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Figure 1: Our system estimates dynamically changing environment lighting from an unknown and also dynamically changing scene using a
moving RGBD camera without any additional manual user input or artificial light probes. The left figure above shows a virtual ship without
lighting. The right figure shows the same object lit by our real-world lighting estimation.

ABSTRACT

Visually coherent rendering for augmented reality is concerned
with seamlessly blending the virtual world and the real world in
real-time. One challenge in achieving this is the correct handling
of lighting. We are interested in applying real-world light to virtual
objects, and compute the interaction of light between virtual and
real. This implies the measurement of the real-world lighting, also
known as photometric registration. So far, photometric registration
has mainly been done through capturing images with artificial light
probes, such as mirror balls or planar markers, or by using high dy-
namic range cameras with fish-eye lenses. In this paper, we present
a novel non-invasive system, using arbitrary scene geometry as a
light probe for photometric registration, and a general AR rendering
pipeline supporting real-time global illumination techniques. Based
on state of the art real-time geometric reconstruction, we show how
to robustly extract data for photometric registration to compute a
realistic representation of the real-world diffuse lighting. Our ap-
proach estimates the light from observations of the reconstructed
model and is based on spherical harmonics, enabling plausible il-
lumination such as soft shadows, in a mixed virtual-real rendering
pipeline.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Artificial, augmented,Virtual Realities—;I.4.8 [Image Processing
and Computer Vision]: Photometric registration—3D Reconstruc-
tion;I.3.3 [Computer Graphics]: Image Generation—Spherical
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Harmonics;

1 INTRODUCTION

Augmented Reality (AR) is frequently realized using a video see-
through display, which renders virtual content registered in 3D on
top of a camera feed, which represents the real world. To create a
convincing AR experience, the virtual and the real world have to be
lit with the same light model. Ideally, the spectator should not be
able to tell the difference between virtual and real. This is what is
also known as visual coherence.

Visual coherent rendering has been a topic of computer graphics
and film production for a long time. Pioneering work in merging
real video images with computer generated images has been pub-
lished as early as 1993 [4]. The main distinguishing aspect of AR
over film is that visually coherent renderings must be generated in
real time and with a limited amount of preparation. This turns out
to be a difficult problem, and thus coherent rendering is still not a
standard feature of commercial AR applications.

1.1 Problem statement
In order to deliver visually coherent rendering in AR, two main
problems must be addressed: registration and plausible illumina-
tion. The first problem is concerned with measuring the envi-
ronment. Estimating the geometry through reconstruction allows
correct occlusion rendering. Recent results in online reconstruc-
tion [13] have shown that geometry acquisition can be achieved
without tedious preparations, which has important implications
concerning the feasibility of high-quality AR.

A related topic addressed in this paper is the real-time estima-
tion of the lighting environment. For AR, this means observing the
result of real world lighting in every camera image and solving an
inverse lighting problem based on these observations, all within a
single frame’s time.
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Knowledge of the real-world lighting is a necessary input to the
second problem: plausible illumination through lighting and shad-
owing in AR. Once the real-world lighting is known, it is possible
to consistently light virtual and real objects, and allow consistent
interaction of shadows between virtual and real objects. Recently
there has been significant progress in differential rendering, which
addresses the global illumination problem in AR scenes [10]. How-
ever, these approaches perform the real-time estimation of the light-
ing environment in an invasive manner, by placing auxiliary light
probes such as a mirror ball or an omnidirectional camera in the
scene. This limits the application of visually coherent rendering to
situations where the auxiliary objects can be hidden or tolerated.

1.2 Contribution
In this paper, we present a novel interactive light estimation and
rendering pipeline, which recovers the environment light directly
from observations in the scene without any special and artificial
light props. The solution of the light estimation is directly used
in the AR rendering pipeline based on spherical harmonics (SH)
and volume ray casting. Furthermore, we introduce a method to
improve the robustness of the light estimation and systematically
evaluate our system with synthetic and real-world data. For better
comparison, we classify our contribution after the criteria proposed
by Jacobs and Loscos [8]:

Amount of realism: Our rendering pipeline achieves percep-
tively plausible lighting results, using an SH representation for di-
rectional illumination and for radiance transfer on surfaces of scene
objects. All computations run at interactive frame rates on the GPU,
allowing fully dynamic situations with moving light sources, cam-
eras and objects. Object occlusions are considered using real-time
dense reconstruction as proposed in [13]. Differential rendering [2]
is used to model global illumination effects of real to virtual and
vice versa.

Input requirements: The minimal amount of raw input data
required for the lighting estimation is an RGB camera image and
a depth map. The depth map can conveniently be obtained by a
depth sensor or a stereo camera system. In contrast to previous
work, we do not require auxiliary measures to dynamically react to
illumination changes: No mirror balls or omni-directional cameras
are required. Moreover, the geometry used for the estimation is not
restricted to planar objects as in [15]. Due to the ambiguity problem
of surface texture color and light color, we restrict the light color to
be white. The material reflectance is assumed to be Lambertian
with arbitrary surface color and texture. The geometry can change
dynamically. We do not require any pre-computation steps, which
have to be done off-line.

Processing time: Our approach runs in interactive frame rates
on consumer hardware.

Level of automation: The user does not have to provide any
manual input during runtime.

Level of interaction: Our method provides a high level of inter-
action. The user is able to move camera and objects in the scene
and change the lighting situation dynamically.

Overall, this work is the first solution of real-time photometric
registration without artificial props or manual user input and global
illumination techniques.

2 RELATED WORK

2.1 Inverse rendering
Inverse rendering is the counterpart to the more commonly known
forward rendering. Instead of creating an image from known geom-
etry and lighting, inverse rendering deals mainly with the estima-
tion of lighting from an image. Ramamoorthi and Hanrahan [17]
presented a mathematically consistent framework for inverse ren-
dering. They describe the reflected light field as a convolution of
lighting and bidirectional reflection distribution function (BRDF).

Moreover, they represent the light field as a product of SH of the
BRDF and the lighting. The same authors also presented an effi-
cient way of rendering environment illumination using SH [16]. A
main finding of this work is that a limited number of SH coeffi-
cients is sufficient for creating perceptually valid renderings. For a
broader overview of inverse rendering problems, we refer to Patow
et al. [14] and especially to the survey by Jacobs and Loscos [8] on
illumination methods for mixed reality.

A major technical problems of inverse rendering is how to mea-
sure the visible radiance. We discuss this research area, which is
also known as “photometric registration”, in the following section.

2.2 Photometric registration

The principles of the previous work discussed in this section can be
traced back to [3]. This seminal work showed how to recover high
dynamic range irradiance maps from multiple photographs captur-
ing a mirror ball. A subsequent work [2] demonstrated how to cor-
rectly light virtual objects with measured scene radiance and global
illumination. However, this work was not designed for real-time
applications. In the following, we discuss only real-time methods
for photometric registration, organized by the methods how the en-
vironment light is observed.

Illumination estimation from light probes: Kanbara and
Yokoya [9] presented a method how to estimate the light environ-
ment in real time for AR using a fiducial marker for geometric reg-
istration and a black mirror ball for capturing only high frequency
light sources. They recover dominant light source directions as-
suming that all viewing vectors are parallel to the optical axis of
the camera. In contrast, recent work by Aittala [1] captures diffuse
lighting using a diffuse light probe, in this case a ping-pong ball
or a rotated planar marker. The interesting aspects of these light
probes are the diffuse reflectance characteristics. Aittala solves the
relationship between a general light source model and the light in-
tensity observations from the camera images using L1-regularized
least squares minimization. This allows to robustly estimate the
dominant light sources from the diffuse environment map.

Illumination estimation from shadows: Another method for
estimating the dominant light sources is to observe the shadows in
an image. The idea is based on the partial knowledge of the geome-
try of the shadow caster and the correct classification and measure-
ment of the shadow in the image. For example, Haller et al. [7] uti-
lize geometry with known characteristics to analyze shadows. An-
other work by Mei et al. [12] demonstrates how to efficiently find
significant directional light sources and cast illumination recovery
as L1-regularized least squares minimization. Wang et al. [19] pre-
sented a method for estimating multiple directional light sources
from known geometry. Their approach has only been applied to
static images and combines a shadow based method and a shading
based method.

Illumination estimation from HDR cameras: Grosch et al. [5]
and Knecht et al. [10] use special camera sensors for capturing the
environment lighting. Their approach is based on a high dynamic
range camera with a fish-eye lens. Compared to mirror balls, which
can cover a field of view (FOV) of 300 degrees, the fish-eye lens
provides only a FOV of about 60 degrees. Moreover, fish-eye HDR
cameras are expensive and not commonly available.

Illumination estimation in outdoor AR: For outdoor AR, light
estimation can be based on the usage of the geospatial position and
the current time of the user. These parameters give a rough estima-
tion of the current sun position and enable the implementation of
the main light direction supporting cast shadows as presented in the
work of Madsen et al. [11].

Illumination estimation from arbitrary geometry: Pilet et
al. [15] propose a fully automated method for geometric and photo-
metric calibration from an arbitrary textured planar pattern. In this
work, the light probe is constrained to a planar surface. Another
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example is given by Van den Hengel et al. [18]. In this work the
user has to specify the geometry through manual input. Then the
appearance model of the geometry is estimated and transferred to
other newly inserted virtual objects. However, the input of this work
is an offline video sequence. In contrast, our work is interactive and
does not require manual intervention.

In the following Section 3, we discuss the theory of our ap-
proach.

3 LIGHTING ESTIMATION

The primary scope of this work is to estimate the environment light-
ing. More specifically, we are interested in a distant light field F ,
which represents all incident light rays on a hemisphere. Assuming
a distant light source implies that we can treat the light source and
the lit scene independently from each other.

3.1 Environment lighting estimation using SH
The principal idea is to recover F from many different observa-
tions of arbitrary geometry. The basic relation between the incident
light, the observations and the geometry is stated in the reflection
equation (see Equation 1), as given by Ramamoorthi and Hanra-
han [17]. The reflection B(x, ~w0) is an integrand of the three differ-
ent terms - lighting L(x, ~w0), bidirectional reflectance distribution
function (BRDF) ρ(x, ~w0) and texture T (x).

B(x, ~w0) =
∫

Ω j

T (x)ρ(~w j, ~w0)L(x, ~w j)(~w j ·~n)d ~w j (1)

The surface position is denoted with x and the outgoing direction
is ~w0. The surface normal vector is defined with ~n. T represents a
simplified texture model with no explicit specular texture. We as-
sume for the entire scene a diffuse Lambertian reflectance model
for the surface BRDF ρ(x, ~w0). We do not solve the ambiguity of
light color and texture color. Instead, we assume that the light color
is white, and color contribution comes only from the surface tex-
ture itself. The light sources can be dynamic and are assumed to be
distant, which implies a homogeneous lighting over the entire sur-
face. We are interested in computing the lighting term L (intensity)
in Equation 1 from all visible surface positions in one single view
to estimate F . We express the incident light field F with SH.

In the following Equation (2), we express F as a reconstruction
F̃ of spherical harmonics basis functions Y weighted by the SH
coefficients c. For simplicity, we choose a single index notion of
the SH index terms usually called l and m, where i = l(l + 1) +
m+ 1. Moreover, the index k denotes the number of used bands.
Obviously, the quality of the reconstruction of F depends on the
number of basis functions.

F̃(S) =
k2

∑
i=0

ciYi(S) (2)

Furthermore we implemented a radiance transfer function for
diffuse shadowing, RDS (see Equation 3), where~n is the surface nor-
mal, ρx the surface albedo and V (~w j) is a visibility term at surface
point x:

RDS(x) =
ρx

π

∫
S

V (~w j)L j(x, ~w j)max(~n• ~w j,0)d ~w j (3)

The final result of a rendering for a surface point x can be ex-
pressed as the dot product of the SH projected light source F̃ and
the SH radiance transfer function RDS.

I(x) =
k2

∑
i=0

RDS(x)iF̃i (4)

Our aim is to estimate the unknown F̃ from z ∈ {1..Z} reflection
observations I(xz). For estimating F̃ , we stack the observations to
a matrix system (see Equations (5, 6)) and obtain a linear equation
system of the form Ay = b of size Z× k2 with non-square A which
we have to solve for y. Since the system is overdetermined, we
minimize the error |Ay−b|2.

A =


RDS(x1)1 RDS(x1)2 · · · RDS(x1)k2

RDS(x2)1 RDS(x2)2 · · · RDS(x2)k2

...
...

. . .
...

RDS(xZ)1 RDS(xZ)2 · · · RDS(xZ)k2

 (5)

y =


F̃1
F̃2
...

F̃k2

 , b =


I(x1)
I(x2)

...
I(xZ)

 (6)

3.2 Making lighting estimation robust
Since the quality of the light reconstruction heavily depends on the
quality of the input data, which is noisy under real world condi-
tions, we developed two methods, which improve the robustness
of our estimation. The main concern is the selection and interpre-
tation of samples taken from the camera image. A sample M(xz)
is represented by a position x in 3D space with a surface normal
vector~n, the illumination observation from the camera frame I(xz)
and the radiance transfer RDS(xz) expressed by the SH coefficients
(Figure 2).

Figure 2: We evaluate the visibility of a sample by ray casting and ex-
clude samples which potentially can receive only a very little amount
of light.

Figure 3: We group samples according to their surface normal vec-
tors by a regular grid representing the surface of a sphere.

Sample selection by visibility: Surface points can be located
in cavities or otherwise heavily occluded areas, where only a small
amount of light transfer is potentially possible. From these areas,
the measurements will not provide trustworthy data, since we do
not model interreflections to simulate more complex light transfers.
Therefore we exclude those areas from the measurements. While
computing the radiance transfer function RDS, we also determine
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the visibility term V (~w j). By doing so, we can measure the po-
tential irradiance by casting a ray from each sample point into all
possible directions ~w j and determine if there is any occlusion from
another surface in this direction. If a sample point has too much
occlusion (e.g., 95 percent of the rays hit another surface), it is ex-
cluded from the lighting estimation (see Figure 2).

Weighting by surface normal vector distribution: The ideal
surface for estimating the environment illumination would be a
sphere, which provides observations from all possible directions.
Unfortunately, such a uniform distribution of normal directions is
not always naturally given in the real world. In practice, the scene
often consists of a large planar surface (e.g., a table) with a single
dominant normal vector. Naturally, samples taken from this surface
will have a large impact on the final estimation. Other normal di-
rections will not be sufficiently represented. For example, samples
taken from smaller objects in the scene, which have a smaller pixel
coverage in the video frame, will not yield a comparable number of
samples. To improve our estimation, we therefore weight the sam-
ples according to a uniform distribution U of surface normal vectors
on a sphere (see Figure 3). We bin the samples according to their
surface normal vectors into a regular spherical grid C. For each bin
c in the grid, we compute a weight mc (see Equation 7), where D is
the number of bins of the grid and Z is the total number of samples.
The weight mc is the number of samples Qc in a bin divided by the
uniform distribution U = Z

D .

mc =
Qc

U
(7)

In the following we multiply the illumination value I(xz) and the
radiance transfer RDS(xz) with the corresponding weight mc. The
results are then inserted to the linear equation system in Equation 6.
The weighting will have the following three effects. First, samples
from overrepresented areas are normalized by the uniform distri-
bution. Second, samples, which are represented uniformly over a
sphere, are not changed. Third, the influence of samples, which are
not strongly represented, will be diminished. The benefit of this
method can be seen in the real world experiments in Section 5.2.

4 IMPLEMENTATION

Our system consists of two major parts, a lighting estimation part
and an AR rendering part, which are explained in the subsequent
sections.

4.1 Light Estimation
In Figure 4, a systematic overview of the light estimation pipeline
is shown.

Color and depth image processing: We capture a color and
a 16bit depth image from an RGBD camera (Microsoft Kinect).
Since we are only interested in estimating white colored light
sources, we convert the color image from RGB into CIE L*a*b
color space to obtain the reflected radiance from the scene. To re-
move camera noise and high frequency texture parts, we run a TV-
L1 de-noising algorithm [20] on the Luminance channel. The color
conversion and the TV-L1 algorithm are both implemented on the
GPU with CUDA. To improve the registration of the camera im-
age and the depth image, we compensate the radial distortion on
both sources, applying a third degree polynomial lens rectification
model.

Geometry reconstruction and pose estimation: The geometry
reconstruction and pose estimation is based on the KinectFusion
algorithm [13]. A 3D voxel volume is continuously updated with
the current depth map. The result is a surface reconstruction rep-
resented as a signed distance function (SDF) in the voxel volume
together with a 6DOF pose estimation of the camera. To obtain a
surface point x and a surface normal vector ~n for the current view,
we have to perform ray casting on the reconstructed volume for

every frame. Hence the real-world geometry is represented as an
implicit surface, and no polygonal model needs to be computed at
any time.

Radiance transfer computation and SH projection: For the
light estimation, we have to model the possible real-world radiance
transfer RTR as closely as possible. We implemented the diffusely
shadowed radiance transfer function RDS presented in Equation 3,
which takes visibility V (~w j) into account. To compute the visibil-
ity term, we cast rays in all possible directions of a sphere from
every surface point x. Dynamically changing real-world geome-
try precludes pre-computed radiance transfer methods. Therefore
we compute the radiance transfer every frame. This task has been
implemented with CUDA. To improve real-time performance, it is
also possible to compute the radiance transfer only every nth pixel
and use bilinear interpolation (see Figure 6 (a) to (c)). The solu-
tion of RTR is then projected into the SH basis function. A further
reason for computing RTR is differential rendering, were real and
virtual illumination effects are combined. A more detailed expla-
nation is given in section 4.2.

Lighting estimation: The environment light is estimated with
the solution proposed in Section 3. For each sample point, we have
the SH coefficients and the irradiance observations from the cam-
era. After applying the algorithms for robust estimation, proposed
in Section 3.2, we obtain the SH coefficients representing the en-
vironment lighting by solving the equation system given in Equa-
tion 5. This is a rather lightweight computation and is done on the
CPU. The light is estimated every frame and supports dynamically
changing light sources.

4.2 Rendering pipeline
Our rendering pipeline is entirely based on SH lighting. In Figure 5
a systematic overview of the entire rendering pipeline is shown.

Asset preparation: Similar to the real-world geometry, we also
create a voxel representation of the virtual geometry. This can be
done in an off-line 3D mesh voxelizer such as binvox1. Choosing
a unified data structure for the real world geometry and the virtual
geometry enables a straight forward evaluation of the visibility term
of the radiance transfer function by multi volume ray casting.

Differential rendering: To depict the influence between real-
world models and virtual models, we implemented differential ren-
dering as proposed by Debevec et al. [2]. We use the radiance
transfer function RDS stated in Equation 3 to model the local illu-
mination.

Differential rendering is computed in two passes. In the first
pass, a G-Buffer rendering of the virtual scene is created using stan-
dard OpenGL, using the camera pose that was determined through
tracking with KinectFusion. This render pass produces a color
buffer of the unlit virtual scene together with a geometry buffer (i.e.,
x/y/z coordinates of every fragment in camera coordinates) and a
normal buffer. The color buffer is later used in the compositing step
to compute the final shaded surface colors, while the geometry and
normal buffers are used to initialize the raycasting employed in the
second rendering pass.

In the second pass, two global illumination solutions used in
the differential rendering are computed. The first solution is RTR,
which has been already computed for the light estimation. The sec-
ond solution is RTRV , which is the global illumination solution for
real and virtual objects together. Like RTR, RTRV is computed using
raycasting. Since the voxelized representation of the virtual ob-
jects creates noticeable sampling artifacts, we start the raycasting
from the geometry buffer produced in the first pass. We also use
the normal buffer from the first pass, as it has higher accuracy than
normals that could be estimated from the voxel representation. See
Figure 6(c) and (d) for an example of the different qualities of the
representations.

1binvox: http://www.cs.princeton.edu/˜min/binvox/
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Figure 4: The lighting estimation pipeline computes SH coefficients of the physical environment in real time.

Figure 5: The rendering pipeline is a combination of differential rendering with a global illumination representation based on spherical harmonics.

Figure 6: From left to right: Sample every 4th pixel, every 2nd pixel, every pixel, voxel representation.

We project both RTR and RTRV to SH coefficients. Finally the
lighting is evaluated by computing the dot product of the SH coef-
ficients of the environment lighting with the SH projected radiance
transfer, and inserting the result into the differential rendering equa-
tion, which in our case yields a lightmap I f inal :

I f inal = F̃ •RTRV − F̃ •RTR (8)

See Figure 10 for an example of the effects achieved with differ-
ential rendering. The raycasting is very computationally intensive
and has the highest impact on the performance of the system. We

considered screen-space ambient occlusion (SSOA) as a cheaper
alternative, but preliminary tests with SSOA did not yield satisfac-
tory results in terms of shadow quality. For performance tuning,
radiance transfer computation can be restricted to only every nth

pixel.

Unlike other differential rendering solutions (e.g., Knecht [10]),
our approach can render the results from RTR and RTRV in one pass
and consequently avoids redundant geometry processing.

Compositing: The compositing step is necessary to create the
final AR image. The main purpose is to handle occlusions of vir-
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Figure 7: In the upper image the problem of self occlusion artifacts is
depicted. The lower left image shows the virtual object (duck) with-
out occlusion offset and the lower right image shows the duck with
occlusion offset. As can be seen the surface of the duck in the lower
right image has less stains.

tual and real objects correctly and to compute the final color. For
handling occlusions, the depths values in the geometry buffer of the
real-world surface and the geometry buffer of the virtual surface
are compared. Depending on the depth test, the color of the camera
frame or the color of the virtual object is taken and multiplied by
the lightmap I f inal .

Note that the real-world surface might contain discontinuities
or holes, where KinectFusion was unable to provide a proper re-
construction. This can for example happen when the depth sensor
is confused by highly specular surfaces. In these cases, a proper
workaround is to assume that the virtual surface is closer than any
real surface, and consequently use the shading information from
the virtual shading. To work in linear color space, we removed the
gamma correction in the video color frame at the beginning of the
pipeline. As a post-processing step, we finally apply the gamma
correction to the output color.

Self occlusion artifacts: The raycasting step can create un-
wanted self-occlusion artifacts, noticeable as stained surfaces.
These artifacts can also be misinterpreted as lighting effects (shad-
ows), since the overall color looks darker. Self-occlusion is typi-
cally caused when the resolution of the voxel grid does not match
the resolution of the virtual geometry or when the reconstructed real
surface is noisy. As can be seen in the left most image in Figure 7,
this can produce aliasing artifacts. To overcome this problem, we
offset the starting point for each ray along the surface normal by the
length of one voxel cell.

5 RESULTS

In the following, we present the evaluation of our algorithm and
implementation. We will mainly focus on plausible and percep-
tively convincing results rather than on physically correct results.
We evaluate the correctness and quality of our work in the follow-
ing subsections. In our evaluation, we used props from the AR stage
set ”City of Sights” from Gruber et al. [6]. For SH computation, we
used four bands, resulting into 16 coefficients for all the presented
results.

5.1 Synthetic light estimation evaluation

As a first test, we load a known light source, represented as an HDR
environment map, and use it to light the reconstructed scene without
any virtual objects. The output is then directly used to estimate the
synthetic light source. The estimated result should be comparable
to the known input light. We compare the direct evaluation of the
SH coefficients on a cube map, where each pixel represents a unique
direction of the unit sphere. The results of this test are shown in
Figure 8. In this evaluation we took HDR environment maps from
Paul Debevec 2. Note that in the interpretation of these results, the
quality of the geometric reconstruction, for example the accuracy of
surface normal vectors, must be considered. The major conclusion
of this test is that the light estimation is working correctly with real-
world data from the geometry reconstruction.

5.2 Real-world results

In Figure 12, we show the results of a systematical test series with
three different scenes (A, B and C) and 4 different lighting situa-
tions. All three scenes have been exposed to the same 4 different
lighting situations created using a bright directional light source,
which changes direction through the series. Note that the light
source is not optimally diffuse and creates hard shadows from the
real objects. So far we did not model hard shadows in our system
and estimate only low frequency lighting. Therefore the shadows
from the virtual objects will appear more soft and blurred. In Fig-
ure 11, we show the effects of applying our robustness method pre-
sented in Section 3.2 on the more complex test scene A. The results
show that the robust approach creates a better lighting estimation,
which results in a perceptually better rendering. The tests shown
in Figure 12 demonstrate that our system also works with colored
objects, although we do not estimate any material properties. Scene
B and C have identical geometrical properties and differ only in the
surface color. While the objects in scene C have various colors,
the objects in scene B are uniformly gray. Each result is accompa-
nied by the visualization of the lighting estimation as in an unfolded
cube map. For comparison, each series has been processed by the
naive approach and the robust approach.

5.3 Influence of occlusion

In this section, we discuss the influence of the occlusion on the
lighting estimation. The occlusion is computed through the visibil-
ity test V (~w j) in equation 3 and practically depends on the length
of the ray of the ray casting step. A longer ray will increase the
probability that occlusion from objects that are further away is in-
corporated into the visibility estimation. For the lighting estima-
tion, we only consider the occlusion of the real world objects. We
increase the ray length from 0 to 0.2m to evaluate the influence. As
can be seen in figure 9, the solution of the lighting estimation im-
proves with the ray length. The solution is more stable, which can
also be noticed in the AR rendering. This is due to the fact that the
real-world is modeled more accurately with occlusion than with-
out. The optimal ray length depends on the entire volume of the
scene. In our case, the ray length is given in meters, and the entire
scene has a volume of 2×2×2 meters. Note that compared to con-
ventional SSAO, which only takes information from one view into
account, the consistent reconstruction of the volume enables more
realistic occlusions.

5.4 Differential Rendering

In Figure 10, the lighting effects between real and virtual created
by differential rendering are shown. In this scenario, we directly
rendered the voxel representation of the virtual object.

2http://ict.debevec.org/˜debevec/Probes/
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Figure 8: This image sequence shows results from the synthetic light reconstruction. The top row (Input) shows the entire real-world scene lit
by the synthetic light. The rendered scene is then used as input for the light estimation algorithm. The light source is shown on the right of the
rendering, represented as a cube map. The brightness of the cube map has been adjusted for better display in this document. The lower row
(Output) shows the real-world scene plus a virtual sphere lit by the reconstructed light source. The solution of the light source reconstruction is
shown on the right of the augmented rendering. In examples (a) and (b), we used a light source traveling from left to right. The effect is best
observed looking at the pyramid. In example (c), we used the commonly available ”‘Grace Probe”’ (e) HDR map from Paul Debevec. This light
source is more complex. Note that we do not estimate the color of the light, therefore the result is also in gray. Image (f) shows the color encoded
directions of the environment map.

Figure 9: We increase the ray cast length (in meters) from (a) to (d).
Comparing the solution of (a) and (d), a noticeable improvement of
the estimation can be seen.

Figure 10: The left image shows shadows casting from the virtual
object on the table and the paper. The right image shows a shadow
from the real world geometry (hand) onto the virtual geometry.

5.5 Limitations
Our system is built upon several different techniques, each having
its advantages and limitations, which we discuss here.

Geometry reconstruction: The dynamic reconstruction algo-
rithm [13] has a great impact on the overall result. This algorithm
improves the quality of the surface reconstruction (surface normal
vectors, surface consistency etc.) over time. Since quality of the
surface normal vectors is crucial for the light estimation, the qual-
ity of the light estimation depends on it. A further limitation of the
surface reconstruction is that fast changes in the scene do not take
effect immediately. Adding and removing objects is possible, but
it will take some frames until the entire scene is updated correctly.
Moreover, the reconstruction of the scene might be incomplete un-
less the user makes an effort to scan the scene properly, e.g., by
walking around the scene. Nevertheless, we also demonstrated that
our approach works with a static camera. A further restriction is
given by the depth sensor and the resulting depth map quality. Us-
ing the projection-based Microsoft Kinect, we are not able to re-
cover depth maps from specular surfaces, e.g., mirror balls.

Visual quality: The visual quality of the rendering depends on
several factors. The number of samples (rays) used for the radiance
transfer computation has a strong influence on the visual quality,
on the light estimation and on the performance of the system. It
controls how fine grained the visibility test is computed. We found
that a number of samples ranging between 64 and 300 creates rea-
sonable results. Using 64 samples provides already acceptable ren-
derings. Second, our system computes the solution for every nth

pixel. Obviously the most expensive, but also visually most pleas-
ant results are obtained if n = 1. Solutions with n = 2 and n = 4
have to be interpolated and create visual artifacts such as aliasing.
Note that inconsistent reconstruction can lead to wrong or partially
wrong occlusions.

Light probes: Naturally the light estimation also depends on
the surface characteristics. There are surfaces which are problem-
atic. For example, the reconstruction and tracking algorithm does
not handle planar surfaces well, and the light estimation algorithm
works better if the surface normal vectors cover a hemisphere as
much as possible. Moreover, surfaces with strong reflective materi-
als violate the assumption of diffuse surface materials. The quality
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of the light estimation also depends on the distribution of the sur-
face material colors. For instance, if a scene is divided into a black
and a white area, the algorithm would likely produce wrong results.

Light sources: We support only diffuse shadows and lighting
in our estimation and rendering approach. No hard shadows are
modeled. Furthermore, as already stated in Section 3.1, we do not
estimate material properties yet. Therefore it is assumed that the
light sources have a white color.

Frame coherence: We estimate the lighting at a per frame basis
and do not take previous results into account. Although this allows
the estimation of fast dynamically changing lights, it can also lead
to instable results. We did not apply any method such as moving
averages, and our system can suffer from flickering artifacts. This
also depends on the quality of the RGB camera, which can suffer
from noise at bad lighting conditions.

Performance: The main bottleneck in our system is the com-
putation of the radiance transfer through ray casting including a

visibility test. This task has to be performed twice because of the
differential rendering. However, we achieve interactive frame rates
of 5Hz performing the computation on every 4th pixel with a ray
length of 10 cm, a total working volume of 2x2x2 m, 16 SH coeffi-
cients (4 bands) and 169 rays covering a sphere for visibility testing
on commodity hardware (GeForce GTX 580).

5.6 Demonstration Application
In Figure 13, a more complex scenario with a colored environment
is shown. The scenario models a fictive environment, which could
be part of an AR game or story telling application. The inset shows
how the estimation of lighting from an unprepared scene is used to
add a virtual hat to the head of a person.

6 CONCLUSION AND FUTURE WORK

In this work, we presented a system for estimating the environment
lighting for real-time AR applications. These algorithms enable the

Figure 11: The red (scene space) and the blue (illumination space) arrows mark visible difference of the naive and robust approach. We can
observe that the robust approach creates more visually pleasant results than the naive approach.
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Figure 12: This Figure depicts the real-world results of the two scenes B and C, differing in surface colors. Note that there are very little
differences in the lighting estimation. 127



Figure 13: Left image: real-world bridge casts a shadow onto the virtual ship and the virtual ship casts shadows onto the real-world environment.
Right image: the direction of the virtual shadows can be compared with the real-world shadows, for example of the little lion. Middle insert: we
added a virtual hat onto the head of a real person to demonstrate the ability of the system to work in unprepared environments too.

lighting of virtual objects from a real-world lighting representation.
Unlike previous work, we estimate the lighting directly from arbi-
trarily shaped objects. Thus, we can improve the visual coherence
of AR without the need for impractical procedures or props. We
demonstrate the quality of the results by comparing our algorithms
with synthetic test data and with real-world data. In the future, we
will extend our work by methods which will also allow to estimate
higher frequency lighting.
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