Importance-Driven Compositing Window Management

Manuela Waldner!, Markus Steinberger', Raphael Grasset?, and Dieter Schmalstieg!

Institute for Computer Graphics and Vision

Graz University of Technology
Graz, Austria

{ waldner | steinberger | schmalstieg } @icg.tugraz.at

ABSTRACT

In this paper we present importance-driven compositing
window management, which considers windows not only as
basic rectangular shapes but also integrates the importance
of the windows’ content using a bottom-up visual attention
model. Based on this information, importance-driven com-
positing optimizes the spatial window layout for maximum
visibility and interactivity of occluded content in combina-
tion with see-through windows. We employ this technique
for emerging window manager functions to minimize infor-
mation overlap caused by popping up windows or floating
toolbars and to improve the access to occluded window con-
tent. An initial user study indicates that our technique pro-
vides a more effective and satisfactory access to occluded
information than the well-adopted Alt+Tab window switch-
ing technique and see-through windows without optimized
spatial layout.

Author Keywords
compositing window management, visual saliency, space
management, transparency

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Windowing systems

General Terms
Design, Human Factors.

INTRODUCTION

Although more than 25 years have passed since the emer-
gence of the WIMP metaphor, the window concept still pre-
vails as the unique interface to control multiple applications
on the screen. Today, the need of information workers for
multiple applications to successfully complete a single task
and the common usage of floating menus or multiple win-
dows per application, lead to a standard desktop being clut-
tered with a large number of open application windows.
Even with increasing display space, users just tend to keep
more application windows open [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHI 2011, May 7-12, 2011, Vancouver, BC, Canada.

Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

2HIT Lab NZ
University of Canterbury
Christchurch, New Zealand
raphael.grasset@canterbury.ac.nz

mmmmmmmmmm

i

1 ;"711
LU
I8 w5

(

(b)

Figure 1. (a) Conventional overlapping windows occlude important in-
formation in obscured windows. To reveal this information, the user
has to change the window layout manually. (b) Importance-driven com-
positing spatially arranges occluded windows and applies see-through
compositing to maximize content visibility and interactivity.

Most current window managers employ multiple overlap-
ping windows and leave the spatial arrangement of the in-
dividual windows merely to the user. As a result, important
information may be hidden in occluded windows (Figure 1a)
and users spend a significant amount of time switching be-
tween windows to reveal obscured content [13].

Different window management techniques to increase the
amount of simultaneously visible information have been ex-
plored. Automatic window layout techniques (e.g., [18, 3])
reduce the amount of window overlaps and, as a result, the
empty screen space. A limitation of these systems is the
lack of knowledge about the application content. Therefore,
windows are treated as “black boxes”, which does not leave
much room for overlap-avoidance [3] if the screen is clut-
tered with a large number of windows. On the other hand,
transparency can be employed to reveal the content of oc-
cluded windows. However, transparency alone does not en-
sure that important hidden content is actually revealed. If
highly salient window content overlaps, visual differentia-
tion between window layers becomes difficult for the user.
These situations can be resolved with an optimized spatial
layout which minimizes information overlap.

In this paper, we therefore propose importance-driven com-
positing — a new window management approach for see-
through user interfaces. We base our work on recently es-

tablished compositing window managers, which have access
to the window textures after the window content has been
rendered into video memory. Importance-driven composit-
ing window management analyzes these window textures to
identify perceptually important window regions to optimize
the spatial window layout for see-through compositing (Fig-
ure 1b). To identify the importance of a window and its
content, we rely on a visual attention model describing how
much a location in an image stands out from its surroundings
[17]. In summary, our contributions are:

e Using visual saliency as an importance measure of ap-
plication window content and the concept of importance
maps as unified, image-based importance representation
for compositing window managers,

e a window management approach combining spatial win-
dow layout optimization with see-through compositing
for maximum information visibility and interactivity,

e a hardware-accelerated implementation for real-time us-
age in an established windowing system, and

e a validation of our approach through an initial user study
indicating a benefit of our technique for accessing oc-
cluded content compared to traditional Alt+Tab window
switching and free-space transparency [16].

We will present novel window management functions based
on importance-driven compositing to improve the access to
occluded information by a new window switching approach
and a semi-automatic window layout technique. We also in-
troduce functions to decrease occlusion of window content
by pop-up windows or floating menus.

RELATED WORK

With the steadily increasing number of open, overlapping
application windows, users are required to apply some sort
of occlusion management technique [8] to discover and ac-
cess occluded window content. To bring occluded windows
to the front, window managers provide window lists, sequen-
tial window switching techniques (such as Alt+Tab or stack
leaving [9]), or space-filling window layouts (such as Ap-
ple’s Exposé'). However, explicit window switching has
been described as tedious [10]. Subsequently, we discuss
two window management approaches alleviating the need to
switch windows explicitly by increasing the amount of si-
multaneously visible information on the screen: see-through
windows and automatic spatial window layouts.

See-Through Windows

See-through user interfaces were first introduced by Bier et
al. [5] as movable filters operating on the underlying graph-
ics object. Today, advances in hardware-accelerated window
management (such as Metisse [6]) have made enhanced win-
dow rendering techniques, such as transparencies, geometric
deformations, or change visualizations [4], widely available.
Most up-to-date window managers support half-transparent

1http://www.apple.com/macosx/
what-is-macosx/expose.html

rendering of application windows to show information hid-
den underneath. However, experiments have shown that sim-
ple alpha blending either causes readability problems with
foreground items or decreases the perception of the back-
ground image — depending on the chosen alpha level [12, 2].
Outlines of text and icons [12] and multiblending [2] have
been shown to improve recognizability of blended content.
Dynamic transparencies [11] help to increase background
visibility and were demonstrated to reduce targeting perfor-
mance only marginally. For see-through window manage-
ment, Ishak and Feiner [16] apply free-space transparency
only to “unimportant” (white) window regions. This guar-
antees that important content in top-level windows is pre-
served. However, it does not guarantee that important con-
tent in occluded windows is actually revealed. If important
content in the occluded windows is located underneath the
important regions of the overlay window, the user has to
manually re-arrange windows to access hidden content. This
limitation is the main motivation for our approach: we use
window importance not only for see-through compositing,
but also for an optimized spatial window layout which min-
imizes overlaps of important regions.

Spatial Window Layout

Window layout techniques like overlap-avoiding dragging
[3] or constraint-enabled window management [1] spatially
arrange windows to avoid window overlaps. For both tech-
niques, a sufficiently large screen is required to accommo-
date for all the non-overlapping windows in their original
size. Other techniques only temporarily change the win-
dow layout for certain situations, for instance if a physical
occlusion of user interface elements has been detected [27]
or if the user wants to copy-and-paste between overlapping
windows [7]. All of these examples treat windows as sim-
ple rectangular shapes — irrespective of their content. For
our window layout routine, we were inspired by the field
of augmented reality, where a common task is to annotate
real-world objects in video images with virtual labels. To
find the optimal placement for the label, the video images
are analyzed (e.g., [19, 24]). We extended this approach for
compositing window management where we treat windows
as image templates with the objective of finding the window
layout with the least information overlap.

To deal with limited screen space, window layout techniques
often apply some sort of deformation to the windows. For
instance, tiled window managers (e.g., [18]) have to resize
windows to keep all windows visible without an overlap.
Automatic down-sizing introduces the risk of clipping im-
portant content at the window’s boundary. Therefore, others
crop windows to preserve only the most relevant regions of
context windows (e.g., [15, 20]). However, in these systems
the user has to define the relevant regions manually, which
can be a tedious task. In contrast, importance-driven com-
positing automatically identifies perceptually important win-
dow regions, by image-based analysis of window textures.

Task management systems (e.g., [23, 22]) apply perspective
transformations or down-scaling to context windows, while
the focus windows remain in the center of the screen. How-

ever, content can be too small or skewed to allow for details
to be perceived. Furthermore, interaction with transformed
windows is not possible in these examples. Thus, users
have to perform explicit window switches to access and ma-
nipulate information in transformed windows. A main dis-
tinguishing aspect of our work is that we use unimportant
screen space — potentially embedded within windows — to
show important elements of occluded windows in original
size. Content is neither distorted nor shrunk and fully inter-
active, if visible. This allows the user to look up and interact
with the fine-grained content in occluded windows without
explicitly bringing them to the front.

IMPORTANCE-DRIVEN COMPOSITING

Importance-driven compositing analyses the importance of
window content to find an optimal spatial window layout —in
terms of visibility and interactivity of occluded content — for
see-through window interfaces. Our approach is composed
of four steps:

1. The creation of desktop and window importance maps
containing image-based descriptions of important regions,

2. a window layout routine, placing occluded windows to
minimize the overlap between important regions,

3. importance-driven see-through compositing, applying
per-pixel transparencies to reveal important content of oc-
cluded windows, and

4. interaction techniques allowing the user to access and ma-
nipulate content in occluded windows.

In the following, we will discuss these steps in more detail.

Importance Map

We introduce importance maps as unified image-based rep-
resentation of importance in windowing systems: window
importance maps are extracted from each window’s content
using a model of saliency-based visual attention. In our
system, the window’s content is given as an image — more
specifically as a texture, as we are relying on a hardware-
accelerated window rendering (similar as described in [6]).

(@)

M - ; e | .
(0) ,// ’ — e———

Figure 2. Window importance maps (2, blue) are created for each win-
dow individually and accumulated with high-level information (1, red)
to a common desktop importance map (0, green). Dark areas represent
high importance.

Window importance maps are accumulated into a common
desktop importance map, which can be extended by high-
level information provided by the user or derived from the
physical screen setup. Windows are added to the desktop
importance map from front to back — ensuring that recently
used windows are prioritized for layout and compositing.
Figure 2 shows individual window importance maps, high-
level information, and the merged desktop importance map.
The resulting desktop composition is depicted in Figure 3(8).

Visual Attention

Saliency is a measure of how much a location visually stands
out from the surrounding image regions [17, 21]. Typi-
cally used bottom-up saliency features are regions of high
changes in luminance, color opposition, orientation changes,
and motion. For our window importance maps, we apply the
conspicuity analysis proposed by Mendez et al. [21], which
extracts pixel-wise saliency values based on an analysis of
lightness, red-green and blue-yellow color opposition, to the
(dynamic) textures of the windows. In addition, we mea-
sure visual changes in occluded windows and temporarily
increase importance in regions where content has changed.
Visual changes caused by user interaction, such as scrolling
the window content, are ignored. The importance maps in
Figure 2 show that user interface elements and information
content, such as text or images, are assigned high impor-
tance values. In particular, the video in the center window
of Figure 2 is highly salient due to additional motion. Ho-
mogeneous background regions have low importance — in-
dependent of their background color.

High-Level Importance

In addition to the accumulated window importance maps de-
scribing importance based on visual perception, the desktop
importance map can also contain high-level information. For
instance, a user might want to keep desktop regions uncov-
ered from application windows to have access to frequently
used desktop icons [14] or to avoid windows spanning across
physical monitor bezels on multi-monitor settings [10]. This
importance information can be accumulated into the desk-
top importance map — for instance by automatically adding
a one-pixel line of high importance along monitor bezels. In
the example map of Figure 2, the user manually selected the
upper left corner of the screen as high-importance desktop
region, where window placement should be avoided.

Window Layout

The aim of the window layout routine is to spatially arrange
windows so that important regions of occluded windows are
moved to desktop areas of little importance. Therefore we
consider both, each window’s individual importance map
(Figure 3(2)) and the desktop importance map describing the
current distribution of information over the desktop (Figure
3(3)), to find the optimal window placement. Figure 3 shows
the layout step for a single window and the resulting desktop
composition. The optimal window placement is determined
by considering three influencing factors described in the fol-
lowing (c.f., Figure 3(4-6)).

F

- o =
o Desktop Importance Map

| @]25Encelo)previotsTposition (=)

Optimization
.ge

Figure 3. Overview of importance-based compositing for a single window: (1) from the window’s texture, (2) the window importance map is created.
(3) Given the desktop importance map, the window layout routine finds the optimal placement considering (4) the information overlap, (5) the distance
to the original window location, and (6) the distance to the previous location. (7) The combination of these factors gives an optimization problem with
the solution marked as a green dot (window center). (8) Finally, the window is rendered to the existing desktop content.

Firstly, the overlap of information in the window (/,,) and
the already existing information on the desktop (/) shall be
kept low. The information overlap can be formulated as a
cross-correlation of the two importance maps I, and I;:

T = >, L@y L@+ (=),

(2,y)€Quw

where (z,y) visit all discrete positions in the window tex-
ture §2,,, and p is the window location. Secondly, the lo-
cation p should have little displacement from the original
window location p,, which is defined by the location where
the window has been mapped or manually positioned by the
user. Thus, this term is responsible for maintaining a certain
degree of spatial stability. Thirdly, the resulting window lo-
cation p should vary minimally from the location in the pre-
vious frame pj,. In other words, jitter should be minimized.

These requirements can be formulated as an optimization
problem over all possible window locations p’ (Figure 3(7)):

‘](m = wljz(m +wdD(ﬁO717) +WJD(ﬁp7ﬁ)a

where J is the associated cost function to be minimized,
composed by a weighted sum of the information overlap J;,
and the distance D to the original location (window displace-
ment) and previous position (jitter). The individual weights
(w) vary for the presented window manager functions de-
scribed further below in the paper.

To reduce the number of potential window locations (p), the
search space can be decreased by additional constraints. For
instance, windows can be bound to certain screen regions
or to “parent” windows. In addition, we limit the maxi-
mal window movement over time. This introduces smooth
frame-to-frame animations and helps the user keep track of
window movements. Window content is never placed out-
side the screen boundaries. This decreases the search space
for large windows, while maximized windows will not be
re-positioned at all.

Our algorithm treats multiple windows sequentially in a
greedy manner. For each window, the best placement is
determined by solving the optimization problem as stated
above. Subsequently, the window’s importance map is added
to the desktop importance map at the determined location.
The modified desktop importance map then serves as an in-
put for the next window’s placement. As the windows being
traversed first have more freedom in finding a good place-
ment, more recently used windows are implicitly prioritized.

Compositing

Importance-driven see-through compositing reveals oc-
cluded content by applying pixel-wise transparencies. We
implemented two well-known compositing techniques from
the field of technical illustrations and volume rendering [26]:
ghosting and cut-aways.

Ghosting determines each window pixel’s alpha value
ay, (x, y) by evaluating the importance ratio of the window’s
importance map I,,(z,y) and the desktop importance map
I4(x,y) at the respective pixel:

Ly(2,y)
Iw(xa y) + Id(xay) .

Thereby, it ensures that the most important features of each
window are visually preserved (Figure 4a). However, if the
window layout routine cannot spatially separate important
regions (for instance due to high information density), im-
portant features in overlapping windows compete for visual
prominence.

aw(x,y) =

Cut-aways put more emphasis on the windows’ stacking or-
der: they ensure that the most prominent features of the over-
lay windows are preserved. Only if the desktop’s importance
map value is below a certain threshold, the obscured win-
dow’s content is revealed. Smooth blurring and desaturation
of obscured window content provide subtle depth cues. This
approach is similar to free-space transparency [16], where

The Title

Author uthor
Affiliation Affiliation
Affiliation Affiliation

author@a.com author2@b.com

(a) (b)
Figure 4. See-through compositing: (a) Ghosting and (b) cut-aways.

transparency is only applied to white regions in overlay
windows. Our cut-away technique differs from free-space
transparency, as we apply hard boundaries between the fore-
ground and the background and add shadows to visually in-
dicate depth layers (Figure 4b).

Interaction

Importance-driven compositing window management allows
users to interact with visible portions of occluded windows
— even if located within the boundaries of an overlay win-
dow. We rely on the simple assumption that the user aims
to interact with the visually most prominent window at the
current mouse pointer location. We therefore set the input
focus according to the compositing result: the window with
the overall highest contribution to the pixel’s color below the
mouse pointer is activated.

WINDOW MANAGEMENT FUNCTIONS

Based on the concept of importance-driven compositing, we
subsequently present novel window management functions
for overlapping windows. Clearly, applying see-through
window compositing to all application windows at all times
interferes with focused attention [12] — the ability to fo-
cus entirely on a single item without visual interference
from other items. Therefore, our suggested functions apply
importance-driven compositing either temporarily or solely
to a subset of windows.

Uncovering Windows

Hutchings et al. [13] found that window switching is a fre-
quent activity and that most windows are activated for less
than four seconds. This indicates that users often only need
to skim the content of a secondary window to resume their
primary task, such as reading a bit of documentation, check-
ing if a new e-mail has arrived, or retrieving the result of a
calculation. With sequential window switching techniques,
the user has to perform multiple operations: initiate the win-
dow switch, identify and select the window of interest, per-
form the actual operation, and repeat the window switching
step to return to the previous window. Not surprisingly, “the
need to Alt-Tab” has been described as tedious [10].

To reduce the number of necessary activities to quickly ac-
cess occluded content, we use importance-driven composit-
ing to uncover information in occluded windows on demand.
By pressing a keyboard combination, spatial window layout

HI Conference Proceed Format
w e (Blank if Bind Review)

fvn-s» el 105516 _so%

Figure 5. Unimportant window regions are temporarily cut away and
occluded windows are spatially arranged to reveal obscured content.
The user directly interacts with the otherwise invisible document con-
tent uncovered below the browser window.

and cut-away compositing is applied to all occluded (unmin-
imized) desktop windows (c.f., Figure 5). Top-level win-
dows are not re-positioned. Penalties on window displace-
ment for the layout algorithm are kept low to give more em-
phasis on minimizing the information overlap than a stabi-
lized window layout. We discard the window title bars from
occluded windows, as they have a high visual saliency but
little benefit for user interaction in this situation. As input is
redirected to the most salient window at the cursor location,
simple operations in occluded windows — such as pressing a
button — can be accomplished while exposing occluded con-
tent without actually bringing the window to the front. To
signal which window currently holds the input focus, we in-
crease the active window’s overall alpha value and show its
title at the left upper window corner (as for the document
editor in Figure 5). When releasing the key combination, the
active window under the pointer is brought to the front and
the other occluded windows return to their original locations.

Semi-Automatic Window Layout

When working with large-scale monitors, users rarely max-
imize windows. Instead, they often “carefully coordinate”
their windows and keep a small portion of occluded windows
visible for direct access [14]. This window arrangement al-
leviates the need for explicit window switching. However,
manually arranging the windows is rather time-consuming
and keeping important elements visible for easy window
identification requires frequent re-adjustment as other win-
dows are moved.

We use importance-driven compositing as a semi-automatic
window layout technique which is initiated when the user
starts dragging a window. All windows — except for the
window currently being dragged — become subject to semi-
automatic window layout. As the user drags a window,
underlying windows are re-positioned to avoid information
overlap (Figure 6). In addition, ghosting allows the user
to see the content underneath while keeping the title bar

Figure 6. Semi-automatic window layout: (a-b) the user drags a win-
dow towards the left, which causes an overlap with another window.
The window layout persists as long as the amount of covered informa-
tion is low. (c¢) If more information is occluded, the obscured window is
re-positioned to leave the most important window content uncovered.
Window trails were added for illustration purposes.

pressed. As the user releases the mouse button, the applied
layout persists and the windows become fully opaque again.

In contrast to the previously described window uncovering
function, we treat the window being dragged as a black box
(i.e., the window importance map is uniformly high) as the
aim is to optimize the layout for opaque windows. However,
we do consider the importance of content in the windows
underneath. In case the dragged window is moved on top
of other windows, the layout function re-positions these oc-
cluded windows so that only unimportant regions are cov-
ered. Penalties for window displacement and jitter are high
to keep the spatial window layout as persistent as possible.

Users can furthermore influence the resulting layout by pro-
viding high-level desktop importance information. They can
define desktop regions where window placement should be
avoided or prioritize certain regions.

Pop-Up Window Placement

Windows popping up without the user triggering it usually
signals events which require the user’s attention. Examples
are dialogs indicating a new e-mail, instant messages, or a
completed file operation. Immediate user activity is not al-
ways necessary. Yet, dialog windows popping up on top of
the window stack — sometimes even obscuring the main in-
teraction item — necessitate the user to interrupt the current
task and undertake immediate action.

To minimize user interruption, we apply importance-driven
compositing to pop-up dialogs. Newly created windows
from the class “dialog” are automatically positioned to avoid

CHI Formatting Instructions

CHil uses two diflerent formats for most submissions: HCI Archive and Extended Absiract.

~ chi-latex-template(6).zip o628 M
78.4 KB — chi2011.0org

ApplePages template

Note: The LaTeX and Pages
thatthese ter bea

Figure 7. Importance-driven compositing takes care that the pop-up
dialog does not occlude important website content while keeping the
most important elements of the dialog visible.

an overlap with the content of other windows. Cut-aways
are employed to ensure the readability of foreground infor-
mation, as depicted in Figure 7. Users can directly interact
with dialog windows wherever visibility is given. To bring
the dialog window to the front as a conventional opaque win-
dow, the user employs a simple shortcut. If the user does not
interact with the dialog within 10 seconds after creation, the
window moves to the back of the window stack as a conven-
tional occluded window.

Intelligent Floating Toolbars

Floating toolbars or tear-off menus are commonplace in
many applications, such as word processors or image edit-
ing software. Instead of docking a menu to the window’s
boundary, the user can detach it and re-position it anywhere
on the screen. Floating toolbars usually stay on top of the
main application window to enable quick access to impor-
tant user interface elements. Thereby, toolbars can lead to
an occlusion of the main window content.

We allow the user to interactively pick floating toolbars for
importance-driven compositing using a shortcut or a context
menu entry. Once selected, the toolbar window is re-stacked
behind the main application window and re-positioned to
avoid an overlap with the main content. Ghosting main-
tains the most important content of both, toolbar and main
window. We constrain the layout algorithm to apply only
minimal displacement from the menu’s previous and origi-
nal location. As a result, the toolbar will minimally adjust
its position as the user manipulates the main window’s con-
tent, offering a trade-off between spatial stability and avoid-
ing occlusion of important content. Consider, for instance,
the floating menu shown in Figure 8: as the user scrolls the
content, the menu is set to empty document spots but is never
moved too far from its original location.

Users can bind a toolbar to a main window by using a con-
text menu entry or by dragging it within the boundaries of
the parent window and not moving it for a second. Auto-
matic toolbar placement is then restricted to the interior and
the immediate surroundings of the parent window. If the
main window is moved, the toolbar is re-placed accordingly.
To detach the toolbar from its parent, the user drags it out-
side the parent window’s boundaries. Visual feedback of the
binding/unbinding operation is provided by animated icons.

>
|
¥
™
>
@
¥
m

Caption - | Caption - 2003 and
pre-2002 afterwards

Above
Below

Caption - 2003 and
Objects afterwards

Caption —
pre-2002

Tables,
Figures

Below

Below

Figure 8. A floating menu is re-positioned automatically while scrolling
the document to avoid overlap with textual content.

Our system supports independent application windows to
reach similar functionality as floating application toolbars
— similar to user interface “holes” to access auxiliary appli-
cations [25]. For instance, the user can attach a calculator
to a programming environment or a sticky note to a docu-
ment editor and access them like conventional user interface
elements of the main application.

IMPLEMENTATION

Tremendous processing capabilities are nowadays available
in form of graphics processing units (GPUs) in virtually ev-
ery PC system. Yet, they remain mostly unused for com-
mon window operations. In our system, we formulate com-
putationally expensive tasks (such as the saliency computa-
tion or the window layout routine) using advanced GPU lan-
guages - namely, the OpenGL Shading Language® (GLSL)
and the Open Computing Language® (OpenCL) - to support
real-time interaction. For our prototype, we extended the
OpenGL-based compositing window manager Compiz* for
the X Window System of Linux. On a Quad-Core 2.80 Ghz
CPU and NVIDIA GeForce GTX 480, for a desktop res-
olution of 1280x1024, placing and rendering a window of
approximately 500x300 pixels requires 6ms. For a conven-
tional office scenario with five managed windows, we obtain
an average frame rate of 20 fps.

Window importance maps are extracted from the individual
windows’ textures by using a GLSL implementation of Itti’s
visual attention model [17], as proposed by Mendez et al.
[21]. Visual window changes are monitored through window
damage events, i.e., notifications of window region updates
provided by the X Window System. These damage regions
are merged into the window’s importance map.

For the computationally expensive evaluation of the window
layout cost function, we execute a two level parallel search
in OpenCL. The best location found on a lower resolution is
refined locally to give the new window location.

The final window compositing step is realized as a GLSL
fragment shader, which is applied to the translated windows.
The compositing shader determines per-pixel alpha values
and evaluates each pixel’s neighborhood for blurring and
shadowing, according to the chosen compositing technique.
The shader is also responsible for merging the window’s im-
portance map with the desktop importance map and to deter-
mine the most salient window at the respective pixel. This
information is queried each time the mouse is moved, to
find the active window at the current mouse pointer location.
To redirect the mouse pointer input to an obscured window,
we temporarily raise the window in the window manager’s
stacking order (refer to Stiirzlinger et al. [25] for technical
solutions and limitations for input redirection in the X Win-
dow System). Although this modifies the window manager’s
stacking order, we do not alter our traversal order for layout
and compositing to keep the desktop visually consistent.

2http://www.opengl.org/documentation/glsl/
3http://www.khronos.org/opencl/
4http://www.compiz.org

EXPLORATORY USER STUDY

We conducted a preliminary user study to judge the usabil-
ity of importance-driven compositing for accessing content
in occluded windows. For that purpose, we compared it with
two other window management techniques for three differ-
ent tasks. The tasks were designed to simulate real infor-
mation work situations, where users have to skim through
information in occluded windows or quickly interact with
obscured content before resuming the main task.

We hypothesized that importance-driven compositing will
be advantageous compared to sequential window switching
for quickly looking at information in occluded windows, as
the number of necessary steps to reveal occluded content is
reduced. Furthermore, we expected a performance benefit of
importance-driven compositing for simple interaction tasks
in occluded windows, as we provide the facility to directly
interact with user interface elements in occluded windows.

We compared the following three window management tech-
niques for revealing occluded window content:

Alt+tab (AT) in combination with conventional overlapping
windows is a standard window switching technique provided
by all major operating systems and served as a control con-
dition. The employed Alt+Tab switcher by the Compiz win-
dow manager shows small previews of all windows when
activated by the Alt+Tab sequence (Figure 9a), and allows
for sequential window selection by pressing the tab key.
Free-space transparency (FST), proposed by Ishak and
Feiner [16], applies transparency to unimportant window re-
gions of overlay windows using a smooth gradient between
transparent and opaque regions. We simulated FST using
importance-driven compositing without the layout routine
(Figure 9b). Instead of the original notion of unimpor-
tant window content (white pixels), we used our importance
maps to define transparency values. FST does not allow
users to directly interact with the occluded content. There-
fore, we provided the “pie menu” proposed by the authors,
which shows a circular menu of all the windows lying un-
derneath the current pointer location, to bring occluded win-
dows to the front. Participants had to press Start+tab to re-
trieve this menu and then click on a window preview to bring
the desired window to the front.

Importance-driven compositing (IC) was employed to un-
cover occluded windows on demand, as described further
above. To initiate IC, participants had to press the key com-
bination Start+w. As long as the keys were pressed, oc-
cluded windows were spatially arranged, cut-aways were ap-
plied and interactivity for the most salient window under-
neath the pointer was ensured (Figure 9c¢).

Participants were asked to solve a visual search task. Ques-
tions were presented in a textual format and the users had to
identify specific items in occluded windows. They were pre-
sented with a maximized main window and five small object
windows behind the main window, which were arranged in
a cascaded fashion. The object windows always contained
an image of a 2D geometric primitive and — depending on
the task type — a small textual label and a button. The main
window contained the question the users had to answer and

(a)

.........

(b) (c)

Figure 9. The three window management techniques and the three task types in our experiment: (a) overlapping windows with the Alt+Tab menu
for the interact task, (b) free-space transparency with the count task, and (c) importance-driven compositing with the read task.

a list of solutions (in two task types). The following three
task types had to be solved:

Count: Participants were asked to search for a certain 2D
geometric primitive (e.g., square) in the five object windows,
count its occurrences, and select the number of occurrences
from the list of solutions in the main window (c.f., Figure
9b). This represents a scenario where users have to get an
overview of all the windows and identify them based on a
strong visual feature, which is also clearly visible in a scaled
window representation.

Read: Participants had to find the only object window which
contained a textual label (e.g., “This is a yellow triangle”)
that matched the associated picture of a geometric primitive
(c.f., Figure 9c). Subsequently, they had to select the same
label from the list in the main window. This represents a
scenario where the user has to switch to a window containing
textual information required for the main task. Note that the
text labels were too small to be readable in the FST pie menu
and AT preview menu.

Interact: The task was similar to the read task, except that
the validation of the matching label was selected by a push
button directly in the object window (c.f., Figure 9a). The
task was designed to represent situations where the user has
to shortly interact with an occluded window before resuming
the main task.

We recruited 15 participants (4 female, aged 15 to 32) from a
local high school and university. All participants were expe-
rienced computer users and tested for color-blindness. Nine
participants are using Microsoft Windows as a primary oper-
ating system, three employ Linux and three use Mac OS X.
Twelve of the participants use Alt+Tab “often” to “very of-
ten” to switch windows, followed by the window list in the
task bar, which is employed frequently by eleven partici-
pants. None of the participants stated using one window
switching technique exclusively.

The study was conducted on a PC running Linux Ubuntu
10.04 with a 1280x1024 17” monitor. We measured the
completion times (time between appearance of a question
and selecting an answer) and error rates for each task item.
Participants were also handed out a preference questionnaire
at the end of the experiment. A semi-structured interview
was conducted to collect subjective feedback. For each tech-
nique, participants had a short practice session (6 questions).

The order of the techniques and tasks was counter-balanced.
Each user had to complete four repetitions for each task in
every technique. For the interact task and read task, the
stacking position of the window containing the correct label
was balanced across the repetitions.

Results

We conducted a 3 (Technique: AT, FST, IC) x 3 (Task:
Count, Read, Interact) repeated measures ANOVA (o = .05)
to evaluate completion times. Bonferroni adjustments were
applied for post-hoc comparisons. We found a main ef-
fect for Technique (F5 28 = 82.231,p < .001) and Task
(Fo,28 = 18.182,p < .001), as well as a borderline signifi-
cant interaction between the two factors (Fy 56 = 2.601,p =
.046). Post-hoc comparisons showed that IC (6.2s) was sig-
nificantly faster than both, FST and AT (13.9s and 8.4s). AT
was also faster than FST. However, IC was only faster than
AT for the read and interact tasks. For the count task, there is
no significant difference between IC and AT, but both tech-
niques were performing better than FST. Figure 10 illustrates
the completion time results.

Participants generally committed few errors with 97% of the
questions being answered correctly. The highest error rates
were collected for FST in the count and read tasks (10.0%
and 6.7%, respectively).

Participants were asked to rank the three techniques on a
seven-point Likert scale. A Friedman non-parametric test
revealed a significant difference between user preferences
(x%(2) = 23.414,p < .001). Post-hoc comparisons using

AT FST IC

OCOUNT mREAD OINTERACT
Figure 10. Completion times (seconds) for the three conditions (AT,

FST, and IC).

Wilcoxon Signed Rank tests with Bonferroni adjustments
showed that IC (6.33) was rated significantly higher than
AT (4.73), and that both techniques were evaluated higher
than FST (2.47). In the interview, participants mentioned
the readability of small text and the ability to interact with
obscured user interface elements as main reasons to rank IC
higher than FST and AT. FST was primarily disliked for the
pie menu to access occluded windows, which was described
as hard to use, because only the windows located underneath
the pointer were shown. Due to the initial cascaded window
layout, only the top-most object window was fully visible
(c.f., Figure 9b). Therefore, several users commented that
they did not know which windows were located beneath the
mouse pointer and, as a consequence, which windows were
included in the menu. One user summarized interaction with
FST as: “Transparency and not being able to interact [with
occluded content] is very exhausting”.

We also asked the participants which technique they pre-
ferred for the three tasks. For the interact task and read
task, IC was chosen by the majority (15 and 12 participants
out of 15, respectively). In the interview, most participants
stated that IC was most appropriate for the read task as the
text in obscured windows was readable, in contrast to the
small menus of AT or FST. For the interact task, participants
mentioned the ability to directly interact with occluded con-
tent without explicitly selecting the corresponding window
as exceptionally useful. For the count task, AT was the most
preferred technique (selected by 8). Participants commented
that the menu of AT provided a good overview, so they could
immediately see which images were available.

The results partially support our hypotheses: IC indeed
provides an advantage for quickly looking at content in
occluded windows. However, compared to AT, the per-
formance advantage is only significant for accessing fine-
grained information (as in the read task). The benefit of IC
for simple interaction in occluded windows was confirmed
by the results of the interact task.

DISCUSSION AND FUTURE WORK

The results of our experiment indicate that importance-
driven compositing supports users in skimming through in-
formation in occluded application windows. Users described
the access to occluded information as “more fluid” compared
to sequential window switching menus, as only one activity
was necessary to extract information from an occluded win-
dow. Another distinguishing aspect is the ability to directly
interact with content of occluded windows without explicitly
selecting the window in a separated user interface. Partici-
pants commented that this feature created a sense of “direct”
interaction on the occluded content.

We consider the encouraging results of our exploratory user
study as starting point for more empirical evaluations on
importance-driven compositing. We will address potential
limiting factors of our system which have not been captured
by our experiment, such as the effect of automatic window
re-arrangements on spatial memory or the effect of a dense
information display on focused attention. To assess the suit-

ability of visual saliency as primary measure of importance,
we still need to thoroughly investigate whether traditional
bottom-up saliency features are sufficient to describe the im-
portance of window content — from user interface elements
to various content like text, images, videos, or complex visu-
alizations. Longitudinal studies will help to assess the ben-
efits and limitations of our proposed window management
functions in more realistic settings.

With importance-driven compositing, the desktop is not just
a collection of (window) rectangles but rather a rich informa-
tion map. We showed that we can leverage this importance
measure for new interaction techniques on window manager
level, which would otherwise require access to the applica-
tion’s content. It can also be employed as unified interface to
implement previously suggested window management tech-
niques, such as free-space transparency [16], multiblend-
ing [2], or clipping lists [20], as fully functional window
manager extensions. Image-based representations of phys-
ical occlusions can serve as influence to the desktop’s im-
portance and thus generate occlusion-aware window layouts
[27] automatically.

In the future, we will investigate how our importance model
can be enriched by techniques for automatic extraction of in-
dividual user interface components [25], user-defined win-
dow constraints [1], or fine-grained window management
[7], which takes into account the context of a user’s action on
a window. We also consider to add scaling as additional opti-
mization factor to our layout routine. Shrinking and expand-
ing regions of low importance can lead to a more flexible
content arrangement, especially for large windows. Finally,
our prototype has to be considered as proof-of-concept im-
plementation. We demonstrated the feasibility of using state-
of-the-art GPU languages in window managers. Yet, system
performance can — and should — be further enhanced. Be-
sides low-level optimizations for the GPU code, high-level
observations of window changes could be used to trigger
only partial importance map updates.

CONCLUSION

We presented importance-driven compositing window man-
agement which considers the importance of window con-
tent for an optimized spatial window layout in combina-
tion with see-through compositing. The aim of the tech-
nique is to optimize visibility and interactivity of important
content contained in multiple overlapping application win-
dows. Importance is defined by an image-based analysis of
visually salient features within window textures. Based on
importance-driven compositing, we presented new window
management functions to minimize information overlap and
to ease the access to occluded content. Results of a pre-
liminary experiment indicate that users could extract fine-
grained information and perform easy interaction tasks in
occluded application windows faster and with greater sub-
jective satisfaction compared to overlapping windows with
sequential Alt+Tab switching. In comparison to free-space
transparency [16], users appreciated the increased content
visibility due to a more appropriate spatial window layout
and the ability to directly interact with occluded content.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Erick Mendez for
providing the GLSL implementation for the saliency com-
putation. This work was funded by the Austrian Research
Promotion Agency (FFG) BRIDGE 822716.

REFERENCES

1.

10.

11.

12.

13.

G. J. Badros, J. Nichols, and A. Borning. Scwm: An
extensible constraint-enabled window manager. In
Proc. USENIX 2001, pages 225-234. USENIX
Association, 2001.

. P. Baudisch and C. Gutwin. Multiblending: displaying

overlapping windows simultaneously without the
drawbacks of alpha blending. In Proc. CHI 2004, pages
367-374. ACM, 2004.

. B. A. Bell and S. K. Feiner. Dynamic space

management for user interfaces. In Proc. UIST 2000,
pages 239-248. ACM, 2000.

. A. Bezerianos, P. Dragicevic, and R. Balakrishnan.

Mnemonic rendering: an image-based approach for
exposing hidden changes in dynamic displays. In Proc.
UIST 2006, pages 159-168. ACM, 2006.

. E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D.

DeRose. Toolglass and magic lenses: the see-through
interface. In Proc. SIGGRAPH 1993, pages 73-80.
ACM, 1993.

. O. Chapuis and N. Roussel. Metisse is not a 3D

Desktop! In Proc. UIST 2005, pages 13-22. ACM,
2005.

. O. Chapuis and N. Roussel. Copy-and-paste between

overlapping windows. In Proc. CHI 2007, pages
201-210. ACM, 2007.

. N. Elmqvist and P. Tsigas. A taxonomy of 3d occlusion

management for visualization. IEEE TVCG,
14:1095-1109, September 2008.

. G. Faure, O. Chapuis, and N. Roussel. Power tools for

copying and moving: useful stuff for your desktop. In
Proc. CHI 2009, pages 1675-1678. ACM, 2009.

J. Grudin. Partitioning digital worlds: focal and
peripheral awareness in multiple monitor use. In Proc.
CHI 2001, pages 458-465. ACM, 2001.

C. Gutwin, J. Dyck, and C. Fedak. The effects of
dynamic transparency on targeting performance. In
Proc. GI 2003, pages 105-112, 2003.

B. L. Harrison, H. Ishii, K. J. Vicente, and W. Buxton.
Transparent layered user interfaces: an evaluation of a
display design to enhance focused and divided
attention. In Proc. CHI 1995, pages 317-324, 1995.

D. R. Hutchings, G. Smith, B. Meyers, M. Czerwinski,
and G. Robertson. Display space usage and window
management operation comparisons between single
monitor and multiple monitor users. In Proc. AVI 2004,
pages 32-39. ACM, 2004.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. D. R. Hutchings and J. Stasko. Revisiting display space
management: understanding current practice to inform
next-generation design. In Proc. GI 2004, pages
127-134, 2004.

D. R. Hutchings and J. Stasko. Shrinking window
operations for expanding display space. In Proc. AVI
2004, pages 350-353. ACM, 2004.

E. W. Ishak and S. K. Feiner. Interacting with hidden
content using content-aware free-space transparency. In
Proc. UIST 2004, pages 189-192. ACM, 2004.

L. Itti, C. Koch, and E. Niebur. A model of
saliency-based visual attention for rapid scene analysis.
PAMI, 20(11):1254-1259, 1998.

E. Kandogan and B. Shneiderman. Elastic windows:
evaluation of multi-window operations. In Proc. CHI
1997, pages 250-257. ACM, 1997.

A. Leykin and M. Tuceryan. Automatic determination
of text readability over textured backgrounds for
augmented reality systems. In Proc. ISMAR 2004,
pages 224-230. IEEE Computer Society, 2004.

T. Matthews, M. Czerwinski, G. Robertson, and D. Tan.
Clipping lists and change borders: improving
multitasking efficiency with peripheral information
design. In Proc. CHI 2006, pages 989-998. ACM,
2006.

E. Mendez, S. K. Feiner, and D. Schmalstieg. Focus
and context in mixed reality by modulating first order
salient features. In Smart Graphics 2010. Springer,
2010.

G. Robertson, E. Horvitz, M. Czerwinski, P. Baudisch,
D. R. Hutchings, B. Meyers, D. Robbins, and G. Smith.
Scalable fabric: flexible task management. In Proc. AVI
2004, pages 85-89. ACM, 2004.

G. Robertson, M. van Dantzich, D. Robbins,

M. Czerwinski, K. Hinckley, K. Risden, D. Thiel, and
V. Gorokhovsky. The Task Gallery: A 3D Window
Manager. In Proc. CHI 2000, pages 494-501, 2000.

E. Rosten, G. Reitmayr, and T. Drummond. Real-time
video annotations for augmented reality. In Proc. ISVC
2005, pages 294-302. Springer, 2005.

W. Stiirzlinger, O. Chapuis, D. Phillips, and N. Roussel.
User Interface Fagades: Towards Fully Adaptable User
Interfaces. In Proc. UIST 2006, pages 309-318. ACM,
2006.

1. Viola, A. Kanitsar, and M. E. Groller.
Importance-driven volume rendering. In Proc. VIS
2004, pages 139-146. IEEE Computer Society, 2004.

D. Vogel and R. Balakrishnan. Occlusion-aware
interfaces. In Proc. CHI 2010, pages 263-272. ACM,
2010.

	Introduction
	Related Work
	See-Through Windows
	Spatial Window Layout

	Importance-Driven Compositing
	Importance Map
	Visual Attention
	High-Level Importance

	Window Layout
	Compositing
	Interaction

	Window Management Functions
	Uncovering Windows
	Semi-Automatic Window Layout
	Pop-Up Window Placement
	Intelligent Floating Toolbars

	Implementation
	Exploratory User Study
	Results

	Discussion and Future Work
	Conclusion
	Acknowledgements
	REFERENCES

