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Fig. 1: Overview of the structural modeling pipeline. (a) We first obtain a 3D scan of the environment and respective keyframes, to
which we apply an efficient plane segmentation algorithm to find planar regions in the scene. (b) The regions found in the first two
keyframes are integrated in an initial model. (c) Further regions from subsequent keyframes are integrated with existing planes to
recover topologically meaningful geometry. (d) The structural model correctly captures joint edges and vertices between recovered
planes, marked as dots and cubes in the image.

Abstract—In this work, we present a new automatic system for scene reconstruction of high-level structural models. We start with
identifying planar regions in depth images obtained with a SLAM system. Our main contribution is an approach which identifies
constraints such as incidence and orthogonality of planar surfaces and uses them in an incremental optimization framework to extract
high-level structural models. The result is a manifold mesh with a low number of polygons, immediately useful in many Augmented
Reality applications such as inspection, interior design or spatial interaction.

Index Terms—Structural modeling, geometric scene understanding, topology construction

1 INTRODUCTION

Augmented Reality (AR) relies on knowledge of the scene surround-
ing the user for registering virtual objects and for tangible interfaces.
Commodity depth sensors and advances in simultaneous localization
and mapping (SLAM) have revolutionized rapid 3D scanning, but the
resulting purely geometric models do not provide clues on the struc-
ture of the environment. By structure, we mean high-level semantic
information, such as the shape, class or purpose of geometric entities
in the environment. Such geometric scene understanding is consid-
ered a very challenging artificial intelligence problem. Nonetheless,
the topic has gained significant attention in recent years, especially in
real-time computer vision and robotics.

In this work, we address structural modeling, which is concerned
with recovering topologically sound high-level geometric primitives
from 3D scanned geometry. We focus on planar structures, which
can be robustly identified and processed into topologically connected
polygonal models. Planar structures do not cover all possible shapes,
but they are prevalent in human-made environments and immediately
useful for AR applications.

Consider a simple office room (Figure 1): It consists of a desk, a
floor, four walls, and a few boxes on the desk or floor. A conventional
3D scan may approximate one wall with thousands of sample points
up to millimeter-level accuracy, but it is unable to return a simple wall-
sized rectangle. If structural modeling provides such a rectangle reg-
istered to the real environment, an AR application could use simple
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texture-mapping onto a quad to visualize a new tapestry for interior
decoration or just to display a webpage. A kitchen planning applica-
tion could measure and count the shelves of an existing cupboard for
refurbishing. A clean, topologically sound model of the environment
has many more applications in AR, for instance, geometric object de-
tection, scene measurements, parametric computer-aided design, illu-
mination simulation and spatial interaction.

We present a new automatic system that explicitly focuses on ob-
taining a topologically correct model. As in previous work, we first
identify planar regions in depth images obtained with a SLAM sys-
tem. On these planar regions, we identify geometric constraints (co-
planarity, incidence, orthogonality) of planar surfaces. High-level
structural models are created with incremental optimization using
these constraints. The final result is a polyhedron with a low number of
polygons, immediately useful for AR applications such as geometric
and semantic manipulation.

2 RELATED WORK

Several approaches exist for establishing structural models from ge-
ometric input. They can roughly be categorized into bottom-up and
top-down approaches. In bottom-up approaches, the raw measurement
data is abstracted, until the desired level of abstraction is obtained.
This approach fits well with global reconstruction, where a large body
of raw data can be integrated into a global model, such as point clouds
from LIDAR or depth cameras. Furukawa et al. [7] demonstrated this
approach on indoor image data sets. Similarly, Whelan et al. [26] in-
troduced a new method to simplify dense point clouds into 3D polygon
models. Their method computes incremental plane segmentations on
existing point clouds to derive a global mesh model consisting of pla-
nar triangulated surfaces as well as non-planar surfaces. This approach
shows qualitatively interesting reconstructed models. However, it is
designed for offline processing and has a high computational cost.
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Fig. 2: This diagram illustrates the incremental structural modeling pipeline

An alternative approach proceeds in a top-down fashion and ex-
plicitly fits prior models to the raw data. Again, the first methods in
this category worked offline on global data sets. Schnabel et al. [20]
showed how to efficiently fit a set of parameterized 3D primitives such
as spheres, cylinders, boxes and planes into a large dense point cloud.
This was further refined by finding and enforcing spatial relationships
between primitives [15]. Another approach using prior models is to
detect a fixed set of classes of objects based on 3D models [21] or
learned classifiers [13].

Prior models can also include more than simple geometric primi-
tives or object detection. Knowledge about constraints between ob-
jects, such as volumetric reasoning [14] or physical support and me-
chanics [8], have been exploited in estimating block-based or object-
based models. These approaches usually require an optimization over
a label space to incorporate the constraints in the modeling. The above
approaches employ expensive detection and estimation algorithms on
large data sets and cannot be run in real-time or on data that becomes
available incrementally.

Bottom-up approaches can be adapted to operate incrementally and,
thus, can be embedded in a SLAM system, for example based on 3D
feature points [4]. With the advent of cheap and robust depth sensors,
several SLAM systems have emerged which target the reconstruction
of simplified maps of complex environments. Trevor et al. [23] pro-
posed planar SLAM for reconstructing the planar surfaces of a scene.
Their system exploits advantages of both close-range and far-range
depth sensors. However, such a system is difficult to deploy in AR.
Recently, Salas-Moreno et al. [18] introduced a SLAM system that
partitions a dense reconstruction into planar and non-planar parts and
enforces planarity on the plane segments. While the above approaches
demonstrate promising results, they require significant computational
power, when integrating planar regions in a point-wise fashion. Fur-
thermore, they do not aim for establishing higher-level relationships
between the plane primitives.

For interactive systems, user input can provide the necessary in-
formation to build geometrically sound reconstructions. Several sys-
tems provide interactive modeling tools supported by 3D reconstruc-
tion information, such as camera poses, 3D points and plane estimates
[5, 24, 22, 2]. These approaches require all information to be available
up-front and do not work incrementally. Furthermore, the user inter-
faces resemble rather complicated 3D modeling software and are not
easily re-usable in mobile setups.

Online interaction for 3D reconstruction is an even larger challenge,
because fundamental information, such as the camera pose, needs to
be estimated online with limited computational resources. However,
this situation also presents two distinct opportunities: First, automatic
computation of higher-level objects can be used to improve the ro-
bustness and accuracy of the SLAM process [19]. Second, the SLAM
operator can immediately inspect the model and plan the next steps.
Several SLAM systems demonstrate that users can build edge-based
models [3] or fully polygonal models [25]. Here, the SLAM system
provides camera poses that are used with interactive modeling tools to
define 3D vertices, edges and polygon outlines of the 3D model.

Nguyen et al. [17] presented a simplified approach based on the
aforementioned concept. The user annotates only vertices of a room
model, and the system uses a combination of a normal camera and a
single-point laser range finder to estimate the adjacent wall structures.
A global estimation step establishes the recovery of the overall shape
of the room. The system was limited to pure camera rotations and

made strong assumptions about the shape of the environment. As a re-
sult, this system could only reconstruct simple models and left several
details unsolved. A similar system was described by Kim et al. [11]
using a Kinect camera combined with a projector for output. User
input is provided through a single button to add a planar surface to
the reconstruction. The system models vertical, rectangular walls and
enforces orthogonality between segments.

O-Snap [2] operates as an interactive post-processing step on high
quality dense point-clouds, but, otherwise, shares many aspects with
our work. The point-cloud is processed using a semi-automatic ap-
proach to combine advantages of both low-level automatic construc-
tion and interactive user input. They apply plane fitting on the point-
cloud, which results in initial polygons. The user can interactively
modify vertices, until achieving the desired reconstruction results. The
authors claim that their method achieves high accuracy within reason-
able time. However, O-Snap is designed for a desktop setup.

We propose a fully automatic system, which works incrementally,
in-situ, and has a low computational cost. This makes it much more
amenable to mobile AR. The system delivers high-level structural in-
formation, which makes it easy to build mobile user interaction on
top. We do not assume a reliable global reconstruction and work with
a mobile SLAM system. Consequently, our work is easily applicable
to consumer applications on low cost hardware.

3 SYSTEM OVERVIEW

Our system incrementally builds a structural model from depth image
keyframes with known camera poses. Figure 2 shows an overview
of the processing steps. The pipeline works incrementally, while the
user is actively observing the scene. Keyframes are selected by the
underlying SLAM system, which runs in parallel to the reconstruction.
Every time a new keyframe is added by the SLAM system, the pipeline
is invoked and improves the structural model (Figure 3).

The three main stages each deal with different aspects of the re-
construction problem. The plane detection groups the individual mea-
surements of a single depth image into plane segments that describe a
single plane (see section 4). The geometric reconstruction estimates
global plane features by combining individual segments, and opti-
mizes the plane geometry by applying different geometric constraints
between the global plane features (see section 5). Finally, the topologi-
cal reconstruction combines the polygon outlines of the plane features
(see section 6). The input and output of each stage is described in more
detail in the following.

Simultaneous localization and mapping Our system obtains
input from a consumer depth sensor (Kinect). We use RGB-D
SLAM [10], which scales better to large environments than volumet-
ric SLAM [16] and does not require a GPU. It uses concurrent threads
for camera tracking and for mapping. The scene is mapped as a set of
RGB-D keyframes, which provide the input to our structural modeling
pipeline. A keyframe K stores a camera pose T as the transformation
from the local camera frame to the world coordinate frame, a color
image and a depth image.

Plane detection A new keyframe K is handed to the plane de-
tection stage, which extracts plane segments. A plane segment S is
a connected component in image space that can be modeled with a
plane in 3D space. It consists of a set of pixel indices in the keyframe,
a plane equation and an in-plane 3D polygon b corresponding to the
segment border.
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Row Key stages of the structural modeling pipeline 

1 Detect plane segments {Sj} in new keyframe,  
and collect existing visible plane features {Pi} in this keyframe 

2 Infer geometric relations GS between detected segments {Sj} 

3 For each segment S in {Sj} 

 P = existing plane feature in {Pi}  overlapping to  S  
 or new plane feature corresponding to S 

 Add P to {Pi} if P is new plane feature 
 

4 Use GS to infer plane relations GP  from P  to  
visible plane features {Pi} in this keyframe; Add GP to constraint set 

5 

 

For all Pi which overlap P  

 Merge Pi into P 

 Delete Pi 

6 Constraint optimization 

7 Topological reconstruction 

 
Fig. 3: Incremental structural modeling pipeline executed for each new
keyframe. (Row 1): Within the new keyframe, we project the existing
plane features (consisting of plane segments), and detect new plane
segments. (Row 2): Between new and existing plane segment pairs,
geometric relations are computed (e.g., plane segment pairs may be
parallel or orthogonal). (Row 3): Plane segments are assigned to a
plane feature. (Row 4): We infer plane relations between the plane fea-
tures from the assigned plane segments. (Row 5): Overlapping plane
features are detected and merged. (Row 6): Exploiting the geometric
relationships between plane features, we perform a constrained global
optimization on the geometric reconstruction. (Row 7): Finally, we
derive a topological reconstruction from the geometric reconstruction.

Geometric reconstruction The geometric reconstruction step
processes one new plane segment S at a time, with the goal of merg-
ing overlapping segments from one or more keyframes into plane fea-
tures. A plane feature P is estimated from one or more overlapping
segments. It contains a set of associated plane segments S, a border
3D polygon b, and a plane equation p. While segments are treated
as immutable measurement data, the plane features are continuously
estimated, which means they are built incrementally and subject to op-
timization.

The geometric reconstruction stage infers geometric relations be-
tween plane features, such as parallel, coplanar, overlapping, incident
and orthogonal relations. Plane equations and keyframe locations are
optimized to obtain an improved model. The geometric relations are
added as geometric constraints to this optimization step. This step is
done before the outlines of the plane features are updated, to ensure
that the best geometric information is available for the last step.

Topological reconstruction The information from the geometric
reconstruction is forwarded to the topological reconstruction. This
stage is responsible for simplifying the borders of plane features
and for constructing a manifold polygonal mesh from incidence
relationships.

We illustrate the main ideas of the structural modeling system with a
simple scene shown in Figure 4. In this example, we only use a single
RGB-D frame as input (Figure 4(a)). The system detects plane seg-
ments in the scene (labeled with different colors in Figure 4(b)). Be-
fore newly detected segments are integrated into the global model, ge-
ometric relations between segments are recovered (Figure 4(c)). Par-
allel segments are rendered with the same color. For pairs of inci-
dent and orthogonal segments, an orange intersection line is displayed.
These segments are integrated into the global model as new plane fea-
tures with common edges and corners (Figure 4(d)). Incident edges
are rendered with arrows. Right angle corners between two consecu-
tive edges on planes are highlighted with L shapes on the associated

corners’ position. Incident and orthogonal planes are highlighted with
orange spheres on the associated incident lines. Finally, occluding,
unbounded plane borders are further simplified. This results in a clean
polyhedron (Figure 4(e)), comprising a few simple polygons. Simpli-
fied edges are rendered with arrows.

4 PLANE DETECTION

Plane detection is the first stage of the pipeline and contributes the ba-
sic measurements. Each keyframe is analyzed independently without
any prior information. The plane detection module creates a segmen-
tation of the depth map into a set of contiguous planar regions and
jointly estimates the plane equation for each component and the set
of pixels belonging to it. It uses an inverse depth parametrization for
the plane equation in camera coordinates, as described by Erdogan et
al. [6], but applies a greedy algorithm instead of a global optimization
for reasons of speed. We only look at the depth map values, while ig-
noring RGB data, since RGB is not very reliable for the Kinect sensor
we used in our experiments. See Figure 5 for an example of the results
of plane detection on a single frame.

In inverse depth or disparity representation, a visible plane – which
must not contain the origin – can be described using three coefficients
(a,b,c), so that for a pixel (u,v) with depth value z, the following
equation holds

1
z
= au+bv+ c (1)

Thus, we have a linear constraint for the plane coefficients from
the inverse depth at a single pixel. Plane fitting can be expressed as a
linear least squares problem of the form

argmin
(a,b,c)

∥∥∥∥∥∥∥∥∥∥


u1 v1 1
u2 v2 1
...

...
...

un vn 1


a

b
c

−


1
z1
1
z2
...
1
zn


∥∥∥∥∥∥∥∥∥∥

2

(2)

The estimation of the plane coefficients (a,b,c) proceeds incremen-
tally, by updating the normal equations for each new inverse depth
measurement and recomputing the solution. Overall, this is a very fast
operation per pixel, because we only need to solve a linear system of
rank 3.

The plane estimation is embedded in a greedy region growing op-
eration. A set of seed locations is used to start new components, and
an initial plane estimation is computed from the immediate four neigh-
bors of the seed location. The set of pixels S for the current component
is initialized with the seed location and its neighbors. All 4-connected
neighbors are added to the candidate locations C.

For each candidate in C, the inverse depth error to the estimated
plane is computed using equation 1. If it is below a threshold, the lo-
cation is added to S, and the plane parameters are updated from equa-
tion 2. New 4-connected neighbors of the pixel are added to C. This
flood fill operation continues, until C is empty and no new pixels can
be added anymore. Note that the threshold is given in disparity space,
therefore, it represents a uniform noise threshold independent of the
depth for any stereo-based depth measurement system. This holds for
structured light sensors, such as the Kinect, as well as for stereo cam-
era pairs.

Seed locations that already belong to a set S are immediately re-
jected and do not generate new components. If a new neighbor already
belongs to another component S′, its distance to the original compo-
nent is compared to the distance to the new component S. If it is closer
to S than to S′, it is reassigned to S, and both plane estimates are up-
dated.

After the joint segmentation and plane estimation, we perform two
cleanup steps. First, small holes and isolated pixels are removed by
reassigning pixels to the component that is assigned to most of their 4-
connected neighbors. This also simplifies the outline of components.
Second, a connected component algorithm is run on the labeled pixels
to identify individual components. While the initial region growing
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Fig. 4: Geometric Reconstruction Example. (a): RGB-D input frame. (b): Detected plane segments labeled in different colors. (c): Inferred
initial geometric relations between segments. (d): Planes reconstructed with common edges or corners snapped. (e): Simplified occluding
boundary.

(a) (b) (c) (d)

Fig. 5: Plane Detection Example. (a): RGB-D input frame. (b): Detected plane regions labeled in different colors. (c): Input frame overlaid
with transparent plane regions. (d): Error heatmap indicating the per-pixel error.
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Fig. 6: Halfedge concepts and the internal data structure used in our
implementation.

algorithm always produces connected components, the re-assignment
step can break up a single component again. Therefore, the outcome
of the connected component analysis provides us with a true segmen-
tation into individual components. A final plane estimate is computed
for each segment.

For further processing, we compute a polygonal representation of
the border of each segment S. A border consists of one outer boundary
and potentially multiple inner boundaries, representing holes in the
component. Because the individual components are 4-connected, all
boundaries are simple polygons, i.e., they may be concave, but not
self-intersecting. The 2D polygons are reprojected onto the estimated
plane to provide a 3D polygon in camera coordinates. The complete
output for each segment S comprises the plane equation, a set of pixels
belonging the component, including a neighbor graph listing neighbor
components, and the 3D border b.

We ensure that our border representation is a simple polygon with
holes, and there is no self-intersection in the boundary or between
the boundaries. We found that self-intersections emerge from single-
pixel paths identified in the connected component analysis. To prevent
single-pixel paths, we add surrounding pixels for those paths in the
individual connected components.

5 GEOMETRIC RECONSTRUCTION

The objective of this stage is to robustly compute plane features Pi.
This requires computing their border, merging overlapping plane seg-
ments into common planes and inferring geometric relationships. We
write Si, j,k for a plane segment that belongs to plane feature Pi and was
detected in keyframe K j. Note that multiple such segments can exist
per keyframe, hence the need for index k.

Initially, segments are not associated with a plane feature yet. We

use the special index i = /0 to denote this case. Thus, S /0, j,k denotes a
segment detected in keyframe K j but not assigned to any plane feature
yet.

5.1 Halfedge data-structure
We use a halfedge data-structure (see Fig. 6) to store all polygons and
any relationships between them. Furthermore, halfedges are used to
represent the plane border polygon of a plane feature and the geomet-
ric relations between plane features. A plane border polygon is a 3D
polygon with vertices on the associated plane. The polygon is stored
as a double-linked list of 3D halfedges. A halfedge has one previous
halfedge and one next halfedge. When two polygons share a common
edge, the halfedge has an opposite halfedge in another polygon. A
halfedge h1,i in plane P1 is represented as a 3D arrow, which has one
vertex v1,i at the head of the arrow. The arrow indicates the order of
the plane border, counterclockwise with respect to the plane’s normal.

5.2 Segment relations
The first step of the geometric reconstruction is to find geometric re-
lations between the segments S /0, j,k. We distinguish between parallel,
coplanar, incident, and incident-orthogonal relations. We search for
relations between pairs of segments of the same keyframe K j:

Parallel: We are looking for parallel segments, e.g., located on the
floor and on the ceiling. We consider two segments as parallel in 3D
space, if the angle between their normals is below a threshold (e.g.,
3◦).

Coplanar: We are looking for segments which are not only parallel,
but also located on the same 3D plane, e.g., two segments which are
located on a floor. First, the segments must be parallel. Second, to
ensure that the two segments lie on the same 3D plane, more than 90%
of the border vertices of one segment must lie on (or near) the 3D plane
of the other segment, and vice versa. We consider a border vertex to
lie on a given segment plane, if the point-to-plane distance is less than
a given threshold (e.g., 1 cm).

Incident: We are seeking segments which border at each other (note
that segments cannot have an overlap, but may merely “touch” each
other), e.g., located at the intersection edge of the floor and a wall.
We consider two segments as incident, if they share a common edge,
which we call an incident edge. To determine the incident edge, we
first collect touching pairs of border vertices of the two segments,
which are neighbors in pixels space. For instance, segment S1, j,1 and
segment S2, j,1 have touching border points (b1, j,1,b2, j,1) (see Figure 7
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Fig. 7: Segment Integration. (a): Two planes with two overlapping segments each. All segments are from the same keyframe (although this is
not required). Two incident points are highlighted. (b): The polygon border is computed as the union of the segment borders, when integrating
segment S1, j,2 to plane feature P1. The union polygon is re-snapped to incident line.

(a)). We compute the 3D plane intersection line between the two seg-
ments. We verify this line by computing the support from the border
vertices of the segments. For that purpose, we compute the line-point
distance of all touching border vertices in 3D space. The plane inter-
section line is considered as an incident edge, if a sufficient number
of touching border vertices (e.g., 50) is located within a threshold dis-
tance from that line (e.g., 1cm). Border vertices which support the
incident edge are called incident points.

Incident-orthogonal: We are looking for segments which are not
only incident, but also orthogonal to each other, such as segments lo-
cated on the edge of the floor and a wall. Two segments are considered
incident-orthogonal, if they are incident, and their normals are orthog-
onal up to a threshold (e.g., 3◦).

These segment-segment relations are later used to infer relations
between associated plane features of the segments. We found that us-
ing segment relations to infer plane relations is much more robust than
directly checking plane feature relations. Additionally, it is easier to
select uniform error thresholds (angular error and distance error) for
extracting segment relations.

5.3 Segment integration
For the integration of segments, we check if a candidate segment S1, j,2
overlaps an existing visible plane feature P1 in this keyframe (see Fig-
ure 7 (b)). Segment S1, j,2 overlaps plane feature P1, if there is an in-
tersection between the 2D polygon projection of the segment’s border
on the plane feature and the 2D polygon of the plane feature’s border.
Otherwise, if there is no overlap with any known plane feature, a new
plane feature is created from the single segment.

If a segment S1, j,2 is overlapping with a plane feature (see Sec-
tion 5.2), we integrate this segment into the plane feature. The inte-
grating operation includes three steps: preparation, union border com-
putation, and re-snapping.

In the preparation step (step 1 in Figure 7 (b)), we store the existing
state of the plane feature for rolling back, should one of the subsequent
steps fail.

In the union border computation, we compute a new polygon bor-
der as the union of the current plane feature’s border and a segment’s
border. Since the borders are simple polygons with holes, the union
must also be a simple polygon, but the number of holes can change
(step 2 in Figure 7 (b)).

The union border ignores information on incident edges that are
shared with another existing plane feature and can move a border over
the incident line. Therefore, in the final step, we re-snap the new union
border to existing incident edges of the plane feature (step 3 in Figure 7
(b)). We proceed to test if the newly re-snapped union border consists

of simple polygons with holes and there is no intersection between the
outer polygon and any holes. If the test fails, we revert the integration
operation to the stored state from the first step and put this segment on
hold for later processing.

5.4 Plane relations

By now, all segments of the new keyframe K j are either integrated into
an existing plane feature or have created new plane features. Next, we
update the geometric relations between all plane features visible in
the keyframe. This includes both newly created plane features and
existing ones that are visible.

For each pair of plane features P1,P2 we use segment-segment re-
lations to infer new or update existing geometric relations between
the plane features. For instance, P1 and P2 are parallel, if there ex-
ists a parallel relation between a segment S1, j,k of P1 and a seg-
ment S2, j,l of P2. Note that segments S1, j,k and S2, j,l belong to the
same keyframe K j. Similar to segment-segment relations, we infer
the following plane-plane relations: parallel, coplanar, incident, and
incident-orthogonal.

5.5 Plane feature merging

Next, we check if two plane features overlap. We first check for the
existence of a coplanar relation between a segment S1, j,k of plane fea-
ture P1 and a segment S2, j,l of plane feature P2. If there is at least one
large enough border interval of P1 is inside P2 (including the border
of P2), the planes are considered overlapping. A border interval is a
consecutive sequence of halfedges along a border. A border interval
is inside the border of another plane, if all the points of the plane are
inside the border. A point is considered to be inside of a plane, if its
normal projection onto that plane lies within the border polygon.

If two plane features are overlapping, we perform a merging oper-
ation on the plane features. The two plane features are replaced by a
common plane feature that contains the union of both plane features’
segments. The merging operation of a second plane feature with a first
plane feature is equivalent to integrating all segments of the second
plane feature into the first plane feature.

Similar to integrating a segment (see section 5.3), a union border
of all new segment borders is computed and snapped against known
incident edges of both original plane features. This step ensures that
incident edges and the reciprocal relationship of halfedges between
planes are still valid.

After plane merging, it is necessary to re-check for geometric rela-
tions. Existing relations may have changed, and new ones may have
emerged as a result of the new larger plane feature.
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Fig. 8: Merging of edges. (a): Halfedges along incident vertices v′,v′′,v′′′ can be merged, since v′ and v′′ are consecutive, and the gap width
between v′′ and v′′′ is smaller than τ . (b): The gap width w1 = |v1,i−v′|+ |v′′−v1,i| is larger than τ , but not too large. The difference |w2−w1|
to the backward walking distance w2 = |v2,k − v′′|+ |v′− v2,k| is small enough, so that the gap can be closed. (c): The backwards walking
encounters a point v′′′ incident between P2 and P3. Since the incident points v′, v′′ and v′′′ are all close enough, they can be merged into a new
corner point. We use v′,v′′,v′′ for incident vertices to simplify notation. The vertices v1,i,v2,k are halfedge vertices, as explained in Section 5.1
and Figure 6.

5.6 Constraint optimization
Finally, we improve the accuracy of the reconstructed model by opti-
mizing the plane equations and keyframe camera poses. The optimiza-
tion minimizes a geometric error between the measured segments and
the associated plane features. In addition, it also observes the geomet-
ric constraints that were found in the prior steps.

The constraint optimization can be seen as an incremental bun-
dle adjustment approach, similar to recent work on map optimiza-
tion for SLAM. We must assume that the camera poses associated
with the depth keyframes suffer from non-negligible amounts of drift,
which affects the robustness of recovering the higher level geomet-
ric features of the structural model. Therefore, we jointly optimize
camera poses T j of keyframes K j and the plane equation parame-
ters pi of plane features Pi in a graph-based approach [12]. We write
T=(T1, ...,Tn) for the vector of keyframes transformation parameters
and p = (p1, ...,pm) for the vector of plane features equations.

We use the well-known least-squares Ceres solver [1] to perform
the optimization.

The cost function C is the weighted sum of cost functions represent-
ing the different types of constraints: camera constraints (CC), plane
observation constraints (CO) and plane relation constraints (CR):

C = wC ·CC +wO ·CO +wR ·CR (3)

Camera constraints A constraint exists between two camera
poses T j,T j′ , if these cameras have an overlapping view.

CC(T) = ∑
j, j′

ρ(logse3((T−1
j ·T j′) ·R j, j′)) (4)

where R j, j′ is relative transformation from keyframe K j to keyframe
K j′ , logse3(·) is the inverse of the exponential maps for SE3, and ρ

is a robust metric minimizing a weighted combination of the resid-
ual translation and rotation. The relative transformations R j, j′ are
treated as immutable measurements, since they are computed directly
between two keyframes using intensity-depth alignment.

Plane observation constraints This term aligns measured plane
segments to their corresponding plane feature. For such an alignment,
we use the border polygons bi, j,k of all plane segments Si, j,k which
belong to plane feature Pi and keyframe K j . Our cost function ensures
that vertices v ∈ bi, j,k of the plane segments are coplanar with the cor-
responding plane feature.

CO(p,T) = ∑
i

∑
v∈bi, j,k

‖pi

(
T jv

1

)
‖2 (5)

Plane relation constraints The plane relation constraint is a sum
of constraints on incident planes (CI), orthogonal planes (CT) and par-
allel planes (CP).

CR =CI +CT +CP (6)

For unordered pairs of incident or incident-orthogonal planes (Pi,Pi′),
we store the incident border points. Incident constraints ensure that the
incident border points of incident planes move along the intersection
line of the two planes during optimization. Let bi, j,k be the set of
incident border points of segments Si, j,k of plane Pi, and bi′, j′,k′ be the
set of incident border points of segments Si′, j′,k′ of plane Pi′ (Figure
7). Then, the incident constraint cost function ensures that the incident
border points are coplanar with both planes (Pi,Pi′).

CI(p,T) = ∑
v∈bi, j,k

‖pi′

(
T jv

1

)
‖2 + ∑

v′∈bi′ , j′ ,k′

‖pi

(
T j′v′

1

)
‖2

(7)

Equation 7 expresses that incident border points of plane Pi must lie
on plane Pi′ and vice versa. Note that this equation does not enforce
that the incident points lie in their associated plane, because Equation
5 already enforces such a coplanarity constraint.

For pairs (Pi,Pi′) of orthogonal planes, the dot product of the associ-
ated normal vectors ni,ni′ should be zero. Likewise, for pairs (Pi,Pi′)
of parallel planes, the cross product of the associated normal vectors
should be zero.

CT(p) = ∑
i,i′
‖ni ·ni′‖2 (8)

CP(p) = ∑
i,i′
‖ni×ni′‖2 (9)

6 TOPOLOGICAL RECONSTRUCTION

This stage constructs an explicit topological geometry representation
of the scene. The border of each plane feature will be simplified, and
incident relationships are used to connect polygons into a manifold
mesh.

6.1 Common edge snapping
Common edge snapping is applied to planes P1 and P2 if they are inci-
dent or incident-orthogonal.

First, we check for incident edges between the borders of P1 and P2.
Two incident edges overlap, if they are either consecutive, or if the gap
width between any incident edges is very small (see Figure 8 (a)). A
gap consists of one or multiple edges, which are not incident, i.e., the
neighboring plane identified by the opposite halfedge is nil. The gap
width is the cumulative edge length. If the gap width is below a small
threshold τ (empirically set to 1cm), the incident edges are merged.

Next, we iterate over all merged incident edges for both planes. As
discussed in Section 5.5, we snap all segment border vertices which
are close enough to an incident edge of their plane border onto that
edge.
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6.2 Common incident edges with gaps

Reconstruction errors can create gaps between incident edges that are
small, but not negligible. In these cases, it is likely that the incident
edges still belong to a single continuous edge. If the gap width is
within a preset range (empirically set to 1cm-5cm), we apply addi-
tional checks to determine if the gap may be closed (Figure 8 (b)).

We compare the gap width in forward and backward direction by
walking along the halfedges in either direction between the incident
edges. If the forward and backward gap width are the same up to
a threshold (again, we use 1cm), the gap is closed by merging the
incident vertices.

6.3 Common vertices from at least three planes

Sometimes, the backward walking described above may reveal that
the backward gap sequence contains halfedges that point to a third
incident plane P3. In this case, we could be facing a corner at the in-
tersection between three or more planes. This is particularly important
for artificial objects with regular structures and strong corners, such as
furniture.

This situation can be identified by looking for a cycle in the
forward-backward walking (Figure 8 (c)). Assume that the common
corner between the three planes P1,P2,P3 is missing. We start from an
incident edge between P1 and P2 and walk along a gap. After the gap,
we encounter an incident edge between P1 and P3. We walk backwards
and continue walking forward-backward, until we either encounter the
original incident edge again, or the permissible gap width is exceeded.
All endpoint vertices of the incident edges encountered along this walk
must be sufficiently close, so they can be merged into one corner ver-
tex. Moreover, the corner vertex must be incident to all participating
planes.

6.4 Polygon fitting

Topological reconstruction simplifies the reconstructed geometry and
produces sound polygonal model in most cases. However, non-
incident border intervals remain, in particular, if we are lacking suf-
ficient observations in the keyframes. These omissions are mainly
caused by limited camera movement during the SLAM mapping or
by occlusion.

There are two types of non-incident border intervals: Occluding
intervals are intervals corresponding to halfedges pointing to a plane
feature closer to the camera of the keyframe in which they were ob-
served; occluded intervals are the opposite. In this section, we propose
a method to tackle occluding intervals.

The overarching idea is to employ polygon fitting to further sim-
plify an occluding interval V of plane P. An optimal polygon must
agree with all observed segment borders corresponding to V , while
minimizing its number of vertices. We search through all segments
S associated with P. For each vertex vi of interval V , we search for
corresponding border vertices b j ∈ S, which are occluding. For con-
venience, we write si for a line segment (vi,vi+1).

We use expectation maximization (EM) to estimate the positions of
the vertices vi, such that the distances of the points b j to the border
interval V are minimal. EM alternates between assigning observed
points b j to collinear groups in the E-step and estimating vertices vi in
the M-step. This is done over multiple iterations, until convergence.

In the E-step, we assign observed points to collinear groups by com-
puting the likelihood pi, j of a point b j belonging to si as

pi, j = p(b j ∈ si | b j,si) ∝ exp

(
−dist(si,b j)

2

2σ2

)
(10)

where dist(si,b j) is the perpendicular distance between point b j and
line segment si, and σ2 is the variance of these distances. This equa-
tion assumes that the error follows a normal distribution. After each
E-step, the likelihoods are normalized, such that ∑ j pi, j = 1. At the
start, we initialize the likelihoods by setting pi, j = 1, if the point b j is
in the group corresponding to si.

Fig. 9: Results of the polygon fitting step. Green polygons (top, left,
right) represent final polygon fitted to non-incident edges in the recon-
structed model (center). The other colored polygons (top, left, right)
are contours of the plane’s segments occluding borders in different
keyframes.

In the M-step, we minimize the objective function O(s), where s =
(s1, ...,sn) is a vector of parameters.

O(s) = ∑
i, j

pi, j
∥∥dist(si,b j)

∥∥2 (11)

Such minimization is to maximize the likelihood function L(s):

L(s) = ∏
i, j

p(b j | si) (12)

Note that the assignment likelihood pi, j is constant in the M-step.
To reduce the number of vertices of the simplified polygon, if three

consecutive, collinear vertices are found, such redundant vertices are
removed in each iteration of the M-step.

7 EVALUATION

7.1 Quantitative evaluation
First, we study the accuracy of our proposed approach. We used
the ICL-NUIM dataset [9] to compare the reconstruction results to a
known ground-truth model. We added Gaussian noise of increasing
standard deviation to the reference depth maps. Camera poses were
obtained by tracking the input sequence using the RGB-D SLAM sys-
tem. Then, we sampled both the reconstructed polygonal model as
well as the ground-truth model into point clouds to compute point-
wise distances between the two models.

As shown in Figure 10, our method achieves reasonably high ac-
curacy. Overall, 80% of the surface area of the reconstructed model
agrees to the ground-truth model within 2cm. However, the plane seg-
mentation can over-fit nearly – but not entirely – planar surface areas,
and erroneously simplify these into planes. Even though our proposed
optimization can compensate for some drift from SLAM, significant
amounts of drift are still hard to handle.

Furthermore, we also validated the correctness of the topological
reconstruction. For this evaluation, we manually check correctness
of topological relations between planar surfaces in the selected scene
(Table 1). In a few cases, our method is not able to reconstruct the
topology correctly. This is mostly due to a lack of observations avail-
able from a given camera trajectory. For instance, the right brown wall
(green plane in column 3) of office scene #2 in Figure 12 (f) is always
more than 2m away from given camera trajectory. The observed depth
data in that region is very noisy. As a consequence, the system fails
to reconstruct correct topology in this area. However, given sufficient
quality and quantity of observations, the topology reconstruction is
highly reliable.
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Fig. 10: Top: Error heatmaps of the reconstructed models. Bottom: Color-coded distance error distribution when comparing the sampled point
clouds of reconstructed models and ground-truth model. (a): 2mm depth-noise magnitude. (b): 10mm depth-noise magnitude. (c): 20mm
depth-noise magnitude.

Scene Incidence InciOrtho Parallel
Living room (dataset from [9]) 7/9 33/36 25/27
Table scene (Figure 12 (c)) 13/18 27/29 32/34
Corridor (Figure 12 (d)) 0 5/8 5/5
Office scene #1(Figure 12 (e)) 35/56 33/38 57/67
Office scene #2 (Figure 12 (f)) 18/23 25/26 24/24
Avg. correctness 77.91% 86.05% 94.36%

Table 1: Number of correctly recovered topology relations per all ex-
isting topology relations. The existing relations were counted manu-
ally for the data sets, summarizing the results of three different topol-
ogy relations. For incident and orthogonal-incident, we count number
of correct relations per all associated relations. For parallel relations,
we count number of planes assigned as parallel plane with another
plane, instead of counting plane-to-plane relations, and check the num-
ber of correct parallel planes.

Table 1 demonstrates that our topology construction is generally
robust. The proposed topology construction recovers on average 86%
of all relations. The ground-truth relations were hand-annotated in
the data sets. To our knowledge, this is the first attempt to evaluate
topology construction. However, topology is a qualitative concept, and
our results should, therefore, only be interpreted as a demonstration of
feasibility.

7.2 Qualitative evaluation

Besides accuracy, we also validate our method in terms of quality. As
illustrated in Figure 12, our method performs well in a wide range of
indoor conditions. Each row shows the results of a different scene,
with increasing complexity. The scenes range from simple scenes,
comprising a box in a corner, to room-sized scenes. The method is able
to reconstruct high-level geometric models of the scenes. Moreover,
the topological information of the reconstructed models is correct in
most of the cases.

Some restrictions are owed to the underlying SLAM system. As
mentioned in previous sections, our SLAM system uses both color
and depth information for camera pose estimation. This works well
for scenes with a lot of local geometric structure and surface textures.
Our structural modeling does not rely on such detailed local structures.
In fact, the best results are obtained when viewing larger, flat surfaces,
such as furniture or walls. As long as the underlying SLAM system,
which is independent from our structural modeling, does not lose cam-

era tracking, the structural modeling can handle a wide range of scene
details (Figure 12).

8 AUGMENTED REALITY APPLICATION

We demonstrate a simple AR application, which superimposes virtual
content on rectangular surface in the environment (see Figure 11). In
order to achieve this, we check for possible rectangles in the recon-
structed plane features of the structural model. We search for a plane
with four incident edges and check for right angle corners. If these
conditions are meet, we consider the plane to be a rectangle. Given
a gravity vector input, we then apply up-right visualization of virtual
content on the discovered rectangles.

9 CONCLUSION

We present an automatic structural modeling system, which can recon-
struct high-level polygonal models with proper geometry and topol-
ogy. Our system exploits a SLAM approach, which allows to track the
camera and operate incrementally. Thereby, an AR application can be
extended with scene understanding.

Our system extracts plane segments from SLAM keyframes using
real-time plane detection and integrates them into a global model using
automatically detected geometric constraints for improved accuracy.
Furthermore, we also reconstruct the topology the model. This enables
further simplification to obtain a geometric model consisting of a small
set of polygons. For validation, we conducted a quantitative evaluation
on a recently published dataset [9]. The results confirmed that our
system can deliver high-level geometric models with good accuracy.

Our approach heavily depends on the underlying SLAM system.
Therefore, it suffers when camera pose estimation is poor. As pointed
out in the results section, RGB-D SLAM works best in highly clut-
tered scenes, which provide enough information for good depth image
alignment. Scenes with many flat areas are very suitable for the struc-
tural modeling, but less suitable for RGB-D SLAM. However, our ap-
proach can work with any kind of real-time camera tracking approach,
and, thus, we will be able to benefit from further improvements in
SLAM systems.

For future work, we aim to formalize the geometric relations infer-
ence using a suitable probabilistic model. Moreover, using probabilis-
tic models will allow easier integration of priors into the system. Such
priors can be drawn from assumptions of the scene or from user input
in an interactive application setup.
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Fig. 11: Simple AR application. We render virtual content on rectangle surfaces in the scene, as shown from different view points. Top:
Tracking and augmenting a single box. Bottom: Tracking and augmenting multiple boxes simultaneously.

We also plan to further examine occluded areas, which appear as
holes in the final reconstructed polygons. For example, objects stand-
ing on a table occlude parts of the table surface. Further careful inves-
tigation can find an appropriate solution to fill those holes.

Reconstructing a wider range of geometric primitives is another in-
teresting direction we would like to pursue. Primitives such as cylin-
ders, spheres, and boxes are common in our environment. Thus,
adding reconstruction of these primitives to plane primitives would
produce more complete geometric models of the environment.

ACKNOWLEDGMENTS

This work was partially funded by the Christian Doppler Laboratory
for Handheld Augmented Reality and Qualcomm Technologies Inc.
We would like to thank Christian Pirchheim, Clemens Arth and Vin-
cent Lepetit for their support.

REFERENCES

[1] S. Agarwal, K. Mierle, and Others. Ceres solver. http://ceres-solver.org.
[2] M. Arikan, M. Schwärzler, S. Flöry, M. Wimmer, and S. Maierhofer.
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Fig. 12: Qualitative results of different scenes. In column 1, the reconstructed slam map of different scenes is depicted. The map includes
the reconstructed point cloud and keyframes poses. Column 2 shows intermediate reconstructed structural models consisting of incomplete
planes. Incident halfedges are highlighted with prominent arrows. For pairs of incident and orthogonal planes, we display orange balls on the
associated incident lines. For incident only planes, we show green balls on the incident lines. Right angle corners of two consecutive halfedges
are highlighted with L shapes on the associated corners’ position. Column 3 shows the final reconstructed structural models comprising of few
plane polygons. Column 4 shows further simplified models through employing polygon fitting on non-incident occluding borders. Simplified
halfedges are also highlighted with prominent arrows. In column 4 of office scene #2 (f), polygon fitting fails to simplify any non-incident
occluding edge because of too much drift in SLAM; thus, we do not present a result snapshot there.
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