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Figure 1: A typical use-case of our visual analysis technique for evaluating simulations of minimally invasive cancer treatment. An
interventional radiologist evaluates the safety margin of dead tissue around a tumor after simulated treatment (a) and encounters critical
areas (orange and blue segments). Zooming in (b) unveils underlying patient data via a levels of detail-based approach and reveals a potential
vessel (bright area). The radiologist decides to include the tissue temperature field from simulation via iso-contours (c) to further examine
the finding. For final decision, the radiologist then analyses the dependence of blood temperature and tissue vulnerability (d). We provide a
categorized, texture-based iso-contour representation, in this case categorizing into low and high values. After the radiologist identifies the
cause of the issue, she updates the simulation parameters accordingly and tries to destroy the problematic vessel.

Abstract
We present a visualization application supporting interventional radiologists during analysis of simulated minimally invasive
cancer treatment. The current clinical practice employs only rudimentary, manual measurement tools. Our system provides
visual support throughout three evaluation stages, starting with determining prospective treatment success of the simulation
parameterization. In case of insufficiencies, Stage 2 includes a simulation scalar field for determining a new configuration of the
simulation. For complex cases, where Stage 2 does not lead to a decisive strategy, Stage 3 reinforces analysis of interdependencies
of scalar fields via bivariate visualization. Our system is designed to be immediate applicable in medical practice. We analyze
the design space of potentially useful visualization techniques and appraise their effectiveness in the context of our design goals.
Furthermore, we present a user study, which reveals the disadvantages of manual analysis in the measurement stage of evaluation
and highlight the demand for computer-support through our system.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Voglreiter et al. / Visualization-Guided Evaluation of Simulated Minimally Invasive Cancer Treatment

1. Introduction

Over the past years, minimally invasive cancer treatment (MICT)
aspired as important therapy for patients disqualifying for classical
surgical removal of tumors. Many of these methods locally destroy
cancerous cells via inducing energy by coagulating tissue in the
focused zone. An Interventional Radiologist (IR) percutaneously
places a probe, connected to a generator, near the tumor. The choice
of parameters drastically influences volume and shape of the coagu-
lated area. Concerning treatment success, Nishikawa et al. [NIT∗11]
state that a safety margin of dead tissue around the tumor is critical
in avoiding recurrence. Consecutively, only ideal planning, configu-
ration and execution of these complex methods minimizes the risk
of local tumor recurrence. Nevertheless, the current clinical routine
almost exclusively relies on the experience of the IR.

However, predicting the outcome of such methods in advance
received increased interest from the medical community over the
last years. Unfortunately, most of the presented systems focus on
the generation of simulated results and neglect the analysis stage
required for pre-interventional optimization of the treatment parame-
ters. We present a visualization system tailored towards the needs of
the clinical routine for both speeding up the analysis of predicted co-
agulation regions and indirectly aiding the IR in adapting parameters
for iteratively improving the parameterization.

1.1. Pre-Interventional Simulation

Recent advances in bio-mechanical simulation show that high-
accuracy, patient-specific prediction of MICT can be achieved faster
than real-time [BHA14] [AMD∗15]. This allows the IR to prospec-
tively explore the parameter space and iteratively improve the config-
uration until achieving a satisfying result for conservative treatment.
They can minimize the risk for local tumor recurrence in advance by
finding a configuration which satisfies the required safety margin,
while at the same time spares as much healthy tissue as possible.

1.2. Evaluation Procedure

We break down the evaluation of simulated MICT into three steps.
In Stage 1, the IR needs to evaluate whether the predicted coagulated
region sufficiently covers the tumor and includes the required safety
margin. If the prospective result is unsatisfactory, Stage 2 requires
analysis of the reasons for failure. For example, the distribution
of energy near the tumor can reveal potentially critical regions.
Such information can already reveal a clear way to modify the
parameterization, but occasionally, deeper understanding of a case is
required. Therefor, the Stage 3 concentrates on the interdependency
of contributing factors. For example, tissue perfusion considerably
influences the energy distribution in tissue [POP∗10]. The gathered
insight from these steps contributes to a new configuration for the
simulation and, potentially, a more satisfying coverage.

However, only a handful of tools for aiding the IR in examin-
ing such predictions for reasoning on proper parameter adjustment
exists. The current clinical routine only implements rudimentary
tools, such as manual 2D measurement on simple outlines of the
coagulated area and the tumors. These methods are not only tedious,
but inherently prone to inaccuracies (see Figure 2(a)).

1.3. Contribution

We propose a system for fast and accurate evaluation of simulation
results for energy-based MICT procedures. We provide techniques
for incremental reasoning on the success of treatment and potential
causes of insufficiencies from simulation data. Since such issues can
arise from a broad range of parameters, our system is highly config-
urable. We formulated the following design goals for providing a
toolset that fulfills the needs of an IR in their everyday environment:

• Applicability: The system needs to find wide acceptance among
the user groups both in terms of visualization and interaction.
Simplicity of setup and interpretation are key elements.

• Modularity: The application should provide a granular structure
which enables modifying the level of detail (LOD) and number
of variables presented to the user. Thereby, it supports multiple
configuration levels, ranging from overview representation to
detail analysis.

• Locality: Our visualization must retain the spatial reference points
of data, i.e., display data in the reference frame provided by the
patient images.

• Clarity: The system must provide clear categorization of dense
data fields, where necessary. The visual representation, however,
should be sparse to avoid unnecessary obstruction of underlying
patient data and undesired reciprocation of techniques.

2. Related Work

Visual support for the whole process of evaluating prospective sim-
ulation of MICT is rarely discussed in previous work. Especially
in the context of exploring the parameter space for incremental im-
provement of the prediction, related methods do not provide support
for the full scope of tasks inherent to the procedure.
Closely related to our application, Rieder et al. [RWS∗10] pro-
pose a method for visualizing the distance between a tumor and
a coagulated area via surface unwrapping. The authors facilitate
an external view for showing the distance to the coagulation zone
via color coding on the unwrapped surface of the tumor. However,
discussions with interventional radiologists revealed that they have a
strong preference for data representation in their daily environment.
Typical radiological workstations provide three views with planar,
usually orthogonal slice reconstructions, whereas for abdominal
images, the axial view is used most frequently.

Additionally, Rieder et al. [RKSH11] propose using iso lines
for encoding the distance between coagulated area and tumor in
combination with a semi-transparent overlay of the region compris-
ing dead cells. They introduce a multi-parameter representation for
displaying iso-distances over multiple time steps. In a related pub-
lication, Rieder et al. [RSW∗09] display the cell death likelihood
within the simulation domain using a fixed color scheme. However,
both methods occupy an almost identical area on the patient image,
making a combined visualization of multiple parameters difficult.

However, in our opinion, these methods do not provide suffi-
cient modularity and locality and cannot easily be combined, so we
propose a different approach.
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(a) Manual (b) Comparison (c) Discrepancy

Figure 2: Inaccurate manual measurement. (a) We show a measurement scenario on axial slices for evaluating the distance between the
predicted coagulated region (blue) and the tumor (red). Only for Line 6, highlighted in red, the measured distance is shorter than the safety
margin of 5 mm. (b) However, our method shows that the whole pink area between Line 1 (5.18mm) and Line 7 (6,02mm) is actually closer
than 5 mm. (c) We computationally evaluate and display the distance at the end point of Line 7 (red text), revealing an error of more than 1.2
mm. The reasons for such inaccuracies results both from uncertainties in finding the shortest distance from the point on one surface to the
second one, but also from the lack of 3D information. Even if the user measures the in-plane distance correctly, the actual 3D distance can still
differ considerably.

2.1. Distance Evaluation

Marshall and colleagues [MGT15] describe Proximity Map Pro-
jection, an unwrapping algorithm for evaluating spatial gaps and
intersections of two surfaces. Such techniques ideally highlight the
complex spatial relationships in an overview. However, the mental
effort for relating the unwrapped view to the physical coordinate
frame might be high, and the need for additional views does not
agree with our goal of locality. Reitinger et al. [RSBB06] describe
measurement tools for augmented reality-based surgery planning.
Albeit such systems provide full 3D interaction, their applicability
in the current clinical workflow is limited due to the overhead on
hardware and training requirements. Preim and colleagues [PTSP02]
discuss possibilities of visualizing 2D measurements, such as ruler-
based distances and angles, in 3D. However, they do not provide
advanced methods for improving the measurement process, which
is a key aspect of our application. Dick et al. [DBW11] facilitate
oriented glyphs in 3D for visualizing distances related to implant
planning. They incorporate sparsely located slices in the 3D view
for additional guidance. Pure 3D methods, however, find little ac-
ceptance amongst radiologists due to their strong preference for the
higher precision of 2D slices. Moreover, the placement of the slices
in the overview representation might lead to visual clutter in our
application, even when considering only critical regions.

2.2. Multi-Field Simulation Visualization

Many approaches for visualizing multivariate data exist. For clarity,
we split the related work into groups with similar metaphors. We
then discuss their properties and suitability for our objectives.

Noise Various frequencies and representations of noise often find
application in visualization. Botchen [BWE05], for example, com-
pare noise injection with related techniques for visualizing uncer-
tainty in dense flow fields. Similarly, Coninx et al. [CBDT11] map
animated Perlin noise on visualizations generated by 1D color trans-

fer functions. Whereas such techniques work very well for making
the user feel ‘uncertain’ about the displayed data, we doubt their
applicability for our concept, since we emphasize on data evalua-
tion with high confidence. Khlebnikov et al. [KKS∗12] propose a
zoom-independent application of random phase Gabor noise to mul-
tivariate visualization. In a user study, the authors show increased
correctness and strong user preference of their method compared to
previous approaches. However, visual categorization of data, which
is one of our main goals, would be difficult due to the continuous
characteristics of this visualization technique.

Glyphs Due to their expressiveness, glyphs are an established
metaphor for multivariate visualization. Ropinski et al. [ROP11]
summarize usage of glyph-based visualization techniques for med-
ical purposes and provide general guidelines for using glyphs
in encoding data. Since these approaches inherently discretize
the data, optimal placement is a key element for perception.
Ward [War02] presents a generalized taxonomy, whereas Kindl-
mann and Westin [KW06] propose a strategy for ‘packing’ glyphs
for clearer representation.

However, our intentions differ from the typical use case of glyphs.
Applications like diffusion tensor imaging of the brain benefit from
encoding information such as flow orientation. The simulation of
MICT, however, produces data of different nature. For example,
the energy diffuses similar to a wavefront throughout the tissue.
The cell death probability depends on energy absorption and is
usually discontinuous and noisy. We do not think that glyph-based
approaches positively impact the analysis of such data.

Multi-View Separability of visual variables naturally limits algo-
rithms to simultaneous display of only a few data fields, raising
the need for multiple views for analysis of additional dimensions.
Roberts [Rob07] provides an overview of general structures em-
ployed for coordinated multiple views. For visualization of biome-
chanical motion data, Keefe et al. [KERC09] link 3D previews,
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a parallel coordinate view for temporal data and a 2D plot of an
additional variable. Since radiological workstations already employ
multiple views for displaying several re-sliced views of patient data,
adding even more views might increase the mental strain of evalu-
ation. This is also the main reason why we formulated the design
goal of locality, which such approaches clearly violate.

Texture A combination of color and texture often finds ap-
plication in medical visualization. Multi-dimensional transfer
functions [KHGR02] or direct combination of color and tex-
ture [UIM∗03] [WFK∗02] [HTER04] [SI05] are widely accepted
techniques for multivariate visualization. The easy and quick inter-
pretation of such approaches complies with our goal of clarity, while
simple interaction techniques for setup of 2D transfer functions re-
inforces the applicability. Such setups also imply modularity, since
one axis can be neglected, leading to a 1D transfer function. Finally,
due to the direct application of visual parameters to the underlying
data fields, we inherently achieve locality of the visualization.

3. Background

This section provides background on energy-based MICT simula-
tion, both from a medical as well as a computational point of view.
We first provide an overview of the medical workflow and con-
siderations relevant for our application and follow up with a brief
description of the parameter space involved in simulating shape and
size of the coagulation zone.

3.1. Medical Background

All energy-based MICT procedures roughly follow the same work-
flow. Initially, in the pre-interventional phase, planning images from
computed tomography (CT) or magnetic resonance imaging (MRI)
serve for creating a patient model. This often includes contrast
enhancement (CE) for better depiction of vessels and the tumor.
Vessel trees significantly contribute to energy distribution due to the
blood flowing through acting as temperature sink, whereas different
kinds of tumors visualize differently on the CE phases. In some
cases, patients additionally undergo perfusion measurement. All
mentioned data contributes to a pre-interventional anatomical model
for planning the parameterization of the upcoming intervention.

In the interventional phase, the IR performs the actual treatment.
Patient motion, digestion and the current breathing phase signifi-
cantly change the abdominal anatomy, requiring additional up-to-
date patient images for accurate probe positioning. Once the IR is
satisfied with the position, a suitable protocol is executed, which
is usually chosen from one of several vendor-defined procedures.
Depending on the size and shape of the tumor, several iterations
with different protocols and probe positions may be necessary.

In the post-interventional phase, the IR monitors success over
several years. Immediately after treatment, the boundary of the coag-
ulated area does not visualize sufficiently due to bleeding and other
post-interventional effects. General consensus names the depiction
of the coagulation zone one month after treatment as final extent.
Consequently, the IR cannot determine treatment success right after
the intervention. Again, the clinical routine relies on the experience
of the IR for deciding whether additional treatment is necessary.

3.2. Computational Background

The simulation procedure virtualizes the interventional phase. Ini-
tially, the IR virtually places the probe in either interventional or
pre-interventional images. This additionally requires registration
between pre-interventional and interventional images for reproduc-
ing the planned probe placement in the anatomical model. As in
actual treatment, the IR chooses one or several consecutively exe-
cuted protocols and generator parameterizations. The virtualization
allows optimization of the parameters, including probe placement
and generator configuration.

The simulation domain usually represents multiple data fields.
The coagulation zone depends on the cell death probability, for
which power emission and often temperature are critical. Bio-
mechanical cell death models describe the dependency on time
and the amount of deployed energy. Moreover, these factors usu-
ally interact with more complex parameters, such as specific heat
capacity and perfusion of tissue. Patient-specific analysis of these de-
pendencies may require multiple simulation iterations with adapted
parameters until converging on a satisfactory result. However, as
mentioned before, usual solutions offer little assistance for evaluat-
ing shortcomings in single configurations.

4. Method

In this section, we layout the modular structure of our approach and
explain the evaluation procedure from overview to details. The anal-
ysis consists of three stages. Hence, we provide a visual metaphor
for each subsequent step. Visualizations of the patient image and
outlines of tumor and predicted coagulated region reflect the basic
framework on which we build our advanced methods.

Completely failed treatment is comparatively easy to spot, since
the outline of the coagulation zone does not fully enclose the tumor.
Hence, we focus our considerations on cases which cover the tumor
entirely, but the safety margin may be violated.

Stage 1: Initially, we aid the process of evaluating success of a simu-
lation configuration by removing the need for manual measurements.
As previously stated, MICT demands destroying the tumor plus a
rim of healthy tissue around it. However, severe over-treatment, i.e.,
coagulating large healthy portions of the organ, should be avoided.
Therefore, we visualize the distance between simulated coagulation
area and tumor in relation to the respective outlines.

Stage 2: In Stage 1, the user possibly identifies regions of the
predicted coagulated region which do not satisfy the safety margin.
In Stage 2, we additionally employ a customizable approach based
on colored iso-contours for visualizing a single scalar field from the
simulation.

For example, emitted power or temperature are often informative
during analysis of such failed regions. In combination with the
Stage 1 visualization, the user can either immediately infer a new
parameterization of the simulation or proceed with determining
more complex interactions in Stage 3.

Stage 3: Parameter interdependencies often make the behavior of
energy-based MICT hard to predict, and a single scalar field is often
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(a) LOD1: All ranges (b) LOD2: All ranges (c) LOD1: Selected (d) LOD2: Selected

Figure 3: Several Settings for the distance visualization. (a) We display the 3D distance in a color-coded rim. When zooming in closer, the
algorithm switches to a new LOD (b). The user can toggle the display of single ranges and only receive the currently relevant information in
both levels of detail (c, d).

(a) Stage 2: Temperature (b) Transfer Function (c) Stage 3: Adding cell death (d) Transfer Function

Figure 4: Stages 2 and 3 of our method. The user customizes the visualization of a simulation time step for highlighting the 373 Kelvin
iso-therm (a) using customized iso-contours (b). The user then adds two ranges of cell death probability (c) as second variable to the transfer
function (d). As expected, in the current time step, areas close to high temperatures are likely to die (hatched rim in (d)). However, the user
also detects disconnected islands of high coagulation likelihood (c, top right) in proximity, possibly resulting from a previous time step. Please
not that, in this case, the simulation domain extends beyond the liver wall.

insufficient for analyzing the potential reasons for failure. In the
final stage, we add a second scalar field from the simulation for
concurrent analysis of both variables and their mutual interaction.
We introduce textural elements to achieve a categorization of the
second input variable into multiple ranges.

4.1. Stage One: Distance Evaluation

We try to visualize where a sufficient thickness of the safety margin
between tumor and coagulated region border exists. We directly
adopt this metaphor for visualization and attach a thick rim to the
outline of the simulation. A direct visualization of the safety mar-
gin would overlay the entire ablation zone and cover a significant
amount of information. To avoid this occlusion, while still commu-
nicating information about the relative width of the safety margin,
we scale the rim proportionately to the 3D distance between tumor
and predicted coagulation.

The IR usually prefer scrolling through the slice stack with the
best resolution ( e.g., axial reconstruction for abdominal CT) for
analysis. However, slices of the image can only convey the 2D
proximity of the outlines. The actual 3D distance between simulation
and tumor can drastically differ from the representation on 2D slices.
Hence, we encode the 3D distance into the color of the 2D rim.

Inspecting details requires zooming in closely. Despite scaling,
magnification still potentially leads to large overlays. We employ a
LOD approach to further unveil data as needed. For the overview
representation, we compute the thickness of the rim from the scale
factor of the current slice viewer. Hence, not all views necessarily
render the same LOD.

For easy reference to the outline of the coagulation zone, we
additionally impose a gradient on both representations, where the
white border depicts the original outline. Especially for changing
signs, i.e., when the outlines of tumor and coagulation zone cross,
this improves readability of our technique.

LOD 1: Continuous Rim We visualize the 3D distance by encod-
ing it in the rim width and also color-code multiple independent,
customizable ranges. For example, the user might be interested in
the range where the distance is definitely too small, but at the same
time request a different representation for the range close to the
required margin (see Figure 3(a)). Therefore, the user can setup sin-
gle ranges, but also individually toggle whether they are displayed
(Figure 3(c)). Zooming in also magnifies the representation accord-
ingly. However, beyond a certain threshold, we switch to a different
technique in LOD 2 for unveiling more data.
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LOD 2: Sparse Representation We aim to balance the amount of
information conveyed by our technique against coverage of underly-
ing data. Upon reaching a zoom threshold, we switch to a bar chart
representation of the rim, while preserving the color-based range
classification (Figure 3(a),(b)). However, further magnification of
these bars can again lead to significant coverage. Hence, in LOD 2,
we fix the size of the bars in screen-space to a fraction of the window
size, which enables arbitrary magnification (Figure 3 (b),(d))

We carefully consider placement strategies for the bars, especially
during interaction: Scrolling through slice stacks and zooming result
in updated contours and potentially require redistributing the bars.
As soon as the zoom threshold is passed and we switch to the bar
representation, we place the glyphs equidistantly on the outline
related to this specific zoom factor. We limit the gap to be at least
two bar widths. While scrolling, the contour length varies little. If
the variation does not require adding or removing bars, we adapt the
gap width for equal distribution over the contour.

The bars represent multiple bits of information. Their direction
encodes that of the shortest distance on the 2D slice, whereas their
length represents the 2D distance. The color, however, still relates
to the range of the associated 3D distance.

Magnification drastically effects the contour length. For circum-
venting severe movement artifacts, we fix the relative position of the
initial bars on the outline. Zooming in closer leads to an increased
distance between the bars. As soon as the gap width supports an
additional bar, i.e., it becomes larger than twice the minimum gap
plus one bar width, we recursively insert new glyphs at the center
of the gap. Thereby, the displayed information remains coherent
during zoom and we can ensure representation of the information
by one or more bars at all times.

4.2. Stage 2: Scalar Field Visualization using Color

Stage 2 adds a scalar field from simulation to the distance visual-
ization. We use color to convey the new data and provide several
options for tuning the visualization. We employ an iso-contour ap-
proach, which reveals large parts of the underlying patient data, but
displays sufficient information for analyzing the data field.

We provide several configuration possibilities. For one, the user
can choose to automatically subdivide the data range into equally
sized chunks. Moreover, the user can directly pick single iso-values
and individually modify the widths of the contours, for which we
employ a Gaussian bell-shaped opacity modulation centered at the
selected iso-values. Whereas even distribution supports overview
analysis, using specific contours provides a selective breakdown of
the data (Figure 5). Moreover, the gradient of the scalar field around
the iso-contour reflects in the width of single iso-contours (Figure
5(b)).

4.3. Stage 3: Bivariate Visualization

In the final stage, we augment the visualization with a second field
from the simulation. Bivariate analysis is especially useful for evalu-
ation of the interaction between variables. For example, a user might
be interested in the overlap of regions in a certain temperature range
and the corresponding cell death probability (Figure 4).

(a) (b)

(c) (d)

Figure 5: The effect of the contour width parameter. If we compare
the blue contours using narrow bands (a), to the wider setting (b),
we deduce that the gradient in the blue area must be much higher
compared to the red area. This case also reveals that a significant
amount of energy, coded into the iso-contours, spreads outside the
organ, which is clinically relevant.

(a) (b) (c) (d)

Figure 6: Examples for structural textures we employ in Stage 3 for
bivariate visualization. Note that these are easily extinguishable due
to structure and orientation.

We already occupy the color channel with both distance and the
first scalar field, so we selected textural elements as visual variable
for the final data field. Similar to the previous stage, we provide
extensive control over the parameterization. The user can subdivide
the data into multiple ranges and assign a textural element, which
we use for drawing a textured rim at the margins of the ranges only.
This avoids redundant information in large gaps between contours.

Each of the contours, which delimit the ranges, can either be an
inner contour, meaning that both sides are textured, or a bounding
contour, where only one side relates to a selected structure texture.
Figure 4(c) shows both possibilities: The innermost iso-contour,
associated with a hatched pattern, is positioned at 99% cell death
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probability. For values above, the user chose no structure, so we
deduct that the interior region has a cell death probability of >99%.
The second displayed contour relates to both the noise pattern, as
well as the hatches, easily identified as the 50% threshold from the
transfer function.

We also scale the width of the rim up to a certain zoom factor.
After surpassing this threshold, we switch to constant screen-space
size for optimal balance of coverage versus presented information.

However, we need to be cautious about choosing the structural
elements. First, the chosen textures should be partially transparent
to unveil underlying data. Furthermore, zooming requires scalability
of the structural elements to retain their expressiveness in context
of drawing them in a rim. Finally, the structural elements should be
repeatable seamlessly.

Research on texture perception suggests particular choices for the
employed textures. Orientation [LB91] and local features, so-called
textons [Jul81], significantly contribute to pre-attentive texture seg-
regation. We initially provide a few samples respecting these rules
(Figure 6), but our application allows usage of arbitrary elements.

Moreover, on first glance, orienting the texture elements such
that their baseline coincides with segments of iso-contours seems
like the most elegant representation. However, this would also mean
sacrificing orientation as a powerful visual variable. Hence, we align
the structure images with the axes of the viewport.

5. Implementation

We implemented our technique as a plugin for the MITK [WVW∗04]
framework, since it readily provides many features we require. The
actual implementation is rather straight-forward, so we will keep
this section brief. Our application addresses evaluation of simulated
treatment, so we induce a few assumptions. The tumor outline is a
necessary input for most simulation algorithms, hence we implicitly
assume that the user segmented it manually or (semi-)automatically
in advance. Additionally, the simulation itself needs to be present
in a multi-variate representation. MICT simulation applications ex-
ploiting our evaluation techniques should provide simple means for
adjusting parameters in a feedback loop for prospective optimization
of treatment.

5.1. Distance Visualization

We initially compute a 3D distance field for the tumor. This is a
rather time-consuming task, but only needs to be executed once
per tumor and can be re-used for multiple simulation or treatment
cycles. The visualization algorithm itself is implemented in OpenGL.
In the first step, we compute the overall length of the coagulation
zone contour visible in each frame. Additionally, we subdivide long
segments. This alleviates possible issues with distance interpolation
between the end points of the vertices. We then store the segments
along with distance information and relative contour offsets on the
GPU.

Depending on the zoom factor of a render window, we next de-
termine the appropriate LOD. For drawing both contour and bar
representation, we exploit geometry shaders. The contour method

generates quads based on the respective segment and distance in-
formation. In LOD 2, we determine the bar positions based on the
contour offset and the number of bars which fit within the segment.
If a bar extends over the end of a segment, we automatically cut
off the surplus part and delegate its rendering to the next segment.
We render this stage using Multisampling Antialiasing (MSAA) for
crisp outlines.

5.2. Bivariate Simulation Visualization

This technique employs a triple-pass rendering pipeline. For setup,
we exploit a transfer function designer, based on a Qt interface. The
result is a 2D texture, where the y-axis is responsible for visualiza-
tion of the first variable, and the x-axis for the second, respectively.
This, however, is only a preview for the user.

In the first rendering pass, we extract the color distribution along
the y-axis for texture-based lookup during rendering the first vari-
able. In the next pass, responsible for the second simulation field, we
store the category borders selected by the user and the corresponding
texture elements. We then extract iso-contours of the simulation data
according to these borders and determine which texture needs to
be applied to either side of the contour. We again use a geometry
shader for attaching textured quads to the iso-contours. In the final
stage, we again perform MSAA and blend the two previous stages
using the Porter-Duff ‘over’ operator.

6. Evaluation

We conducted a user study to get an idea about errors in manual
distance measurements during MICT as well as initial feedback
about the effectiveness of our techniques for visualizing important
parameters of MICT. We recruited nine medical experts (aged 28
to 40, all male) with up to six years of experience with MICT and
four to twelve years of experience with slice-based visualization
techniques. While one expert is currently only involved with general
MICT research, the others are actively involved in up to ten MICT
per month.

6.1. Procedure

After an initial discussion about MICT, we presented the experts
with our bivariate visualization of simulation data in two MICT sim-
ulation data sets and gave the opportunity to explore the dataset and
try to interpret the presented data using our visualization technique.
To gather initial feedback about our technique, we encouraged the
participants to voice their thoughts and steps they were taking. After
this session, we conducted a structured interview and recorded their
feedback.

In the second step of the experiment, we presented the participants
with two MICT simulation datasets for comparing two techniques
in a within-subject study. They were instructed to use our visual
techniques as guidance for distance measurement (ours) and a tra-
ditional slice based visualization system with standard tools for
in-slice distance measurement (traditional). All participants indi-
cated that this system is equal or very similar to the tools they use in
clinical practice. We randomized the order in which the techniques
were presented to the participants as well as the dataset to technique
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assignment. To avoid learning effects due to the within-subjects
design, we chose coagulation regions with clearly different shapes.
To obtain an equal number of critical regions with similar distances
in both cases, we slightly modified the tumor shapes and carefully
picked the target slices for measurement, which were equal in both
cases.

The participants had to carry out a sequence of tasks for each
technique. First, we asked the participants to identify regions which
show a critical distance to the tumor, i.e., regions with distance
smaller than 5mm, mark them in the slice, and measure the distance.
There were no regions with negative distance, i.e., failure, in the
dataset. In all presented slices, there were three critical regions
with a minimal distance between 3.5 and 4.8mm. We recorded the
number of regions they found (regions) and the time it took them
to find those regions (time). After they were certain that there were
no more critical regions in the data, we asked the participants to
measure the minimum distance of a predefined region to judge their
ability to correctly measure distances with the standard measurement
tools. For our approach, we disabled the distance value overlay
(displaying the numerical distance value when hovering) to judge
if our visualizations helps in identifying the direction required for
measurement. We recorded the measured distance and computed the
absolute distance to the ground-truth (distance). After completing
the task sequence with each technique, we presented them with a
questionnaire inquiring about their confidence of completing the
task successfully. They had to answer 11 questions on a 6-point
Likert-scale.

In the third step of the experiment, we revealed the full function-
ality (including automatic distance measurements) of the distance-
based visualization technique, allowing them to evaluate their own
measurement against the automatically measured data. In addition to
the previous visualization, the technique now computed the closest
point on the coagulated area from the current cursor position and
measured the distance from this point to the tumor. We displayed
this distance next to the cursor. To gain feedback about that step, we
conducted a final structured interview.

6.2. Results and Discussion

During the first part of the experiment, the medical doctors con-
firmed that the generation of style transfer functions with our editor
is easy to learn by observing the effects of parameters. They also
stated that they would probably put in effort for creating a visual-
ization for a group of use cases once, and re-use the saved style
transfer function for future cases. They mentioned that it was easy to
interpret the additionally displayed data and that it would be useful
to judge the details of the underlying simulation data. However, they
argued that they would probably either require more training with
correct interpretation of some non-obvious simulation scalar fields,
e.g., heat source terms or specific heat capacity, or direct assistance
of an expert in biomechanical engineering. The doctors appreciated
the sparse representation techniques, as they allowed them to see
more of the patient data on demand.

The results of the second step of the experiment are shown in
Figure 7 and Figure 8. As the measurement data was in general not
normal distributed as confirmed by Shapiro-Wilk tests, we analyzed
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Figure 7: Measurement results for the traditional and ours with
standard error: average number of found critial regions (out of
3); average task completion time (in seconds); average absolute
distance measurement error (in mm).

Questionnaire
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Traditional Ours

* * * * * *

Q1 I could identify critical regions quickly
Q2 I could identify critical regions with high accuracy
Q3 I could identify critical regions with little effort
Q4 I did not miss any critical regions
Q5 I could evaluate distances within the regions with high accuracy
Q6 I could evaluate distances within the regions quickly
Q7 I could evaluate distances within the regions effortlessly
Q8 It was easy to identify tumor and coagulation boundaries
Q9 The overall mental effort was low

Q10 The visual clutter was low
Q11 I would use the method in practice

Figure 8: Questionnaire results for the traditional technique and
ours on a 6 point Likert-scale with standard error. Higher is always
better (∗ means significant difference). The term critical region
refers to regions which are violating the safety margin.

all results using Friedman non-parametric tests. The measurement
results for number of found regions (χ2(2) = 8.0, p < .01) and time
(χ2(2) = 5.4, p < .02) showed significant effects. The difference in
measured distances was not significant (χ2(2) = 0.1, p > .70). In
the questionnaires, our method was rated higher on average for all
questions. These differences were significant for Q1 (χ2(2) = 6.0,
p < .02), Q2 (χ2(2) = 4.5, p < .04), Q3 (χ2(2) = 4.5, p < .04),
Q5 (χ2(2) = 6.0, p < .02), Q6 (χ2(2) = 6.0, p < .02), and Q11
(χ2(2) = 5.0, p < .03). The differences were not significant for Q4
(χ2(2) = 2.8, p > .09), Q7 (χ2(2) = 2.7, p > .10), Q8 (χ2(2) =
1.8, p > .17), Q9 (χ2(2) = 2.0, p > .15), and Q10 (χ2(2) = 0.2,
p > .65).
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When using the traditional approach, only one out of the nine
medical experts found all three critical regions (which took the
participant 183 seconds). Two of them did not identify a single
region of the three, although one participant searched for 90 seconds.
When using our visualization technique, all participants found all
three regions. In general, the time spent on finding and bounding the
critical regions ranged from 35 to 183 seconds with the traditional
approach and 32 to 68 seconds with our approach. The time spent
per found region (time/#found) ranged between 28 and 122 seconds
(or not found) for the traditional and between 11 and 22 seconds
with ours. These results suggest that our approach has an advantage
in terms of speed and accuracy over the traditional approach. The
questionnaire results and interviews point into the same direction
(Q1-Q3). The doctors stated that this kind of visualization could
increase their confidence when scrolling through slices quickly
and, thus, they would overall spend less time on individual slices.
Although Q4 was n.s., we would like to mention that 7/9 doctors
rated their confidence with our method higher.

The measurement errors for traditional ranged between 0.06mm
and 1.01mm. Using our approach for assisting manual measure-
ments, the error was between 0.03mm and 0.50mm. The question-
naire results (Q5-Q6) show that the participants had a better sub-
jective feeling evaluating distances when being guided by a visu-
alization. However, the visualization alone does not overcome the
problems induced by drawing lines on individual 2D slices for dis-
tance measurement. This fact is confirmed by similar distance errors
in the quantitative measurements. After revealing the full technique
including automated distance measurements, the participants were
surprised how inaccurate their manual measurements actually were.
All participants said that they would highly appreciate having this
feature available in clinical practice. They also commented posi-
tively that the measurements are not only shown as a static number,
but allowed them to query distances all around a coagulated area,
which greatly increased their confidence into the reported values.

In the questionnaires, our approach was rated equal or higher in
89 of 99 answers. Overall, the results show that participants felt
confident in finding critical regions efficiently with our approach
(Q1-Q3) and that it appeared easier to evaluate distances with our
approach (Q5-Q6) even when performing measurements manually.
While participants felt very confident in identifying coagulation
boundaries (Q8) with our approach (average score of 5.7/6), they
also felt confident with the traditional approach (5/6). According
to the participants, our approach does not increase mental effort or
visual clutter (Q9-Q10). Finally, Q11 suggests a strong tendency
towards using our technique in clinical practice as compared to
the de-facto standard. Seven of the doctors commented that they
only use the standard ruler method, because presently there is no
alternative.

7. Discussion

Our approach offers capabilities for aiding all stages of evaluation
during iterative improvement of MICT simulation configurations.
Whereas previous methods tackled single issues, for instance, vi-
sualizing the distance between tumor and coagulated area with
regards to respecting a safety margin or cell death probability, the
high configurability of our approach for multi-variate visualization

enables concurrent analysis of multiple factors. While previous
methods for single tasks often incorporate static configurations, for
example fixed color schemes or distance ranges, the added flexi-
bility promotes using our application for a wider range of tasks.
Although not in the scope of this paper, the proposed algorithm
can be used for additional tasks related to MICT immediately. For
example, the distance evaluation in Stage 1 can be applied directly
for analysis of real treatment with arbitrary requirements for safety
margins. Pre-interventional tracking of the tumor size after Transar-
terial Chemoembolization (TACE) [CSO∗02], or post-interventional
monitoring of the coagulation area are also possible. Stage 2 can also
be applied to perfusion CT [Mil03] measurements, another critical
factor determining shape and extent of the coagulated region.

We consciously decided not to smooth the simulation data before
visualization. Depending on the setup of the visualization, this poten-
tially leads to visual clutter, especially in the third stage. However,
capabilities for storing effective transfer functions, which sparsely
display only the most relevant information, and switching between
them with a few clicks, alleviates this problem to a certain degree.

Usually, simulation algorithms produce their result in multiple
time steps. While we focus on analysis of a single (usually, the final)
time step, our system is inherently capable of temporal analysis as
well. The user can easily scroll through the time series in case they
load them into the application as time-dependent datasets, which is
already supported by our implementation in MITK. Additionally,
temporal analysis algorithms can produce more intricate information
of the behavior of the simulation over time. For instance, integration
over the temperature curve using a moving window could provide
more detailed information. This, however, is part of a preprocessing
step and not in the scope of this paper.

8. Conclusion

We presented a modular toolset for evaluation of simulated energy-
based MICT. Using different paradigms, we aid the IR throughout
all stages of this procedure. Initially, we replaced evaluation of
a safety margin using manual measurement via a fully automatic
visual approach. In the evaluation section, we assessed the error
during manual measurement and highlighted its time-consuming
nature. The results of our study point towards a strong preference
of our fully automatic approach, which makes evaluation not only
more accurate, but also much faster. Further, we presented two more
stages concerned with parameter space exploration of simulated
treatment. We described a highly configurable approach for bivariate
visualization of scalar fields resulting from simulation.

During initial evaluation, the participants showed particular inter-
est in bringing the first stage into the medical practice, whereas they
still might require training in understanding the physical relation-
ships presented in Stages 2 and 3. However, they commented that
the setup of the complete visualization pipeline is comparatively
easy and the customization options appropriately powerful.

We plan on making our visualization tool open source and cur-
rently discuss deploying it into a first clinical trial with our medical
partners. Furthermore, we currently investigate possibilities of ex-
tending our approach into a 3D representation, which might increase
general acceptance of 3D methods in the radiological practice. We
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also plan to build upon the initial results of our study, running a
larger formal experiment with an extended user group. Given the
initial feedback of medical experts, we are confident that simple,
efficient visualization techniques like ours will help to increase the
success of MICT in the future.
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