on
GPUs. ACM Trans. Graph. 31, 6 (Nov. 2012), 161:1-161:11. 3,5, 8

[TGC*14] TANASIC 1., GELADO 1., CABEZAS J., RAMIREZ A.,
NAVARRO N., VALERO M.: Enabling preemptive multiprogramming on
GPUs. SIGARCH Comput. Archit. News 42, 3 (June 2014), 193-204. 3

[TPO10] TZENG S., PATNEY A., OWENS J. D.: Task management for
irregular-parallel workloads on the GPU. In Proc. High Performance
Graphics (Aire-la-Ville, Switzerland, Switzerland, 2010), HPG ’10, Euro-
graphics Association, pp. 29-37. 2, 10

[VHBS16] VINKLER M., HAVRAN V., BITTNER J., SOCHOR J.: Par-
allel on-demand hierarchy construction on contemporary GPUs. IEEE
Transactions on Visualization and Computer Graphics 22,7 (July 2016),
1886-1898. 2

[WWO14] WEN Y., WANG Z., O’BOYLE M.: Smart multi-task schedul-
ing for OpenCL programs on CPU/GPU heterogeneous platforms. In
Proc. High Performance Computing (2014), HiPC 14, IEEE, pp. 1-10. 2



