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Figure 1: Our method obtains estimations for illumination and material using input from casual scans, such as obtained from a Microsoft Kinect
sensor. The resulting estimations enable a variety of applications for Mixed Reality. This example shows lighting our scan using a 360◦ video.

ABSTRACT

We present a method for recovering both incident lighting and sur-
face materials from casually scanned geometry. By casual, we
mean a rapid and potentially noisy scanning procedure of unmod-
ified and uninstrumented scenes with a commodity RGB-D sen-
sor. In other words, unlike reconstruction procedures which require
careful preparations in a laboratory environment, our method works
with input that can be obtained by consumer users. To ensure a
robust procedure, we segment the reconstructed geometry into sur-
faces with homogeneous material properties and compute the ra-
diance transfer on these segments. With this input, we solve the
inverse rendering problem of factorization into lighting and mate-
rial properties using an iterative optimization in spherical harmon-
ics form. This allows us to account for self-shadowing and recover
specular properties. The resulting data can be used to generate a
wide range of mixed reality applications, including the rendering
of synthetic objects with matching lighting into a given scene, but
also re-rendering the scene (or a part of it) with new lighting. We
show the robustness of our approach with real and synthetic exam-
ples under a variety of lighting conditions and compare them with
ground truth data.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Artificial, augmented, virtual realities; I.4.8 [Image Processing and
Computer Vision]: Photometric registration—3D Reconstruction
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1 INTRODUCTION

Recent advances in sensing technologies, in particular, inexpensive
RGB-D cameras, have lowered the cost and effort for 3D scan-
ning. Scanning detailed object geometry is now possible in real
time, providing essential input for many applications of Mixed Re-
ality (MR). Thus, we can safely say that geometric reconstruction
is now sufficiently ”casual” for MR. However, photometric recon-
struction proves to be more difficult. To determine both material
and illumination from the same set of input images, we must solve
an ill-posed inverse rendering problem. Just from an image, we can
not be sure which combination of light color and surface material
caused a particular color observation in an image.

For this reason, most photometric reconstruction methods put
additional constraints on the input. These constraints make sense
for professional studio work, but cannot be afforded by casual users.
For instance, consider the capabilities of a user at home wanting to
play a game or shop for furniture with MR:

• The user must be able to capture unmodified environments of
up to room size. Special setups, such as a green-screens, are
not available.

• Capturing must work rapidly (under 5 minutes) and in one
pass. The user cannot be expected to work for a long time or
repeat the capturing procedure.

• Input must be obtained from a single, inexpensive camera.
We used a Kinect V1, which is currently the most widespread
and economical device for RGB-D sensing. Such cameras set
exposure and white-balancing automatically and do not even
allow to read out these settings.



• Multiple cameras cannot be used. A suitable rig for mounting
the cameras or a trigger for camera synchronization are not
consumer items.

• Controlled camera motion cannot be used. Turntables and
other capturing contraptions are not consumer equipment.
Even when operated by an experienced user, data collected
with a handheld camera will be corrupted by noise and cover
the scene with varying density.

• Controlled lighting cannot be used. This rules out calibrated
light stages. Moreover, the restriction to a single capturing
pass also rules out repeated capturing under multiple (uncali-
brated) illumination conditions.

The main contribution of our work is a method for obtaining esti-
mations for illumination and material using input from casual scan-
ning. As we will point out in the discussion of related work be-
low, most existing methods are not suitable for such a scenario.
We demonstrate that even with the severe restrictions enumerated
above, it is possible to deliver high-quality results. We achieve
this by first segmenting the reconstructed geometry into surfaces
with homogeneous material properties and computing the radiance
transfer on these segments in spherical harmonics form. The in-
verse rendering problem is solved with an iterative least squares
optimization, recovering both incident lighting and materials with
diffuse and specular properties.

We demonstrate the versatility of our approach with results
across the whole spectrum of photo-realistic MR applications,
spanning from Augmented Reality (inserting virtual objects into
real scenes) to Augmented Virtuality (inserting scanned objects into
virtual scenes).

2 RELATED WORK

A large body of work on coherent rendering for MR exists [13].
Here, we focus on methods which provide an estimate of the current
lighting in the user’s environment and on methods which recover
information about the material of the objects around the user.
Direct estimation of light. The seminal work of Debevec demon-
strated how to make use of a light probe in order to directly measure
the incident light [3]. Light probes are placed inside an environment
and provide light measures as high-dynamic range images, which
are subsequently used to compute an environment map. Active light
probes obtain the environment map directly. A camera with fish-eye
lens or an omni-directional camera is placed directly in the scene
to acquire images of all directions in one step [11]. Passive light
probes make use of a reflective object, commonly a sphere, which
is placed within the scene and observed by a camera [4].

While light probes deliver environment maps at full frame rates,
they are invasive and not suitable for casual use. If the lighting is
assumed to be static, the environment map can be acquired with
an offline scanning pass [17]. However, obtaining a full environ-
ment map with a handheld camera is significantly more work than
just scanning the relevant portion of the environment. Without an
artificial light probe or a full, directly scanned environment map,
the incident light must be recovered by analyzing reflections in the
scene, as explained in the following.
Light estimation from specular reflections. Specular reflections
observed on a known object allow direct estimation of the incident
light from the reflected direction. This principle can not only be
applied to a dedicated light probe, but also to any specular object
with known shape in the scene. For example, Lagger and Fua [14]
detect specular highlights on small moving objects, and Mashita et
al. [16] infer the real-world lighting by detecting specular highlights
on planar objects.

Jachnik et al. [10] capture a 4D light field over a small planar
surface, such as a glossy book cover. They heuristically separate

the observations into diffuse and specular reflection by assuming
that the diffuse reflection varies only with position, but not with the
viewing direction, while specular reflection varies only with view-
ing direction, but not with position. Our work uses a similar fac-
torization, but applied to a general scene with arbitrary non-planar
objects having unknown material properties. Unlike Jachnik et al.,
we do not know in advance which objects exhibit specularities, and
we must also detect self-shadowing effects.
Light estimation from diffuse reflections. A lack of specular ob-
jects can render the search for specular reflections unsuccessful.
Alternatively, one can attempt to estimate illumination from dif-
fuse reflections. However, recovering incident light from diffuse
surfaces is a more difficult problem, since one must separate the
contributions of incoming light from many directions. A mathe-
matically consistent approach for computing diffuse light transport
in an efficient manner is provided by spherical harmonics (SH) [20].

Gruber et al. [8] demonstrated that an SH framework is able to
recover real-world lighting in real time from an RGB-D camera.
They reconstruct the scene from depth images and solve for inci-
dent directional lighting in SH form from selected sample points on
the reconstructed surfaces. However, the sample points must have
a good distribution of surface normals. Since diffuse reflection ag-
gregates light from all directions, shadows from other objects in the
scene must be computed for every sample point. With image-space
optimizations [9], their system can estimate both, dynamic incident
light and shadows cast from dynamic real objects, at 20 frames per
second on a desktop GPU. However, the lack of specular effects
and the sparse sampling owed to the real-time constraints impose
restrictions on the visual quality.

Boom et al. [1] presented a system which estimates a single point
light source from arbitrary scene geometry. The approach is based
on segmenting the image by color into superpixels, for which con-
stant diffuse albedo is assumed. Knorr and Kurz [12] estimate in-
cident light from human faces. Their method uses offline machine
learning from a variety of faces under different illumination condi-
tions. The online method applies a face tracker and matches distinc-
tive observations points of the detected face to the training database
to estimate the real-world light in SH. However, the accuracy of the
face tracking is a limiting factor on the quality of the recovered il-
lumination. Moreover, the method is limited to applications where
a face is seen by the camera.

While previous work on light estimation from diffuse reflections
either assumes a constant albedo color over the entire scene or
requires information about the lighting, our method recovers un-
known incident lighting together with unknown diffuse and specu-
lar material properties.
Material estimation. Separating light and material properties
without any prior information is an ill-formed problem, because
the observed surface color depends on both, the surface materials
and the lighting. If we can make the simplifying assumption that
surface material is diffuse and constant over the entire scene, we
can estimate the incident lighting by using a linear solver based on
color and geometry properties [8, 20]. However, in realistic scenes,
surfaces have different material properties, leading to wrong illumi-
nation estimates, since albedo color variations are incorrectly com-
pensated by the incident lighting reconstruction. For example, a red
surface may lead to a solution involving red light coming from the
direction of the plane normal.

In material estimation, a popular approach to resolve the am-
biguity between lighting and reflectance is to use changing light-
ing, for example, using a light stage [5]. Weber et al. [25] recon-
struct shape and illumination from an image stream, but require
calibrated, switchable light sources. With known lighting, inverse
global illumination can accurate recover materials [26].

Alternatively, objects can be moved relative to the light source.
For example, a turning plate can be used to rotate small objects



relative to a static light source, allowing controlled variation of the
angle of incident light. Sato [21] calculates diffuse and specular
properties based on a per-frame input stream, but needs a known
calibrated point light and a rotating setup. Dong et al. [6] recover a
highly detailed data-driven BRDF on the whole surface by rotating
the object relative to the lighting, but use convex objects shapes and
ignore inter-reflections and self-occlusions.

Li et al. [15] capture a scene of a moving human with multi-
ple cameras under unknown, static lighting in a green room. By
tracking with a human shape as a prior, they can use the motion of
the human relative to the light sources to obtain multiple observa-
tions for every surface point over time. They segment the body into
uniform materials, for which they recover a Phong BRDF. Our ap-
proach combines a similar material segmentation, but uses radiance
transfer functions [19] based on self-occlusion to determine mate-
rials with only a single relationship between scene and lighting.

3 METHOD

Our method simultaneously estimates incident lighting and diffuse
and specular material properties of the scene. As input to this in-
verse rendering process, we require a mesh representing the scene
geometry and a set of keyframes, consisting of images of the scene
taken from various known viewpoints. Both can be obtained with a
handheld camera. No other knowledge about the lighting or the ob-
ject’s material is needed. Our method is illustrated in Figure 2. De-
noting vectors in lowercase boldface, matrices in uppercase bold-
face, scalars in italics, and compound structures in uppercase ital-
ics, our method can be outlined as follows:

1. Data association (section 3.1): Reconstruct a per-vertex lit
texture f(vi) by assigning pixels from keyframes K j to mesh
vertices vi, and iteratively compensate for relative exposure
changes e j and errors in the camera position pos(K j) and
camera orientation rot(K j) associated with the keyframes K j.

2. Material segmentation (section 3.2): Segment the mesh
M = {vi} into patches Mu ⊆ M of vertices sharing the same
material.

3. Inverse rendering (section 3.3): Iteratively determine the in-
cident lighting i as well as diffuse albedo color a from f using
the radiance transfer of M.

4. Specular coefficients (section 3.4): Determine estimates for
the diffuse part wd(Mu) and the specular part ws(Mu) of the
material for each segment Mu.

3.1 Data association
Dense reconstructions can not only be acquired with multi-camera
setups [2], but, increasingly, with dense simultaneous localization
and mapping (SLAM). Kinect Fusion [18], a popular SLAM vari-
ant, turns RGB-D input into a volumetric model, from which a sur-
face mesh is extracted using isosurface raycasting. We rely on the
implementation in the Microsoft Kinect SDK 1 to obtain an initial
mesh geometry. We regularize the mesh to ensure distances be-
tween neighboring vertices are within a tight interval. Excessive
detail is removed by iterative edge collapses, followed by local De-
launey re-triangulation. Areas with large triangles are refined using
Catmull-Clark subdivision. After regularization, normals must be
re-estimated.

Since our method depends on the quality of the color informa-
tion, we do not make use of the color information from Kinect Fu-
sion. Instead, we greedily select a minimal set of keyframes K j
from the input sequence covering the entire scene, such that the
camera centers are spaced sufficiently far apart:

1https://dev.windows.com/en-us/kinect
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Figure 2: System overview.

|pos(Ka)−pos(Kb)| ≥ c1 ∀a 6= b (1)

Initially, pixels from all keyframes are projected to the mesh ver-
tices vi using the perspective projection defined by the keyframes
camera pose and collected in a per-vertex surface light field
f̃(vi,K j).

Before we can factor the observations into incident lighting and
material properties, we must refine the data association. We do
this by estimating a lit-color texture f(vi) from all corresponding
samples f̃(vi,K j). We compute f(vi) by searching for the y which
minimizes the error of a robust estimator ρ:



f(vi) = arg min
y

ρ(1 · y− f̃(vi,K j) · e j) (2)

The samples are corrected for different exposure between
keyframes with weights e j per keyframe K j. In the first iteration,
we assume e j = 1 ∀ j. Given enough samples, it suffices to use the
median or even the mean for ρ .

In the initial estimation of f(vi), we only consider samples for
which the angular difference between projection direction and sur-
face normal n(vi) exceeds a threshold:

vi−pos(K j)

|vi−pos(K j)|
·n(vi)> c2 (3)

Moreover, vertices close to a geometric edge are initially not con-
sidered, because they can cause color bleeding. This problem can
be best inspected in the image space of the keyframe K j from which
a sample f̃(vi,K j) originates. For a sample from K j corresponding
to a pixel position x, we trace rays through neighboring pixels and
determine a set of intersection points Ms on the mesh. If a point in
Ms is too far from vi or the normals deviate too much, we do not
consider vi:

∃vs ∈Ms(vi)∧ (|vs−vi|> c3 ∨ n(vs) ·n(vi)> c4) (4)

For every pixel pix(K j,x) at location x in keyframe K j, we obtain
the corresponding sample(f,K j,x) by rendering the mesh, and we
compute the pixel-wise ratio of the pixel and the sample. To ro-
bustly estimate an exposure correction factor e j for keyframe K j
with respect to the brightness represented by f, we search for the y
which minimizes a robust estimator ρ the differences among these
ratios.

e j = arg min
y

ρ

(
1 · y− pix(K j ,x)

sample(f,K j ,x)

)
(5)

After updating f using the e j as weights (Equation 2), we correct
for small errors in the camera poses. We make small changes to
the external camera parameters pos(K j) and rot(K j), re-render the
images, and search for a local minimum along the image gradient
using a Lucas-Kanade method.

We repeat the cycle consisting of exposure compensation and
pose correction. In later iterations, the restrictions on eligible ver-
tices can be stepwise relaxed to incorporate more data. The iteration
terminates, if the overall error is small enough or no more improve-
ments are achieved.

The result of the data association is demonstrated in Figure 3(b).
Note that the images reconstructed from the lit-color texture repre-
sent averaged colors and include averaged camera-dependent light-
ing effects, such as specular highlights. We remove these arti-
facts later, after estimating specular reflection properties (see sec-
tion 3.4). For comparison, Figure 3(a) shows the color reconstruc-
tion produced by Kinect Fusion, which heavily suffers from color
bleeding, unstable exposures and erroneous camera poses.

3.2 Material-based segmentation
To guide the inverse rendering, we compute a material prior by
segmenting the mesh M into disjoint clusters Mu, each consist-
ing of vertices with a similar material. We begin by analyzing
the mesh connectivity and isolate unconnected surface components.
For every mesh component, we apply a density-based scan (DB-
SCAN) [7]. The algorithm searches for connected clusters of sam-
ples that have a certain density with respect to a user-defined dis-
tance function dist. We used a distance function that is a weighted
combination of differences in the lit-color texture f̃, the negative
normal gradient distance nngd(va,vb) and the shape diameter func-
tion sd f (vi).

(a) Kinect Fusion (b) Iterative Vertex Coloring

Figure 3: Comparison of per vertex colors obtained from Kinect Fu-
sion and our approach.

dist(va,vb) = w1 · |f(va)− f(vb)|+w2 ·nngd(va,vb)+

w3 · (sd f (va)− sd f (vb)) (6)

The lit-color texture differences describe material discontinuities.
We assume low-frequency distance lighting, which does not pro-
duce hard shadows. Therefore, high-frequency color changes can
only result from surface texture.

The negative normal gradient distance describes how two nearby
surface points are oriented towards one another. If the surface to
which the points belongs is planar or convex, we heuristically as-
sume that they belong to the same object. If their arrangement
is concave, we assume they may belong to two different objects
touching each other. This measure can be computed from the angle
between the normal of the first surface point and the vector to the
second surface point:

nngd(va,vb) = max(0,cos−1((va−vb) · (n(va))−
π

2
)) (7)

The shape diameter function models the local thickness of the ob-
ject underneath a mesh vertex. It has been shown to be a reliable
indicator for detecting object parts [22]. We sample it stochastically
by shooting rays into the negative half-space underneath a vertex.

After clustering all mesh vertices, we merge small segments,
which consist only of a few points, with their best matching neigh-
boring cluster. An example of the resulting segmentation is shown
Figure 2. Note that each segment combines surface points sharing
the same material.

3.3 Inverse rendering
In this section, we introduce an inverse rendering method to factor
the lit-color texture into incident lighting and albedo colors.

Let us first consider forward rendering using radiance trans-
fer [24], which describes how light is reflected at a surface point
vi. We write illum(ω) for the light intensity from direction ω . For
a purely diffuse material and only directional illumination, the ra-
diance transfer t is essentially a sum over the illumination from all
incoming directions, weighted by a Lambertian term and the vis-
ibility visib, which tells us if the light in a given direction ω is
occluded or not. We sample the visibility at each vertex by tracing
rays into the scene, including a few bounces. The result is scaled
with the diffuse albedo color a:

t(vi, illum) =
a(vi)

π
∑
ω

visib(vi,ω) · illum(ω)max(n(vi) ·ω,0)

(8)
For the inverse rendering, we express both the radiance transfer and
the incident lighting in SH form. The radiance transfer becomes a



Figure 4: Visual Coherence. (left) The action figure is placed in front of two large windows, from which most of the incident light is coming.
(middle) The resulting estimation of the albedo color and the rendering using the estimated lighting. (right) Differential rendering using the hulk
reconstruction and a virtual bunny with the same material.

matrix T = [ti,k] (see Figure 10(a) for an example) storing the kth

SH-coefficient at vertex vi in ti,k. The lit color f can be determined
from the dot product of the incident lighting i in SH form and the
radiance transfer.

f(vi) = a(vi)∑
k

ti,k · ik (9)

Many real world environments contain area light sources, such as
ceiling lights or windows, which can be characterized as distant and
low frequency. This has two important implications. First, distant
lighting implies that color variations of two diffuse surfaces facing
in the same direction are related to surface texture, since distant
lighting has the same lighting effect on them. Therefore, differ-
ent lit colors can only result from different diffuse albedo colors.
Second, under low-frequency distant lighting and in the absence of
occlusions, high-frequency color changes on a surface can only re-
sult from albedo colors, because the lighting does not produce hard
shadows.

Taking these considerations into account, we could compute the
incident lighting together with albedo colors using a non-linear
solver in just one pass. However, we found that this approach tends
to deliver rather unstable estimates, especially on noisy input data.
Instead, we solve the resulting linear equation system in the least
squares sense [8]:

i = arg min
i
|f−a ·1T ·T · i|2 (10)

We iterate the linear solver and regularize it using the material-
based segmentation. In the first iteration, the diffuse albedo colors
a are unknown and are initialized to a constant setting (medium-
intensity white). Consequently, the solver tries to derive all lit-
colors from colored lighting, which leads to an error proportional
to the color intensity incorrectly attributed to the lighting and not
the albedo color.

The error can be estimated by comparing forward rendering and
inverse rendering. We re-evaluate Equation 9 with the newly found
i and subtract the result from f to obtain individual per-vertex dif-
ferences ∆f(vi). The differences are averaged for all vertices in one
material segment Mu, yielding a per-segment error ∆fu.

∆fu =
1
|Mu| ∑

vi∈Mu

∆f(vi) (11)

The per-segment error is subtracted from all vertices in the segment
and added to all albedo colors in the segment:

vi ∈Mu→ f(vi) = f(vi)−∆fu, a(vi) = a(vi)+∆fu (12)

The iteration terminates, if all segment errors falls below a certain
threshold. An example of the resulting incident lighting is shown
as an environment map in Figure 10(b)).

After convergence, we obtain an estimate of the incident illumi-
nation i, which is free of bias from the albedo, and an average unlit
albedo color a per material segment.

We can derive the high-frequency parts of the albedo color by di-
viding the remaining lit-color texture f by the corresponding light-
ing effect. We obtain the lighting effect by forward-rendering the
scene once again (Equation 9) with i and the constant albedo color
used in the first iteration. The high-frequency part is added to the
average per-segment albedo color to obtain the complete albedo
color.

Finally, we improve the radiance transfer by using the recon-
structed albedo color. With meaningful albedo colors, radiance
transfer can take color bleeding into account.

3.4 Recovering specular coefficients
In order to recover specular material properties, we return to the
original keyframes K j. Our method is able to detect all specular
reflections, if a complete light field exist for each point. However,
in practice, we usually have only measurements from a fraction of
all possible light directions for each point. To compensate for this
sparse information, we use an approach similar to Jachnik et al.
[10] and compute the specular values per material segment, rather
than per vertex.

We use a material, which assumes that the the observed lit colors
f̃ are the result of a weighted sum of diffuse and specular reflection.
At a given vertex, the diffuse lit color is given by f. The purely
specular color fs can be determined for a given viewpoint pos(K j)
by sampling i in the direction of the reflection, unless the reflected
ray is blocked by the scene. This leads to the following equation:

f̃(vi,K j) = wd · f(vi)+ws · fs(vi,K j) (13)

For every segment Mu, we build and solve an overdetermined lin-
ear equation system in two unknowns wd(Mu) and ws(Mu) for all
observations of a vertex vi ∈Mu. We empirically observed that wd
corresponds well to subjective roughness of the surface material.
More importantly, equation 13 can be used directly in a shader. Fig-
ure 3(d) demonstrates the resulting specularity map.



Figure 5: Visual comparsion between video frame and our rendering
which uses our estimations.

4 RESULTS

4.1 Applications
In order to illustrate our system, we have reconstructed several
scenes under various light conditions. In particular, we have
scanned a bowl of fruits (Figure 2), a plastic toy car (Figure 7(a)),
and a action figure (Figure 4). While the action figure is mostly
diffuse, the toy car and the fruits include diffuse and specular re-
flections.

Besides reconstructing material and geometry, our system is able
to estimate the current lighting without any special laboratory setup.
This enables instant addition of virtual objects to any real envi-
ronment without any special hardware constraints (Figure 4). The
scene consists of a real action figure (The Hulk), which we used to
estimate the current lighting. In addition, we added a virtual bunny,
rendered using the estimated light. Note how the two windows, the
sources of most of the incident lighting, have been correctly esti-
mated.

Figure 6: Mediated Reality. (top) The fruits have been replaced by
a dragon. (bottom) The real orange was substituted with the recon-
structed Hulk. The lighting matches the rest of the fruit scene.

Figure 7: Augmented Virtuality. (top) We place the scan inside a 360◦

video and relight the geometry using our material estimated and an
estimation of lighting in each video frame video. (bottom) Input data
and estimated albedo color and lighting.

Our system supports coherent lighting in Diminished and Me-
diated Reality applications. Figure 6 (top) shows a virtual dragon
replacing the fruits from Figure 2, correctly lit by the computer
monitors in front of the removed fruits. The estimated light and the
reconstructed material of the fruits are compared to video images
in Figure 5 The sphere represents the reconstructed lighting. Since
our approach reconstructs geometry, material and current lighting,
real world objects from different scenes can be mixed into into into
a single, coherently illuminated scene (Figure 6, bottom). Our re-
construction of material parameters allows to relight 3D scans of
real objects. Thus, we can instantly add scanned real objects into
virtual environments. Figure 7 (left) shows our reconstruction of a
toy car, which we subsequently placed into a 360◦ video (Figure 7,
right).

4.2 Comparisons
Figure 8 shows the results using different sets of light transfer func-
tions applied on a single material mesh. In addition, the error com-
pared to the reference rendering is illustrated using color coding.
Figure 8(a) shows the reference scene, which has been rendered by
a multi-bounce ray-tracer and lit by an HDR environment map. Fig-
ure 8(b) uses a light transfer function which is only taking local ge-
ometry information like normals into account and cannot correctly
separate albedo from lighting. The reconstructed albedo color in
Figure 8(b) contains artifacts from self-shadows and light bleeding,
since this information is not part of the transfer function used dur-
ing reconstruction. Figure 8(c) is taking self-shadow information
into account. Because the light transfer function does not include
light/surface reflection, the error in the albedo reconstruction is high
in concave areas where light bouncing and bleeding have a notice-
able impact on lighting. The recovered lighting shows less error
than Figure 8(b), but still contains strong ringing and blurred high-
lights. The albedo texture would lead to artifacts when used for
relighting. Figure 8(d) shows that GI has the least amount of er-



Figure 8: Visual comparison based on the type of light transfer functions used for light reconstruction. The small inset renderings present the
error using the color code in the lower left corner.

ror. Note that the reference was conventionally ray-traced without
lossy SH compression, we we cannot expect to match it exactly. We
expect that using more SH bands would further reduce the error.

We have compared our approach to nonsegmented solving [8,
20], using GI for all approaches in the comparison. Nonsegmented
solving assumes a scene with uniform albedo (Figure 9(a)). Since
this approach can explain lit colors only by varying the lighting,
it fails on multi-material scenes (Figure 9(b)). In contrast, our ap-
proach (Figure 9(c)) is able to segment and separate albedo and
shading. Note that without GI nonsegmented solving would even
perform worse.

4.3 Performance

Visually coherent rendering of virtual objects in the user’s real en-
vironment requires a quick estimation, since, otherwise, the light-
ing may change during processing. Our method scales with the
number of vertices in the mesh. The fruit scene consists of an in-
stant geometric reconstruction of medium size received from the
Kinect Fusion SDK. Estimating all parameters for this scene took
approximately 2 minutes on a mid-range notebook computer. For
comparison, we also used a structure-from-motion system, which is
able to create a high quality 3D mesh reconstruction within a cou-
ple of minutes. We used this system on the Hulk model to create a
large 3D mesh consisting of 470K vertices. On this large data set,



Table 1: ProcessingOur times in seconds.
Scene Ball Dragon Bunny Fruits Hulk
Vertices 10371 22982 34817 72119 229059
SH(Diffuse) 0.029 0.099 0.100 0.212 0.656
SH(Shade) 0.780 4.260 3.140 7.550 32.887
SH(GI) 10.669 76.990 22.410 112.603 470.782
Segmentation 0.048 0.113 0.145 0.314 1.109
Iteration 6.333 10.090 10.970 15.993 48.341
Total 17.050 87.193 33.525 128.910 502.232

our method ran for under 1 hour to derive all parameter. However,
down-sampling the mesh to 200K vertices reduced the computation
time to a few minutes (see Table 1).

Table 1 lists computation times (on a mid-range notebook) in
seconds for the different stages of our pipeline. For comparison
with previous work, we have measured SH calculation at three com-
plexity levels. SH (Diffuse) only takes only vertex normals into ac-
count [20], so its computation effort scales with the number of ver-
tices only. SH (Shade) is calculated as in the approach by Gruber
et al. [9], considering only ambient (self-)occlusions. The perfor-
mance depends on the amount of concavity in the scene. Finally,
SH (GI) takes multiple light bounces into account for calculating
full global illumination (GI). This approach is dependent on the
overall scene complexity.

5 CONCLUSION AND FUTURE WORK

We have presented a method for obtaining estimations for illumi-
nation and material using input from casual scanning and demon-
strated that, even with the severe restrictions of casual scanning, it is
possible to deliver high-quality results. Moreover, we have demon-
strated the versatility of our approach with results across the whole
spectrum of photo-realistic MR applications, spanning from Aug-
mented Reality (inserting virtual objects into real scenes) to Aug-
mented Virtuality (inserting scanned objects into virtual scenes).

While our method enables many applications, it suggests several
directions for future work based on the assumptions we have made.
For example, we assume directional lighting with only low- to mid-
range frequencies and piecewise constant specularity, which limits
specular effects. Furthermore, since we assume a static scene, dy-
namic elements, such as moving or deformable objects require a
dynamic geometric reconstruction as well as information about the
light transfer for each point in time. Furthermore, we plan improved
color management using LAB instead of RGB color space as pro-
posed by Sheng et al. [23].
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Figure 9: Comparing reconstructions based on segmentation.



(a) Input and Resulting Rendering

(b) Initial Result

(c) Result after 1. Iteration

(d) Result after 5. Iteration

(e) Result after 7. Iteration

(f) Result after 33. Iteration

Figure 10: Reconstructing Light. (left) Recovered Albedo Color (middle) Recovered Lighting (right) Geometry lit with recovered lighting.


