
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Interactive Disassembly Planning for Complex Objects

Bernhard Kerbl† Denis Kalkofen† Markus Steinberger† Dieter Schmalstieg†

Graz University of Technology, Austria

Figure 1: Key frames from a disassembly sequence for the Leaning Tower CAD model. Our approach identifies reusable blocking
information and evaluates the geometric feasibility of part removals in parallel. Thus, we are able to create disassembly sequences
for models such as this 4,193 part assembly within minutes instead of days. Furthermore, unstable configurations are avoided by
using structural constraints to elevate reproducibility on real-world objects. We facilitate the visual assessment of sequences by
combining previewing techniques with visual cues to highlight smaller details.

Abstract
We present an approach for the automatic generation, interactive exploration and real-time modification of disas-
sembly procedures for complex, multipartite CAD data sets. In order to lift the performance barriers prohibiting
interactive disassembly planning, we run a detailed analysis on the input model to identify recurring part constella-
tions and efficiently determine blocked part motions in parallel on the GPU. Building on the extracted information,
we present an interface for computing and editing extensive disassembly sequences in real-time while considering
user-defined constraints and avoiding unstable configurations. To evaluate the performance of our C++/CUDA
implementation, we use a variety of openly available CAD data sets, ranging from simple to highly complex. In
contrast to previous approaches, our work enables interactive disassembly planning for objects which consist of
several thousand parts and require cascaded translations during part removal.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
& Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Disassembly planning describes the process of designing
and editing a series of instructions on how to disassemble
a given multipartite object. The desired result is a concise
and reproducible disassembly sequence that describes the
order and manner in which the parts of the object have to
be removed to decompose it. A disassembly sequence can
usually be inverted to yield a plan for assembly. Computer-
aided disassembly planning systems aim to automatically

† {kerbl,kalkofen,steinberger,schmalstieg}@icg.tugraz.at

identify feasible sequences to facilitate the design of dis-
assembly and assembly plans for a wide range of applica-
tions [APH∗03, LACS08, KTS09]. However, in the general
case, finding a disassembly sequence has been shown to be
NP-complete [KLW93], which is strongly reflected by the
limitations of current approaches. Even moderately complex
objects consisting of a few hundred parts are usually impos-
sible to process at interactive rates. Furthermore, suitable
editing mechanisms do not exist for large assemblies either.
Consequently, the applicability of computer-aided disassem-
bly planning is questionable, since existing methods cannot
handle those cases where human individuals are most likely
to seek assistance from automated systems.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

a
b c

d

e

a

d

a
b c

d

e

Figure 2: Problems of conventional local interference testing.
(left) Part e is to be extracted from a container. Since e touches
d, local interference testing marks all directions indicated by
red arrows as blocked. The interference of a with an upward
motion of e is not detected. (right) The computed sequence
suggests removing e through a, which is infeasible.

1.1. Problem

The major problem with disassembly planning for com-
plex objects is the vast computational effort involved in
geometric reasoning: Whenever a part is checked for re-
moval, the number of paths this part can follow is infinite.
When moving the part along a path, any other part could
potentially block its motion. Thus, collisions between parts
during removal need to be tested. To reduce the number of
tests, previous approaches strongly limit the considered path
motions and possible interferences [LACS08, GYL∗13]. In
doing so, they not only trade correctness for speed, but also
limit themselves to disassembly sequences composed of very
simple motions. Although these simplifications significantly
reduce computational cost, they are still not sufficient to
provide interactivity for large, complex objects. Like most
existing work, we simplify the problem by focusing on trans-
lational motions only; part rotations will not be considered.
By analyzing previous approaches in more detail, we identi-
fied four major challenges which an interactive disassembly
planning approach for complex objects must overcome:

Geometric reasoning with many parts. When attempt-
ing to remove a part along a path, it is necessary to check if
the movement is geometrically feasible, i.e., validating that
there is no collision with other parts. While intersection tests
with all other parts would actually be necessary to guarantee
correctness, most approaches limit themselves to so-called
local blocking relationships [Wil92]. A local blocking rela-
tionship ΨL(A,B,ω) determines whether applying a motion
ω to a part A is directly prohibited by its contact with part
B. The global blocking relationship ΨG(A,B,ω) considers
the entire path of ω and detects any imminent collision of A
and B during its execution. Although local testing has been
shown to greatly improve runtime, handling highly complex
assemblies such as the Leaning Tower model depicted in
Figure 1 is still problematic, according to reported perfor-
mance [RGGR95,LACS08,GYL∗13]. Furthermore, ignoring
potential interferences with more distant parts may result in
solid objects passing through each other (see Figure 2).

Figure 3: Even for simple objects, multiple disassembly se-
quences exist for extracting the same parts. While the proce-
dure on the left successfully extracts the ram from a press, it
requires a hex driver that may be unavailable. In this case,
the solution on the right is preferable.

Complex part motions. Creating feasible part motions
is the basis for disassembly planning. Due to the possibly
large number of parts, complicated geometric relations, and
complex part geometries, an exhaustive evaluation of many
different motions is generally not feasible. Thus, only subsets
of possible motions are usually tested on a per part and path
basis, i.e., whether the tested part can be removed along one
of several given paths. To reduce computation cost, supported
paths are usually restricted to straight-line translations [LW95,
HLW00, GYL∗13]. However, these simple motions are often
insufficient for disassembling real-world objects.

Support for external constraints. Disassembly plans are
generally created with a definite goal, for example, to extract
a specific part. While the goal is usually unique, there may
exist multiple different sequences to achieve it. In many cases,
one specific sequence is preferable to another [KWJ∗96], e.g.,
if a certain set of tools is not available (see Figure 3). In such
a case, the user should be able to quickly search for alterna-
tive solutions. For large, complex objects, the computation
of alternatives may involve a multitude of operations and
thus very long waiting time. For an intentionally interactive
process, such delays are not acceptable [JWC97].

Structural stability. Disassembly planning approaches
usually do not consider the structural stability of the re-
maining assembly when removing parts [Wil92, RGGR95,
APH∗03, LACS08]. Global selective disassembly (GSD),
for example, disassembles objects by iteratively remov-
ing unblocked parts, until all required parts have been ex-
tracted [SG02]. By selecting the next best removal, the
remaining parts might be left disconnected or floating in
midair. Especially for complex objects, such behavior must
be avoided to provide the user with viable instructions.

The necessity to overcome these challenges is also re-
flected by our evaluation (Section 5). All but one input model
in our test suite required global interference testing, complex
part motions, and support for external constraints.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

1.2. Contribution

In this paper, we tackle the aforementioned challenges by
providing an approach that can process large, complex models
with elaborate part movements, while enabling interactivity in
disassembly planning. Our overall contributions are two-fold.
First, we show how possible motions for thousands of parts
can be efficiently evaluated. To this aim, we analyze input
CAD models to identify reusable geometric information and
provide a parallel approach to test many translating motions
concurrently on the GPU. Second, we introduce new editing
techniques tailored for effectively visualizing and altering the
disassembly of large models in real-time.

2. Related work

Early disassembly planning systems focus exclusively on user
interaction to relieve the underlying sequencing algorithms
of their implied NP-completeness [DFW87]. Strategies for
geometry-based disassembly planning have first been pro-
posed by Homem de Mello and Sanderson [HdMS91]. Given
that a method is provided for evaluating whether two parts can
be separated, they generate an AND/OR graph that encodes
all possible disassembly sequences. Wilson expands on this
concept with GRASP, a fully automatic planner capable of
decomposing simple objects [Wil92]. The AND/OR graph is
generated from input geometry using a function that evaluates
if parts can be separated using straight-line translations. Wil-
son originally states that computing the AND/OR graph be-
comes infeasible for assemblies with significantly more than
50 parts. Although several extensions have been proposed to
make GRASP more versatile [HW95, LW95, HLW00], doing
so additionally increases the computational demands and thus
reduces the size of processible models even further. Instead
of computing the complete AND/OR graph, Srinivasan and
Gadh propose an algorithm that detects one sequence at a
time to reduce runtime and memory consumption [SG02].
However, expensive geometric reasoning and unstable con-
figurations are not addressed by their approach.

While geometric reasoning helps discard infeasible dis-
assembly sequences, additional subjective real-world re-
strictions may be of relevance for object disassembly. In
constraint-based disassembly planners, the application sug-
gests a single sequence at a time. Kaufman et al. provide
user interfaces for adding rules and constraints to modify the
current suggestion until it satisfies the requirements of the
user [KWJ∗96]. Each modification requires the system to
calculate a new, updated suggestion. While this approach is
intended to be interactive, Jones et al. report that finding a
constrained suggestion with conventional algorithms usually
takes several minutes at each iteration for moderately com-
plex objects, which significantly limits usability [JWC97].

Disassembly planning has several established applications
in computer graphics. Agrawala et al. [APH∗03] propose
relevant criteria and explicit methods for automatically deter-
mining and visualizing comprehensible assembly sequences.

Li et al. [LACS08] expand on this approach to create inter-
active 3D explosion diagrams from disassembly sequences.
Similarly, Kalkofen et al. [KTS09] use disassembly planning
to search for comprehensible explosion layouts. Depending
on the goal of the current task, they present different search
strategies to find Focus+Context part arrangements. Tatzgern
et al. [TKS13] compute compact exploded views for small
screen devices. Although all four systems restrict themselves
to testing straight-line translations and local blocking rela-
tionships, the authors conclude that they are unable to handle
complex objects (i.e., assemblies consisting of more than 100
parts) in an acceptable amount of time.

3. Efficiently extracting spatial information

At the core of our approach to interactive disassembly plan-
ning for complex objects are three concepts to speed up the
evaluation of global blocking relationships. Blocking rela-
tionships are evaluated whenever a part should be removed
from the assembly to determine if any other part blocks this
movement. For complex objects with large numbers of parts,
the evaluation of blocking relationships becomes the domi-
nating factor. To provide high performance in our approach,
we reduce the implied computational effort by identifying
pairwise identical part constellations and storing reusable
geometric information. Furthermore, we test a large number
of straight-line translations in parallel using the GPU. Finally,
we extend our approach to more complex, cascaded motions.
We discuss these three concepts in the following subsections.

3.1. Generating reusable C-Space obstacles

Our approach for part interference testing discards minuscule
obstacles (e.g., bolt threading) via mesh erosion and employs
the concept of configuration space (C-Space) for collision
detection [LP83]. C-Space provides a suitable domain for
testing the geometric feasibility of moving one object past an-
other, based on the evaluation of their Minkowski difference.
Inverting and sweeping A along the boundaries of B yields the
Minkowski difference A	B. In the case of polygon meshes,
we obtain the 3D C-Space obstacle AB as shown in Figure 4.
Iff a line from~0 in the direction of ~d intersectsAB, translating
A along ~d will cause it to collide with B. This information can
be directly converted to provide global blocking relationships
for parts in an assembly. For any two parts (A,B) and motion
ω, ΨG(A,B,ω) is true, iff at least one of the line segments
encoding the translations in ω intersects AB.

	 =

Figure 4: Creation of a C-Space obstacle. Calculating the
Minkowski difference B	A yields the inflated obstacle AB.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

Given an assembly of N parts, testing all part pairings is
achieved by generating and testing against C-Space obstacles
for all N2−N

2 relevant combinations [Wil92]. However, doing
so quickly becomes infeasible with increasing N, since even
highly efficient methods for calculating the Minkowski dif-
ference of two polygon meshes are prohibitively expensive.
To address this issue, we exploit the fact that most assemblies
contain recurring relative part constellations and reuse the
computed C-Space obstacles whenever possible.

During our analysis, we create a catalog of unique part
constellations. We iterate through all pairs of parts, and, be-
fore computing the C-Space obstacle, we make sure that no
identical constellation has been added to the catalog yet. In
case an identical entry already exists, we can simply refer-
ence this entry. To identify duplicated part constellations, we
search for parts with identical geometries and matching rela-
tive transformations. Let RX , RY and~tX ,~tY denote the rotation
and translation of parts X and Y in the assembly. We define
the relative rotation RX→Y as RY ·RX

−1 and the relative ro-
tated translation~tX→Y as~tY −RX→Y~tX . If we find two part
pairings with identical underlying part geometries (A,B) and
(A′,B′) such that RA→B equals RA′→B′ , we can rotate AB
by RA→A′ and translate it by (~tB→B′−~tA→A′ ) to obtainA′B′ .
If AB has already been generated and stored, the effort for
computing a potentially complex C-Space obstacle can thus
be effectively reduced to a matrix transformation. The catalog
entries consist of the two involved part geometries (A,B) and
the relative rotation matrix RA→B, such that each part pairing
in the assembly can be associated with one of these constel-
lations. We then calculate representative C-Space obstacles
for each catalog entry. Examples of eligible constellations for
reusing C-Space obstacles are presented in Figure 5.

(a) Equal relative rotation (b) Translational part offset

Figure 5: Reusability of C-Space obstacles. (a) The relative
rotation RA→B is identical to RA′→B′ and RA′′→B′′ . If we as-
sume no part translations, rotatingAB by RA→A′ yieldsA′B′ ,
while RA→A′′ yields A′′B′′ (b) Translational differences in
setups can be accounted for by shifting the rotated AB by
(~tB→B′ −~tA→A′ ) and (~tB→B′′ −~tA→A′′ ) respectively.

To measure the influence of reusable C-Space obstacles,
we define the C-Space exhaustion for a given assembly as the
ratio of necessary catalog entries to the number of obstacles
generated with conventional testing. According to our exper-
iments, reusing C-Space obstacles can dramatically reduce
computational effort for complex and repetitive assemblies,

as will be shown in Section 5. During our assessment, we
recorded C-Space exhaustion rates as low as 1% and less.

3.2. Testing straight-line translations in parallel

If a C-Space obstacle AB for a moving part A and a poten-
tially blocking part B is available, checking for collisions
when moving A along a straight line l can be reduced to inter-
secting l with AB. Let us now consider rendering a scene to
a frame buffer as a collection of intersection tests: According
to the OpenGL standard, a pixel is only drawn if at least one
projected primitive covers the pixel center. After rendering,
each updated pixel p thus encodes a positive result for an
intersection test of the rendered scene with a line lp running
from the eye point through the pixel center on the view plane.
If the camera is positioned at~0 and the rendered scene rep-
resents the C-Space obstacle AB, p contains the result for a
collision test of A and B when moving A along lp. We exploit
this fact and provide methods for using OpenGL rasterization
to test many motions in parallel on the GPU. For each part,
we combine broad sampling of the entire space of straight-
line translations with dense sampling for those directions that
are most likely used for its removal.

Broad sampling. The space of straight-line translations in
3D can be represented by mapping it to the surface of a
convex polyhedron. A discrete evaluation of the complete
space can be obtained by distributing samples on a unit cube
and testing all vectors leading from its center to the sample
points on its surface. We use cube maps to evaluate numerous
discrete sample locations on the unit cube during rendering.
We allocate six textures with resolution rx× ry and attach
them to a framebuffer object (FBO) to store the result from
rendering the C-Space obstacles. Camera poses are chosen in
such a way that after rasterization, the textures contain the six
2D projections for the sides of a unit cube centered at~0. This
enables us to quickly extract the blocking relationships for
a large number of pre-defined, discretely sampled straight-
line translations (see Figure 6(a)). For instance, an updated
pixel value at the normalized coordinate (x,y) in the texture
containing the XY projection on the positive Z axis indicates
that A is blocked by B in direction [x,y,1]T . The granularity
for broad sampling and thus the number of tested motions
can be directly defined by choosing rx and ry accordingly.

Dense sampling for preferred directions. Based on the
shape of specific parts, we can infer straight-line transla-
tions that have a high probability of being a viable removal
action. For instance, a cylindrical body (e.g., a bolt or screw)
is most likely extracted along its primary principal axis. We
utilize these priors to put special focus on corresponding di-
rections. Specifically, we consider the positive and negative
extent of the three principal axes of each individual part. The
axes are obtained by applying a principal component analysis
(PCA) on a part’s 3D vertex coordinates. For each specified
candidate direction~v, we test a multitude of similar motions

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

x

y

Z

X

Y

A

B

(a) Broad sampling

A

B

(b) Dense sampling

Figure 6: Efficiently testing translating motions. (a) For any
two parts A and B, we sample the space of straight-line trans-
lations in parallel by rendering AB to a cube map. (b) We
identify preferred directions for which we use dense sampling
around the principal axes with angular tolerance α.

by densely sampling inside an enveloping cone. An angular
value α can be chosen to define the maximum deviation from
~v. Again, we use OpenGL to render AB to an r× r texture
that is attached to an FBO. The camera parameters are chosen
such that the view vector coincides with~v, and the field-of-
view is set to

√
2α. After rasterization, each unmodified pixel

value in the texture is not covered by the projection of AB
and thus corresponds to an unblocked direction ~w, where
∠(~v,~w) ≤ α. If such a ~w exists, A is considered to be un-
blocked by B along~v with respect to the tolerance parameter
α. By focusing on directions that are likely to represent in-
tended part motions, dense sampling effectively complements
general, broad sampling.

3.3. Testing dual translations

In many scenarios, testing straight-line translations is not
sufficient for disassembly. Dual translations, i.e., motions
that consist of two concatenated translations, are reasonably
easy to perform and thus often implied for real-world objects
like the Valve in Figure 7(a). We propose a parallel, discrete
method for evaluating global blocking relationships of dual
motions through rasterization of C-Space obstacles.

A dual translation ω2 is defined by two normalized vec-
tors ~vα, ~vβ representing the directions of the two translating
motions and a scalar lα indicating the extent of the first trans-
lation. Given a part’s assembled position ~p, the midpoint ~m
of ω2 which marks the end of the first translation is given by
~m = ~p+ lα~vα. The second translation in the direction of ~vβ

continues from ~m until the part is visibly separated from the
remaining assembly. We focus exclusively on right-angular
motions, which satisfy ~vα ⊥ ~vβ. To this aim, we evaluate
all perpendicular combinations of directions from the part’s
principal axes as detected by PCA.

Given a dual translation ω2 of a moving part A and a
potential blocker B, we first determine the distance of the
closest interference, if any, along ~vα. In our implementation,
this information is accessed by interpreting the contents of

(a) Wedged bolt nuts

c

{b}
{b,c}
{c}
{c}
{}

b

{(3.81,b)}

vα

vβ
a

3.81

(b) Testing dual translations

Figure 7: Dual translating motions. (a) The red bolt nuts in
the valve model require right-angular dual translations for
disassembly. (b) Evaluating dual translation of part a with
two other parts b and c. We show resulting primary blockers
(red) and secondary blocking relationship sets (green).

the depth buffer after testing straight-line translations. The
closest interference and an identifier for the blocking part are
then added to a set of primary blockers of ω2. Next, we test
for collisions of A with B during the second translation, which
may start at any one ~m out of multiple options. We consider
possible locations for ~m at N evenly spaced intervals along ~vα

in the range [0,d], where d is the diameter of the assembly’s
bounding sphere, and N is a granularity parameter. For each
~m, we maintain a set of secondary blocking relationships
for moving A to infinity in the direction of ~vβ. Assuming
that all references to parts are deleted upon their removal,
a dual translation ω2 is feasible as soon as an empty set of
secondary blocking relationships exists for a midpoint that is
closer than the nearest primary blocker. Figure 7(b) illustrates
the principle of testing dual motions in an exemplary setup.

We can generate all secondary blocking relationships of
A and B concurrently by rendering AB with orthogonal pro-
jection along ~vβ and up-vector ~vα to a one dimensional FBO
with N pixels. The interpretation of the buffer contents is anal-
ogous to the procedure described in Section 3.2, as each pixel
encodes the influence of B on a blocking relationship set.

4. Interactive editing of disassembly sequences

Building on our techniques for fast evaluation of blocking re-
lationships, we tackle the challenges of interactive editing of
disassembly sequences. With our work, we aim to fulfill the
following three requirements. First, computing and updating
a sequence should be fast to avoid long waiting times, while
ensuring constraints of reproducibility. Second, the user must
be able to easily review and analyze suggested solutions to
identify unwanted or suboptimal instructions. Third, neces-
sary interactions with the application to change the current
sequence should be easy and intuitive.

4.1. Fast generation of stable sequences

For our planning application, we use an approach that is simi-
lar to GSD, which allows us to produce and recompute results

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

f g
d

e

b

a

c

(a)

f g
c

e

b

a

d

(b)

gfe

d

c

(c)

Figure 8: Sequencing using GSD. (a) The assembled model
with selected target part c. (b) Feasible removal actions for
the individual parts as detected by GSD. (c) White arrows
in the output arrangement indicate removal actions, black
arrows mark blocking relationships. Parts a and b are pruned,
since they do not block a downward extraction of c.

at interactive rates [SG02]. Given a number of target parts,
GSD uses the information available through global blocking
relationships to iteratively “peel” all unblocked parts in the
assembly until the targets have been extracted. Subsequently,
blocking relationships of detected removal actions are ana-
lyzed to prune unnecessary removals. The output of GSD is a
causally organized arrangement of required removal actions
(see Figure 8).

While GSD does not consider contact coherence or struc-
tural stability, we believe these features are very important
for real world applications. Thus, our approach encourages
connected, stable configurations, as outlined in Figure 9.

To prevent situations where “floating” parts would be left
hanging in the air, we create a contact graph of the assembly
and monitor this graph during sequencing. The contact graph
contains a node for each part of the assembly. Edges are
inserted for parts that share at least one mutual contact surface
in their assembled state. Floating parts can then be avoided
by rejecting all part removals that leave the contact graph of
the remaining assembly disconnected. If peeling all target
parts succeeds under this constraint, at least one contact-
coherent disassembly sequence can be found. In this case, we
can compute a coherent and preferably stable disassembly
sequence.

To determine whether a removal sequence threatens struc-
tural stability, we run the following algorithm. We first define
A as the set of all parts in the entire assembly. Next, we find a
reference part PΩ by choosing either a random part that is still
present after the last target has been peeled, or, if no others
remain, the last target itself. After GSD has finished pruning
the list of removed parts, we store them in a set S. We then
find the set of parts C that can be reached in the contact graph
of A\S using PΩ as a seed. If C 6= A\S, removing S leaves
all parts in A\ (C∪S) disconnected or floating. Hence, we
add them to the list of required target parts and recompute the
corresponding disassembly sequence. Since the newly gener-
ated sequence may again lead to unstable configurations, we

aa

c

d

b

c

d

b

(a) Input assembly

a

b

a

c

d

c

d

b

(b) Incoherent disassembly

a

c

d

b

c

d

b

a

(c) Coherent disassembly

a

c

b

1.

2. 3.

d

(d) Stable ordering

Figure 9: Generating a stable disassembly sequence by con-
sidering the contact graph (shown next to the illustrations).
(a) A simple brick assembly with the selected target in red.
(b) GSD suggests a motion that leaves part a suspended
in mid-air. The contact graph is clearly disconnected.
(c) Our algorithm determines that the smaller subgraph com-
prised by a should also be removed to avoid floating parts.
(d) If multiple options are available, parts are chosen in an
order that minimizes instability during their removal.

repeat this procedure until C = A\S is fulfilled. In this case,
the newly generated, pruned output arrangement G contains
all necessary removal actions to create a sequence that avoids
interferences as well as floating parts.

After determining that a structurally stable sequence can
be generated with the identified removal actions, we need
to order the instructions to create the actual sequence. This
is achieved by interpreting disassembly as reverse assembly:
Starting with the foundation of unremoved parts, we pro-
gressively attach parts from G until the object has been fully
restored. We initialize the foundation F by adding all parts
that are not referenced in G. Next, we copy all parts in G with
no incoming edges to the set of candidate attachments X. We
select the part x ∈ X that shares a direct contact with a part in
F and whose attachment is least likely to diminish the stabil-
ity of the foundation. In our implementation, we estimate the
introduced instability by the sum over the distances between
the centroid of x and the centroids of the parts that are already
in F. This criterion causes the algorithm to prefer the attach-
ment of parts close to the current center of gravity, which
eventually leads to the behavior illustrated in Figure 9(d) dur-
ing disassembly. The chosen part x is subsequently moved
from X to F. All outgoing edges of x are removed from G. If
this causes another node y ∈ G to lose its last incoming edge,
y is subsequently added to X. This procedure is repeated until
X = ∅. A stable and coherent disassembly sequence is created
by removing parts in the inverse order in which they were
added to F.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

(a) (b) (c) (d)

Figure 10: We combine multiple visualization techniques to allow switching between views with coarse-to-fine navigation.
(a) Explosion diagram for the Pocket Watch (b) Fast-forward animations showing a radial engine over time during disassembly.
(c) Clicking an exploded part or stopping at a particular frame during fast-forward causes the application to load the corre-
sponding action diagram. (d) Progressive animation for the current action diagram demonstrates each part motion separately.

4.2. Detail-on-demand visualization

For quickly locating errors or unwanted instructions in the
current disassembly sequence as well as for reviewing the fi-
nal result, we provide a collection of visualization techniques.
In order to prevent visual clutter and tedious navigation due
to vast numbers of actions being displayed, our planning
application allows for interactively exploring disassembly
sequences on multiple levels of detail:

• 3D exploded views provide an overview for assemblies
that involve a limited number of instructions (.40) and re-
moval directions (.6), such as the Pocket Watch shown in
Figure 10(a). Using explosion diagrams for more extensive
and varied disassembly sequences usually leads to visual
clutter [LACS08, TKS10].
• Fast-forward animations allow to present previews of

long and diverse sequences. Instead of spatially separating
parts from each other, sequences are presented by display-
ing the structural development of the assembly over time
using screen captures, as illustrated in Figure 10(b). The
user may stop the fast-forward animation at any time to
obtain further detail on individual steps.
• Action diagrams combine multiple instructions in a sin-

gle illustration by offsetting a limited number of parts and
adding guide lines according to their removal action. Fig-
ure 10(c) gives an example that provides overview for a
small set of actions, while preventing visual clutter.
• Progressive animations offer the most detailed view on

disassembly sequences by animating all part motions sepa-
rately. The animation is looped continuously, until the user
decides to either abort or advance to the next step. Visual
cues are added for highlighting smaller parts. Additional
means for quick navigation are provided by thumbnail
previews at the bottom of the screen (Figure 10(d)).

We provide intuitive navigation between overview and
detail visualizations by linking the individual techniques. Se-
lecting a single part in a 3D exploded view or pausing the
fast-forward animation automatically loads the corresponding
action diagram. The user can then start the progressive anima-
tion for displaying the part removals one by one. Alternatively,

she can navigate between different stages of the disassembly
sequence by scrolling through the preview thumbnails at the
bottom of the screen (see Figure 10(d)) and selecting a partic-
ular thumbnail to load the corresponding action diagram. The
user can further choose whether computed sequences should
be displayed as assembly or disassembly plans. The switch
is easily executed by reversing the order and directions used
for the action diagrams and animations. For a demonstration
of interaction with our visualization suite, please refer to the
accompanying video material.

4.3. Modifying disassembly sequences

In addition to the ensured constraints of basic reproducibility,
the user may wish to define additional restrictions to adapt
a disassembly sequence according to personal preferences.
To enable editing of sequences within the boundaries of ge-
ometrical feasibility, the user sets constraints that are then
considered during the computation of a modified solution.

Basic constraints. Our interactive planning application sup-
ports editing disassembly sequences by interactively setting
constraints for individual parts or part groups. Specifically,
we allow altering hierarchical and directional preferences.

Partitioning allows the user to fuse multiple parts or sub-
assemblies to form a bigger subassembly. Conversely, collaps-
ing a subassembly divides it into the fragments from which
it was created. During disassembly sequencing, each sub-
assembly is treated as an indivisible entity, until it has been
separated from the remaining structure. Partitioning can thus
be used to handle interlocking part groups and introduces
hierarchical behavior to the sequence.

Designated removal actions can be selected for each in-
dividual part or partition. Our sequencing algorithm ensures
that each part with a fixed removal action is removed in the
specified way. The user is free to choose any removal action
for which blocking relationships are already available. In
addition, custom removal actions may be specified for indi-
vidual parts. Our interface supports the definition of cascaded

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

translations of arbitrary length. The corresponding blocking
relationships can be calculated on-the-fly.

Detecting recurring constellations. Real-world objects of-
ten contain identical structures in multiple places for reasons
of functional or artistic design. In many cases, the user may
be interested in locating other instances of a specific constel-
lation, e.g., because all such part groups require replacement.
However, the effort for doing so significantly increases with
the complexity of the assembly. Our interface provides an
original method for automatically detecting all part groups
that resemble the current selection. Given a connected set of
one or more parts S, we store the selected part geometries and
underlying contact graph CS. We then locate every instance Pi
of a random part P ∈ S and test if we can reproduce CS using
Pi as a seed node. Finally, we verify that all parts that were
involved in reproducing CS have the correct orientation with
respect to Pi. If so, we add this group of parts to the list of
detected recurrences. Usage of the recurring constellations
operator is shown in Figure 11.

Figure 11: (left) A group of four individual parts is selected
and shown in red. (right) Other instances of the same part
constellation are automatically detected and highlighted.

Propagating constraints. Once a suitable constraint has
been identified for a part or partition, the user may want
to set it on other instances of those part groups as well. This
may be done in order to achieve uniformity in the disassembly
sequence or because the constraint is necessary and identical
for all instances. We allow propagating basic constraints by
finding similar part constellations for the current selection
and applying the chosen modification to all detected recur-
rences of the selected part or partition. We have found that
this option makes interaction with repetitive assemblies, such
as the Leaning Tower, much faster and less tedious.

Splitting stack assemblies. Although basic partitioning en-
ables hierachical structures during disassembly, it requires ex-
plicit, exhausting selection of all parts that should be grouped
together. For stack-shaped models, we offer a facilitating
mechanism that uses spatial analysis to quickly split a large
assembly into multiple smaller subassemblies. The planning
application enables the user to indicate parts that should act as
separating elements for the new partitions. The operator first
extracts the stacking axis by calculating a linear least squares
fit through the centroids of the selected separators. The new

partitioning is then obtained by identifying and greedily fus-
ing all connected components that lie entirely between the
axial extrema of two separators with regard to the stacking
axis. Additional partitions are created from the remaining
parts at the top and bottom of the stack. Figure 12 shows the
Eiffel tower model being split into four subassemblies.

Figure 12: Using the ’Split Stack’ operator of our planning
application with separators in the indicated places, a complex
assembly can be quickly divided into smaller subassemblies.

4.4. User controls

Our implementation allows the user to interact through the
default interfaces of a personal computer. For spatial navi-
gation, the camera can be dragged, rotated or zoomed in on
particular sections of the scene. The user can select individual
parts of the assembly, for which she may then either define a
designated removal action, set a partitioning constraint (Fuse,
Collapse) or apply the Split Stack operation. Furthemore, the
most recently set constraint can be propagated throughout
the entire assembly, if desired. All modifications can be per-
formed via hotkeys or a concealable toolbar menu. At any
point, the user is free to initiate the computation of a new
disassembly sequence, with regard to all defined constraints,
and view the current solution. Once a sequence has been com-
puted, it can be explored in overview or detail, as described
in Section 4.2. While assessing the visualizations, the user
may notice the necessity for adding further constraints and
resume editing until satisfied.

5. Evaluation

We evaluate our approach using a variety of CAD data sets
that were obtained from an openly accessible online reposi-
tory. The attributes, feature requirements, preprocessing and
planning run times for each assessed model are listed in Ta-
ble 1. The performance was recorded on a personal computer
with an Intel i7-4771 CPU @ 3.50 Ghz, 16 GB RAM and an
NVIDIA GeForce GTX 780 Ti with 3 GB graphics mem-
ory. We implemented the program logic in C++ and used
OpenGL/CUDA for parallel and rendering-based tasks. Our
implementation uses a method by Li and McMains [LM11]
for calculating Minkowski differences of polygon meshes
on the GPU to create renderable C-Space obstacles. All as-
semblies except for the Leaning Tower were evaluated with

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

rx = ry = 45 for broad sampling. To reduce the amount of
generated output data for the Leaning Tower assembly, we
only stored computed blocking relationships for the principal
directions of its parts. We chose r = 255 for dense sampling
of principal directions in all assemblies with an angular tol-
erance of 2°. We used N = 9 midpoints for sampling dual
translations in the Leaning Tower assembly and N = 255
midpoints for all others. Figure 14 demonstrates some of the
results that were generated using our implementation.

We distinguish two separate processing steps in our evalu-
ation. The preprocessing stage is concerned with the efficient
computation of global blocking relationships. This step needs
to be executed only once for each input assembly. The run-
time for preprocessing, Tprep, thus presents a one-time-only
effort. Once the information has been generated for a model,
the user can start the interactive planning application. For this
second step, we consider Tplan, which denotes the maximal
time it takes to compute a constrained sequence. All of our
examined data sets could be preprocessed in a couple of min-
utes. During planning, interaction with assemblies is highly
responsive, with Tplan never exceeding three seconds.

Although parallelization obviously grants our approach
enhanced performance, it by itself does not suffice to enable
processing of highly complex objects. Reusing C-Space ob-
stacles also plays an essential role. For the Leaning Tower
model, a naïve, parallel evaluation of blocking relationships
did not finish within 24 hours and was aborted. As can be read
from Table 1, the C-Space exhaustion appears to decline with
increasing assembly size. Thus, it seems that large objects
tend to show more recurring part constellations, increasing
the value of reusing C-Space obstacles. Combining paral-
lelization and C-Space obstacle reusability therefore yields
best performance for complex objects.

During disassembly planning, we found that in all eight test
case scenarios, using only local interference testing causes
irreproducible sequences. As seen in Table 1, the number
of parts that would erroneously be detected as removable
with local blocking relationships varied between 17% and
57% among those seven scenarios. Consequently, it can be
concluded that global testing is essential for disassembly
planning. Also, we found that straight-line translations were
not sufficient, but dual translations were required in seven
out of eight scenarios. The number of parts requiring dual
translations among those scenarios was between 1% and 36%.
These results clearly underline the necessity to support more
than straight-line translations. Dual translations were however
sufficient in all scenarios. Finally, we want to note that in
all but one scenario, some user modifications were required
to create the disassembly plans shown in the paper, which
underlines the importance of interactive editing capabilities.

To assess the proposed visualization and editing mech-
anisms, we asked five scientists with a computer graphics
background to rate the usability for interactive disassembly
planning on the largest assemblies listed in Table 1. After a

brief introduction, all five users were able to quickly iden-
tify necessary steps for modifying sequences according to
their wishes. We received positive feedback regarding the
handling of our tool and the employed visualizations, which
were described as both pleasing and helpful for navigating in
disassembly sequences. The users also appreciated the almost
instantaneous response time when adding constraints. Finally,
they highly valued the propagation of constraints to reduce
the time spent on editing. Suggested improvements were con-
cerned with making thumbnails for progressive animation
more expressive, e.g., by highlighting or focusing on regions
of change. Furthermore, they recommended adding means for
listing all user-added constraints and visually relating them
to corresponding parts in the assembly.

6. Limitations

The outlined approach aims to extend the range of processi-
ble models by ensuring high fidelity in interference testing
and considering removal actions beyond simple straight-line
motions. However, considering translations alone is some-
times insufficient for detecting viable disassembly sequences
in real-world use cases. A common example would be the
twisting motions that are required to remove fixtures, such as
nuts and bolts, from an assembly. Although these particular
cases can be handled in our application by using mesh erosion
to shrink away minor obstacles, other scenarios exist where
our method fails to produce a solution. For instance, the algo-
rithm is ignorant of part deformability. Wires, plastic or metal
components may require some sort of compression or expan-
sion to enable their removal. Figure 13(a) illustrates this case
on a bendable metal pin that is used for keeping a cylinder
cover in place. Furthermore, there is no automatic testing for
temporary part displacements, which commonly occurs in
geometric riddles or puzzle games (see Figure 13(b)). Effi-
ciently handling those cases for complex objects remains a
challenging task for future research.

(a)

a

b c
1.

2.

(b)

Figure 13: (a) Assembly involving a deformable object. Lift-
ing the cylinder cover upward is prohibited by a bendable
metal pin, that needs to be compressed before it can be re-
moved. (b) Multi-stage part removal of c. To solve this puzzle,
part c needs to be moved to the left to an intermediate posi-
tion. In this way, b and c can be extracted together as one.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

Table 1: Attributes and collected results for all tested assemblies. We list the number of created representative C-Space obstacle
and compare it to conventional testing (C-Space exhaustion). For each assembly, we list the number of parts that at some point
during disassembly had no local, but global interference, as well as parts that required dual motion testing. We also give the
number of necessary interactions. Tprep and Tplan list runtimes for preprocessing and sequencing assemblies, respectively.

Model attributes Interference Runtimes

Assembly Parts Triangles C-Space exhaustion Global Dual Interaction Tprep Tplan

Arbor Press, Fig. 3 22 30,857 150 (64.93%) 4 1 2 17s <1s
Valve, Fig. 7(a) 38 84,614 601 (85.63%) 14 11 1 37s <1s
Pocket Watch, Fig. 10(a) 132 133,268 3,655 (42.27%) 75 2 6 1m 45s 1.1s
Radial Engine, Fig. 10(b) 239 265,080 12,271 (43.14%) 64 23 12 2m 45s 1.7s
V8 Engine, Fig. 14(c) 512 537,385 19,675 (15.04%) 92 77 5 6m 37s 2.1s
Eiffel Tower, Fig. 12 735 167,408 31,420 (11.65%) 167 114 4 / 1† 5m 16s 2.5s
LEGO Mansion, Fig. 14(a) 1,840 910,400 849 (0.05%) 320 0 0 13m 40s 2.2s
Leaning Tower, Fig. 1 4,193 511,204 73,734 (0.83%) 1185 390 360 / 3‡ 28m 53s 2.9s
† One-by-one disassembly requires partitioning 4 interlocking part groups. The scene in Figure 12 is created by one Split Stack operation.
‡ The 360 interlocking partitions in the assembly can be fused using the Propagate Constraints operation on 3 representative part groups.

(a) Screen captures from the fast-forward preview animation for assembling the LEGO Mansion model.

(b) Explosion diagram for extracting the highlighted part from an engine. (c) Action diagram of dual motions. Inset added by hand.

(d) Progressive animation with automatic close-up and highlight for removing a small part from the Eiffel Tower.

Figure 14: Various examples demonstrating the results and visual output produced by our approach. (a) Fast-forward animation
and (b) 3D exploded views provide an overview of complex as well as simple sequences. (c) Action diagrams enable to quickly
review subsequences while (d) progressive animation enables inspecting every single instruction in full detail.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



B. Kerbl, D. Kalkofen, M. Steinberger and D. Schmalstieg / Interactive Disassembly Planning for Complex Objects

7. Conclusions and future work

We have presented a complete method for planning assembly
and disassembly sequences on highly complex objects. We
have described algorithms for efficiently calculating blocking
relationships of multiple straight-line and dual translating
motions in parallel by exploiting GPU acceleration. We have
provided a prototype implementation, which processes as-
semblies that require cascaded removal actions and contain
vast numbers of parts in a matter of minutes. Compared to
previous reports, the accumulated performance gain enables
us to process assemblies that are more than 40 times larger.
The unprecedented ability to handle such intricate data sets
opens up novel insights regarding special requirements for
planning and editing complex disassembly sequences. In or-
der to address these challenges, we have outlined an interac-
tive planning application that combines several visualization
techniques to provide detail-on-demand exploration. Further-
more, we have introduced editing mechanics for conveniently
performing repetitive modifications on large assemblies.

Our work aims to extend the range of processible data
sets by enabling its application to highly complex objects.
However, another very common reason for inapplicability
are the structural problems that occur in amateur 3D designs,
such as self-intersecting assemblies or degenerate geometries.
Furthermore, elaborate removal actions that require rotation,
twisting or compression of parts are currently not possible to
evaluate efficiently for complex objects. In addition, consid-
eration of physical attributes of parts could be incorporated
to allow for highly sophisticated choices during the genera-
tion of stable sequences. These open issues provide ample
potential for future work that will improve the user value of
computer-assisted disassembly planning even more.

Acknowledgements

This work was funded by the Austrian Science Fund (FWF)
under contract P-24021. All models were used with the con-
sent of the corresponding CAD authors. We would like to
thank: Jason Mitchell, Los Angeles Pierce College for the
Arbor Press; Adrian Mazufri, Universidad Nacional de Río
Cuarto for the Pocket Watch; Michael Hahn for the Ra-
dial Engine; Christopher Dabek for recreating the original
V8 Engine design by Eric Whittle; Richard K. Lowe Jr of
LoweandBehold Designs and DJFabricators Inc., as well as
Pranav Panchal for their combined effort on creating the
Eiffel Tower and Leaning Tower models.

References
[APH∗03] AGRAWALA M., PHAN D., HEISER J., HAYMAKER

J., KLINGNER J., HANRAHAN P., TVERSKY B.: Designing
effective step-by-step assembly instructions. ACM Trans. Graph.
22, 3 (July 2003), 828–837. 1, 2, 3

[DFW87] DE FAZIO T., WHITNEY D.: Simplified generation of
all mechanical assembly sequences. Robotics and Automation,
IEEE Journal of 3, 6 (1987), 640–658. 3

[GYL∗13] GUO J., YAN D.-M., LI E., DONG W., WONKA P.,
ZHANG X.: Illustrating the disassembly of 3D models. Computers
& Graphics 37, 6 (2013), 574–581. 2

[HdMS91] HOMEM DE MELLO L., SANDERSON A. C.: A correct
and complete algorithm for the generation of mechanical assembly
sequences. IEEE Trans Robotics and Automation 7, 2 (1991), 228–
240. 3

[HLW00] HALPERIN D., LATOMBE J.-C., WILSON R. H.: A
general framework for assembly planning: The motion space ap-
proach. Algorithmica 26, 3-4 (2000), 577–601. 2, 3

[HW95] HALPERIN D., WILSON R. H.: Assembly partitioning
along simple paths: the case of multiple translations. In ICRA
(1995), IEEE Computer Society, pp. 1585–1592. 3

[JWC97] JONES R. E., WILSON R. H., CALTON T. L.:
Constraint-based interactive assembly planning. In IEEE Robotics
and Automation (1997), vol. 2, IEEE, pp. 913–920. 2, 3

[KLW93] KAVRAKI L., LATOMBE J.-C., WILSON R. H.: On
the complexity of assembly partitioning. Information Processing
Letters 48, 5 (1993), 229 – 235. 1

[KTS09] KALKOFEN D., TATZGERN M., SCHMALSTIEG D.: Ex-
plosion diagrams in augmented reality. In VR (2009), IEEE,
pp. 71–78. 1, 3

[KWJ∗96] KAUFMAN S. G., WILSON R. H., JONES R. E., CAL-
TON T. L., AMES A. L.: The archimedes 2 mechanical assembly
planning system. In ICRA (1996), pp. 3361–3368. 2, 3

[LACS08] LI W., AGRAWALA M., CURLESS B., SALESIN D.:
Automated generation of interactive 3D exploded view diagrams.
ACM Trans. Graph. 27, 3 (Aug. 2008), 101:1–101:7. 1, 2, 3, 7

[LM11] LI W., MCMAINS S.: Voxelized minkowski sum compu-
tation on the gpu with robust culling. Comput. Aided Des. 43, 10
(Oct. 2011), 1270–1283. 8

[LP83] LOZANO-PEREZ T.: Spatial planning: A configuration
space approach. IEEE Trans. Comput. 32, 2 (Feb. 1983), 108–120.
3

[LW95] LATOMBE J.-C., WILSON R. H.: Assembly sequencing
with toleranced parts. In ACM Solid Modeling and Applications
(New York, NY, USA, 1995), SMA ’95, ACM, pp. 83–94. 2, 3

[RGGR95] ROMNEY B., GODARD C., GOLDWASSER M.,
RAMKUMAR G.: An efficient system for geometric assembly
sequence generation and evaluation. In Proc. ASME Int. Comput-
ers in Engineering Conference (1995), pp. 699–712. 2

[SG02] SRINIVASAN H., GADH R.: A non-interfering selective
disassembly sequence for components with geometric constraints.
IIE Transactions 34, 4 (2002), 349–361. 2, 3, 6

[TKS10] TATZGERN M., KALKOFEN D., SCHMALSTIEG D.:
Compact explosion diagrams. In ACM NPAR (2010), pp. 17–26.
7

[TKS13] TATZGERN M., KALKOFEN D., SCHMALSTIEG D.: Dy-
namic compact visualizations for augmented reality. In VR (2013),
IEEE, pp. 3–6. 3

[Wil92] WILSON R. H.: On geometric assembly planning. PhD
thesis, Stanford University, 1992. 2, 3, 4

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.


