
Rapid Reconstruction of Small Objects on Mobile Phones

Andreas Hartl, Lukas Gruber, Clemens Arth, Stefan Hauswiesner, Dieter Schmalstieg
Institute for Computer Graphics and Vision

Graz Technical University
Inffeldgasse 16/2, 8010 AUSTRIA

{hartl,lgruber,arth,hauswiesner,schmalstieg}@icg.tugraz.at

Abstract

Augmented Reality (AR) on mobile phones is receiving
more and more attention recently, becoming a popular re-
search topic and an important commercial field. In this pa-
per we present a lightweight method to create coarse 3D
models of small-scale objects. The goal is to give the users
the possibility to create and maintain AR content themselves
without the need for expensive tools and complex interac-
tion. Our algorithm is based on shape-from-silhouette using
voxel carving and runs on modern smartphone hardware.
3D models of certain object groups can be generated inter-
actively and instantly. The actual result is visualized contin-
uously using image based rendering methods to inform the
user about the actual model quality. Given a suitably accu-
rate model it can further be used for any means of AR and
can easily be shared with other users. The usability of our
approach is evaluated using modern smartphone hardware
(see Figure 1). The advantages are demonstrated using a
set of models for playing a board game.

1. Introduction
In Augmented Reality (AR) we deal with fusing the real

and the virtual in a natural and visually appealing way. The
view onto the real world is enhanced with any kind of vir-
tual content, be it textual, graphical or streaming audio or
video information. Most currently available types of con-
ventional media such as newspapers or television leave the
user as a passive observer, flooded by content coming from
some sort of preprocessed source. It is clear that also for
current AR applications, the easiest design is to follow this
scheme. For the users, however, large parts of the fun and
power of AR arise not until they are given the opportunity
to actively alter the scene and interact with it themselves.
In turn, this requires that such applications are able to col-
lect, build, maintain, store, load and share content in order
to allow this level of user experience.

In this paper we are dealing with the problem of small-

Figure 1. The Nokia N900 smartphone used for our evaluation.
The screen depicts a scene from the modeling procedure. The cur-
rent modeling result is rendered in the lower left corner.

scale 3D model generation on smartphones. Since 3D mod-
els form an essential part of AR suitable content, the goal
is to provide the user with the possibility of generating such
3D models on the fly by using his mobile phone, to use it
in any chosen AR application or game, and to share it on
social networks. 3D model generation is a research topic
with a long tradition, being manifold in terms of scale, the
employed tools and the amount of computational resources
available at the same time. As we are targeting embedded
hardware, we have to put special attention to trading algo-
rithm complexity with computational resources available.
In this respect, efficient Computer Vision (CV) algorithms
are the key to make the task manageable at all.

The main contribution of this paper is an approach to
generate simple, yet visually appealing 3D models of small
objects in real-time on modern smartphone hardware. By
using segmentation on structured background and so-called
Voxel Carving we can create the Visual Hull of the object,
which can be visualized by simple texture mapping and
image-based rendering. The resulting model is displayed

20

continuously, which allows the users to refine it iteratively
until they are satisfied with the quality. The system only
requires very simple user inputs, like moving the camera
and pressing a button, which makes it suitable for novice
users or difficult environment conditions. Despite some
well-known shortcomings of the involved algorithms, the
overall approach gives reasonable results and proves itself
plausible for the given scenario. While the explicit voxel
representation requires a relatively large amount of mem-
ory, it is superior to other visual hull algorithms in terms of
processing: it allows for refining the model incrementally
without recomputing already carved regions. Consequently,
our approach can be used intuitively and creates models that
improve in quality with each iteration.

This paper is structured as follows. Section 2 gives an
overview of related work in the area of modeling. In Section
3 we are describing our approach in detail and elaborate on
the special adaptions and modifications needed to achieve
the goal of real-time application on smartphone hardware
and the reception of visually appealing results. In Sec-
tion 4 some results of our approach are shown and we give
an overview of resources used for a specific hardware and
model acquisition setup. Section 5 concludes with a sum-
mary and an outlook on future work.

2. Related Work
The generation of 3D models has had a long history in

Computer Vision (CV) and Computer Graphics (CG). On
the one hand, the area of CV contributes a lot of automatic
methods for reconstructing objects or environments. Spe-
cial attention has been drawn to algorithms that allow the
online generation of 3D models at interactive framerates
just recently. On the other hand, in the area of CG the typ-
ical access is the manual generation of models using com-
mercial CAD software, such as 3ds MAX or Maya, or by
using open-source tools like Blender. For the application of
3D models in AR researchers likewise borrow approaches
from both areas, dependent on the offline or online creation
of models. For the latter, the goal is to generate some sort
of model automatically and instantaneously, probably with
interaction by the user and, if necessary, on embedded hard-
ware. In the following we focus on related work in two
separate areas. The first area is online modeling, where the
methods that target AR applications on mobile devices will
be mentioned explicitly. The second area is modeling meth-
ods using shape-from-silhouette techniques. This topic is of
special relevance since our proposed algorithm has a strong
relationship to this group of methods. Note that the list of
references is not complete.

Online Interactive Modeling Modeling in AR can al-
ready be found, for example, in the work of Lee et al.
[12] dating back to 2001, where a head-mounted display

(HMD) is used together with an optical tracking system
and a high-end graphics workstation to interactively model
objects. Piekarski and Thomas [17] present an approach
to model outdoor scenes with geometric primitives using a
wearable computer. In the field of Computer Vision, Ak-
barzadeh et al. [1] describe a system to generate models
of urban environments while passing with a vehicle. A
system called Videotrace is presented in the work of van
den Hengel et al. [20] to model environments and objects
from videos. With a special application to AR, Bunnun
and Mayol-Cuevas [6] describe a system called OutlinAR
to interactively model objects using a simple makeshift joy-
stick. The system was also shown to work in a mobile setup
recently [5]. Klein and Murray [10] present the Parallel
Tracking and Mapping (PTAM) system on a mobile phone.
The system creates a sparse feature model of a workspace
sized area on the fly and uses it as a tracking environment
for AR. Pan et al. [16] describe a system for reconstruct-
ing building facades outdoors from wide-field-of-view im-
ages. The algorithm calculates feature matches out of a
given set of images, triangulates these matches and creates a
textured model of the given scene on smartphone hardware
within several seconds. Simon [19] presents a system for
interactive 3D Sketching which runs on a mobile computer.
Closely related to our method is the work from Bastian et al.
[3], in which the authors present an interactive approach to
model objects using PTAM and segmentation methods. The
user marks parts of an object to add to a prior, with which
a model is created through an interactive segmentation and
tracking process.

Modeling using Shape-from-Silhouette The coarse
shape of a 3D object can be computed from a set of sil-
houette images from calibrated cameras. In CV, this is tra-
ditionally called shape-from-silhouette. The principal con-
cept was first introduced by Baumgart [4]. Later, this coarse
model was given the name Visual Hull by Laurentini [11].
It is defined as the maximal approximation of the object that
conforms to the silhouettes. Creating novel views of a vi-
sual hull can be performed efficiently using image-based
visual hulls (IBVH) as shown by Matusik et al. [14]. Mod-
ern GPUs allow for efficient implementations (see the work
of Hauswiesner et al. [9]). Matusik et al. [13] have shown
that the IBVH representation can also be transformed into
a 3D model, which are naturally view dependent, however.
Therefore, the entire visual hull needs to be recomputed fre-
quently.

Another popular approach is volume carving (or voxel
carving). It works by successively removing empty regions
of an explicit volume representation as shown by Chien and
Aggarwal [7] and Potmesil [18]. The representation can be
a simple voxel grid or a more complex tree structure. Dis-
crete points in this representation are projected onto each of

21

the silhouette images. If the projected point lies outside the
silhouette in any of these images, it gets discarded.

Discussion Interactive modeling for AR on mobile de-
vices is becoming more important steadily. However, its re-
search topic has not been profoundly addressed yet, which
can be seen from the low number of approaches running on
handheld devices. Real-time modeling of objects is still a
computationally demanding task, even on modern desktop
hardware. The approach by Bastian et al. [3] runs at around
5 fps on 640x480 pixel images using a medium-end desk-
top PC with heavy usage of GPU shader implementations.
The results are convincing, the computational complexity,
however, is far beyond what can currently be achieved on
off-the-shelf smartphone hardware. Note that the authors
also use voxel carving for generating an estimate of the ob-
ject volume.

Although some sort of user interaction during modeling
on mobile devices is indispensable, there are severe restric-
tions to this. Smartphone screens are relatively small and
touch input suffers from significant inaccuracies. Thus, it
is almost impossible to accurately mask or mark objects on
the screen. In our system, user input is restricted to moving
the device and taking pictures. These forms of input do not
suffer from accuracy issues.

Voxel carving has several advantages over conven-
tional reconstruction techniques, such as stereo matching or
IBVH, which make it especially suitable for use on embed-
ded hardware. Firstly, only simple operations are required
to process it, such as projection by vector-matrix products
and image lookups. Secondly, because the voxel represen-
tation is explicit, refining the model with additional silhou-
ette images does not require to recompute everything from
scratch. Instead, only voxels which survived the carving
process of all previous silhouette images need to be checked
against a newly added image. Furthermore, these voxels
only need to be compared to the new image and not to all of
the already captured ones. Also, in contrast to techniques
that use point correspondences, reconstruction from silhou-
ette images is robust against reflections and view-dependent
lighting effects. This allows, for example, to reliably cap-
ture metallic or glossy objects, given that a silhouette may
be obtained. Lastly, the growing computational power of
mobile GPUs creates an interesting potential for further op-
timization.

3. 3D Model Generation
Our proposed algorithm aims at the automatic creation of

simple models from a set of images. These images have to
be registered with respect to the target scene (i.e. the recon-
structed object). To facilitate this, we use a simple frame
marker which can be efficiently detected and tracked us-
ing popular AR tracking software like Studierstube or AR-

Figure 2. An example for the rendering of a scene, showing cam-
era positions, frustums and images around the rendering of a re-
constructed purple pill.

ToolkitPlus1. In Figure 2 an examplary modeling setup is
depicted, showing a set of images taken around an object
located on a marker target. The object itself is rendered us-
ing image information.

Given the camera pose for a single image, an important
problem is the efficient segmentation of the object, while
the object color should not be restricted. The use of popular
methods like graph-cuts or MSER is prohibitive on smart-
phone hardware due to the computational expense of these
algorithms. We situate the objects on a checkerboard pat-
tern instead, which we place in the middle of the marker.
This approach allows us to apply an efficient segmentation
method in order to acquire the required silhouettes (see the
work of Anonymous [8]). This segmentation algorithm re-
lies on local adaptive thresholding and simple morpholog-
ical operations. Subsequently, an efficient labeling proce-
dure with integrated contour-tracing is used to obtain a seg-
mentation of convex or non-convex objects. While being es-
pecially adapted to small, untextured objects it is also pos-
sible to process arbitrary objects (see e.g. Figure 6), pro-
vided that they do not contain checkerboard-like structures.
One key aspect concerning the applicability is the excessive
use of context information (homography, target dimensions,
checkerboard pattern size) to limit the amount of processing
required, but also to gain robustness. Information obtained
from this step can be directly used to reduce the amount of
input data for the proposed reconstruction method.

Since model quality is directly dependent on silhouette
quality, we use an incremental user-guided approach for
segmentation. By visual inspection the user may check at
any time whether the acquired silhouette is good enough

1http://studierstube.icg.tu-graz.ac.at

22

Frame

Tracking Segmentation Space Carving

OK

No Yes
OK

Model

No

P M

size
P

Done

Figure 3. Flowchart of our sample application. P denotes the pro-
jection matrix, and M denotes the silhouette mask respectively.

for model refinement or not. Such silhouettes, as well as the
obtained projection matrices from the tracker, serve as input
for our voxel carving module (see Figure 3). The resulting
model is immediately shown to the user. The process of
adding images to the carving and model generation engine
is repeated until the user is satisfied with the visual quality
of the model.

3.1. Voxel Carving Module

Our model generation algorithm relies on voxel carving
in its simplest form, where we use an array to represent a
volume. We project each remaining voxel vj using the pro-
jection matrix Pi of the current view and get the pixel po-
sition pj . Afterwards, we test whether the computed pixel
position lies within the silhouette of view i. If it does not,
we discard (carve away) the current voxel.

The size of our array is determined by the side length
tl of our square marker-based target, the maximum desired
object height zomx and the required accuracies δx, δy and
δz (see Equation 1).

s =
(tl)

2zomx

δ(xy)δz
(1)

Note that here the same accuracy in width and length
(δ(xy)) is assumed. If we therefore have objects with
zomx = 20mm and use the segmentation approach in [8],
giving δ(xy) = δz = 0.5mm on a marker-based target
with checkerboard length tl = 60mm, we get an array size
s = 576000.

For the majority of objects we are able to severely re-
duce the amount of required projection steps by exploiting
size information obtained from segmentation. The used seg-
mentation approach gives the metric length and width of the
object. We may use this information to erase a huge part of
the space before the actual carving takes place. This deci-
sion is supported by the fact that objects need to be much
smaller than the target itself, since it must be possible to
segment the object solely on the checkerboard area. In or-
der to account for inaccuracies, we add some small guard
border b to the dimensions reported from segmentation. So,
in case segmentation reports a square object with side length

Frame

Space Erase
Space Carving

Model

MLength/Width

Target
Scale

Model Model

Project Color Update

vj != 0 pj in M Discard vj

Figure 4. Outline of our voxel carving procedure.

xomx = yomx = 20mm and we use a border b = 5mm, the
remaining amount of voxels is just s = 100000. In Figure
4 a summary of these steps is shown.

Although a rough voxel space may give enough infor-
mation for measuring objects, we additionally store texture
information obtained from the corresponding input images.
This makes it easier for the users to judge the quality of the
current session, as well as to obtain a usable model for other
purposes.

3.2. Fast 3D Model Rendering

The quality of the model can be improved by more and
more reconstruction iterations. Therefore the users are able
to see the result immediately after each reconstruction step
and they can decide if a refinement step is necessary for
themselves. As a consequence we implemented a fast visu-
alization method of the voxel volume which provides visual
user feedback.

Since mobile phones with hardware constraints are the
targeted platform we aimed for a lightweight visualization
solution. Our approach is based on the following assump-
tions: (i) the object is placed on a plane, (ii) the object has
a convex height profile, and (iii) the voxels in the voxel vol-
ume are equally distant to each other. These assumptions
allow us to directly map the heights of the voxel volume to
a regular pre-triangulated grid or heightfield. In doing so we
avoid the employment of a computationally more expensive
triangulation algorithm such as QHull2 [2].

For coloring the model we implemented an offline image
based rendering method. The common image based render-
ing approach projects each frame, the texture or image from
any view onto the geometry. To avoid expensive texture
look-ups at each frame we pre-compute the color and store
it as a vertex color. Consequently, the color value of each
voxel is the average of the color values measured from the
camera input images.

The fast 3D model rendering method can be divided into
the following steps:

• Initialization step: Creation of a heightfield matching

2http://www.qhull.org

23

Figure 5. Fast rendering of the voxel volume. With each additional
image the new result is visualized automatically.

the x and y dimensions of the voxel volume.

• Voxel carving step: In this step the voxel volume is
refined. Additionally we project the 3D voxel into the
current camera image to obtain a color value for the
voxel. In case the same voxel is seen from more than
one view multiple color entries are stored in a vector.

• Heightfield update step: The z value of each vertex
v(x,y,z) on the regular grid corresponds to the voxel
with the highest z at x and y in the voxel volume. The
color of the vertex is determined by averaging the dif-
ferent color values of the corresponding voxel.

• Update step 3: The surface normal vectors of the
heightfield are computed.

The result of a fast visualization is depicted in Figure 5. An
entire sequence of images, together with the carving results
is depicted in Figure 6. The disadvantages of this approach
are that the mesh has to be as dense as the voxel volume to
avoid sampling artifacts. Additionally, the class of shapes
is limited during visualization. The final voxel model, how-
ever, does not suffer from this limitation.

3.3. Model Refinement for Height Measurement

Although the proposed method may give visually appeal-
ing results for certain objects, some postprocessing of the
voxel space is necessary for more accurate measurements.
The major problem is that camera poses have a certain min-
imum height above the marker plane. This is given by target
and object dimensions and leads to artifacts. In general, the
upper part of the object is formed like a pointed roof, which
can severely deteriorate model quality or hamper more ac-
curate measurements of objects. A possibility to tackle this
problem would be visual inspection and manual correction
of the model by the users, which is possible for all kinds
of objects. In order to make our approach more accessible
to untrained users, we opted for an automatic method. In
order to avoid bigger targets (i.e. larger frame markers) or

finer resolutions, which would alleviate this problem, we
resolved this by estimating the real height directlyfrom the
voxel space. This is possible for symmetric objects, where
the amount of voxels necessary for representation (starting
from the ground plane and moving up) is approximately
constant (e.g. simple objects such as medical pills). More
specifically, we search for a z-index into the voxel space
that allows us to select a suitable partition which resembles
one half of a symmetric object lying on the groundplane.
The process is as follows:

1. Iterate the voxel space along the z-axis from the bot-
tom upwards and record the amount of voxels (i.e.
the object cross section) at each index z into a vector
profilez . Stop if the # of voxels become zero.

2. Compute derivatives dprofilez by using forward and
backward differences and record each maximum zmax

3. Analyze the maxima using mean and standard devia-
tion and come up with a peak threshold thpeak

4. Select connected segments having dprofilez ≥
thpeak

5. Select the longest segment smax and compute its cen-
tral index zcsmax. This gives an estimate of half the
height of the object.

6. The final height index zmax is given by 2 · zcsmax.

Using the known scaling δz of the voxel space the corrected
height may be computed and the voxel volume itself may
also be cut. Additional improvements, like the considera-
tion of systematic errors, can be made but these must be
applied with care, depending on the nature of objects.

4. Experimental Results
In the following we show experimental results of our ap-

proach. Firstly, we give an overview of the computational
and memory requirements of our approach, evaluated on
ordinary smartphone hardware. Secondly, we give some
experimental results to demonstrate the power of the ap-
proach for acquiring size measurements of given objects.
This can be especially useful for tasks where the dimen-
sions of an object represent a valuable cue for recognition
(see e.g. [8]). Lastly, we demonstrate how the algorithm
can be used to generate models of small-scale objects used
in an augmented board game.

4.1. Smartphone Application

Our algorithm is evaluated on a Nokia N900 smartphone
running Maemo Linux, featuring a 600 Mhz ARM Cor-
tex A8 CPU (see Figure 1). We use an input resolution

24

Figure 6. A sequence of images from a given object and the corresponding carving results. While the first few images have a large impact,
with an increasing number of images the visible changes become marginal.

Voxel Size (l/w/h) [mm] # Voxels Time [ms] Memory [kB]
0.5 0.5 0.25 2985984 2378.70 2916
0.5 0.5 0.5 1492992 1211.05 1458
1.0 1.0 0.25 746496 146.49 729
1.0 1.0 0.5 373248 74.84 364.5
1.0 1.0 1.0 186624 40.68 182.25

Table 1. Runtime estimation and memory consumption for differ-
ent voxel sizes on our smartphone platform.

Voxel Size (l/w/h) [mm] # Voxels Mean Err. Std Dev.
0.5 0.5 1.0 746496 0.57 0.34
0.5 0.5 0.5 1492992 0.46 0.43
0.5 0.5 0.25 2985984 0.28 0.28
0.5 0.5 0.125 5971968 0.26 0.26

Table 2. Summary of results for height measurements on medical
pills (values are given in [mm]).

of 640x480 pixels, utilizing the FCam API3 for adjusting
suitable camera parameters. Note that we do not take any
advantage of the separate DSP available, nor do we use the
mobile GPU and OpenGL ES 2.0 for performance optimiza-
tion. The entire carving algorithm runs on the CPU only.

In Table 1 the average runtime for the carving procedure
and the memory consumption for the voxel space is listed
for different voxel sizes. The runtime estimate is averaged
out of the carving runs on 10 different objects and refers to
the average time spent in each call to the carving routine.
The initial voxel space has a size of 72x72x36 millimeters.
The size of the voxels is the critical factor for the memory
consumption, as can be seen in the last column of Table 1.
A smaller voxel size results in a carving space with a higher
resolution. In turn, the computational and memory demands
increase and the model quality improves.

In Figure 7 the time spent for the incremental carving
steps is drawn from different voxel space configurations.
The first step takes the most time, since most pixels are
carved away initially. However, for all additional images
the time needed for carving decreases significantly. At the

3http://fcam.garage.maemo.org

Figure 7. Time spent for carving away voxels. The time needed
for carving decreases significantly with an increasing number of
images.

same time, the carving result becomes more accurate. Due
to the current implementation of the carving space and the
corresponding carving routine, the entire approach becomes
notably slow for calculating the first carving result when the
spatial resolution of the carving space becomes high. Since
the user has to take multiple images of the object to be mod-
eled, an intuitive way to circumvent the application stalls is
to use the algorithm in a multi-threaded application envi-
ronment. Calculating the carving result can be done in a
background thread, while the application still remains re-
sponsive for taking additional snapshots.

4.2. Measurement Accuracy

Given a representative set of medical pills, the proposed
modeling procedure is used to acquire 3D measurements
based on five images of each object. We limit our experi-
ments to pills which are symmetric along the z-axis for rea-
sons described in Section 3.3.

In Figure 8 some results for the height estimation are

25

Figure 8. Results for height measurements on medical pills with
an increasing amount of voxels.

depicted, given different settings for the voxel space reso-
lution. In this evaluation process we used the mean mea-
surement error and its standard deviation from the absolute
values throughout the testset (see Figure 8).

At an equal spacing of δx = δy = δz = 0.5 the expected
mean error is 0.56mm. This may be seen as a tradeoff, be-
ing suitable for a real system (see Table 2 for a summary
of results). A main limitation for calculating measurements
in the third dimension is the inherent necessity to track the
planar marker target. For carving the voxel space in the
”height” dimension accurately, the user has to acquire im-
ages at the shallowest angle possible. This might become
a difficult task due to the limited extent of the target and
the limited capabilities of the tracking algorithm. Further-
more, the angular limits also depend on the actual object
size, since the object must be segmented in front of the
checkerboard background pattern.

4.3. Monopoly in AR Mode

To demonstrate the advantageous features of our ap-
proach we modeled several objects used for playing the
well-known Monopoly4 game on the fly on the smartphone.
Models of these objects are shown in Figure 9. Molla and
Lepetit have recently presented some of their work in the
context of AR for board games, also utilizing the Monopoly
game as an example [15]. In their work the physical ob-
jects used in the game are recognized with CV-based object
recognition methods, followed by the overlay of more visu-
ally appealing virtual models. By contrast, we create mod-
els of these physical objects using the method presented and
use these models only for game-play.

4MonopolyTMis the Trademark of Hasbro Company, Rhode Island,
United States.

Figure 9. Several objects reconstructed for using the board game
(small pyramids, blue stone, green stone, heart, yellow cone,
horseshoe).

Figure 10. Snapshot from the augmented Monopoly game. Several
of the objects modeled in advance are registered to the board game.
Note that we use a grayscale board to make the colored objects
more visible.

Figure 10 shows a scene from our Monopoly game with
objects registered to the actual game board. The user can
model individual objects in advance and use them later for
interactive game-play.

5. Conclusion
In this paper we presented an approach to online model

and measure small-scale objects interactively on mobile
phone hardware. Our approach uses voxel carving and sim-
ple image-based rendering to generate visually appealing
and accurate models of objects instantly. The models can
easily be used for AR applications as demonstrated in an
exemplary AR scenario. The approach is easy and intuitive
to use. It gives immediate feedback to the users, who decide
whether the result is sufficiently accurate for their needs or
not.

Nevertheless, the current version of our application has
several drawbacks that give room for further improvements.
As we did not include any optimization for dedicated hard-
ware, such as a GPU implementation of the voxel carving
step, the CPU is currently used slightly inefficiently. Fur-
ther improvements will resolve this issue, however. An-

26

other matter are the excluded geometric priors or color con-
sistency to help with the modeling. Since the algorithms
are based on the idea of visual hulls they not accurately
model objects of highly convex structure. Nonetheless, a
more elaborated modeling step may be included to improve
results for this sort of models.

An important point for future improvements is to get rid
of the marker target with the embedded checkerbord pat-
tern. Although marker targets are advantageous in terms
of efficient detectability, their optical appeal is poor. Us-
ing more advanced tracking methods could help with both,
improving modeling accuracy using more evolved segmen-
tation approaches, and with more general applicability of
our approach without additional printouts and hardware.

Acknowledgements
This work was partially sponsored by the Christian Doppler
Laboratory for Handheld Augmented Reality and partially
supported by FFG grant # 822702.

References
[1] A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. En-

gels, D. Gallup, P. Merrell, M. Phelps, S. Sinha, B. Tal-
ton, L. Wang, Q. Yang, H. Stewenius, R. Yang, G. Welch,
H. Towles, D. Nister, and M. Pollefeys. Towards Urban 3D
Reconstruction from Video. In Proceedings of the Third In-
ternational Symposium on 3D Data Processing, Visualiza-
tion, and Transmission (3DPVT’06), 3DPVT ’06, pages 1–8,
Washington, DC, USA, 2006. IEEE Computer Society.

[2] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quick-
hull Algorithm for Convex Hulls. ACM Transactions on
Mathematical Software, 22(4):469–483, 1996.

[3] J. Bastian, B. Ward, R. Hill, A. van den Hengel, and A. Dick.
Interactive Modelling for AR Applications. In Proc. Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR), pages 1–8, 2010.

[4] B. G. Baumgart. Geometric Modeling for Computer Vision.
PhD thesis, Stanford University, Stanford, CA, USA, 1974.
AAI7506806.

[5] P. Bunnun, D. Damen, S. Subramanian, and W. W. Mayol-
Cuevas. Interactive Image-based Model Building for Hand-
held Devices. In Augmented Reality Supermodels Workshop
(held in conjunction with ISMAR), pages 1–8, 2010.

[6] P. Bunnun and W. Mayol-Cuevas. OutlineAR: an Assisted
Interactive Model Building System with Reduced Computa-
tional Effort. In Proc. International Symposium on Mixed
and Augmented Reality (ISMAR), pages 1–8, 2008.

[7] C. H. Chien and J. K. Aggarwal. Volume/surface octrees
for the representation of three-dimensional objects. Comput.
Vision Graph. Image Process., 36:100–113, November 1986.

[8] A. Hartl, C. Arth, and D. Schmalstieg. Instant Segmentation
and Feature Extraction for Recognition of Simple Objects
on Mobile Phones. In Int. Workshop on Mobile Vision (in
conjunction with CVPR), pages 17–24, 2010.

[9] S. Hauswiesner, M. Straka, and G. Reitmayr. Coherent
image-based rendering of real-world objects. In Proceedings
of the 2011 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Game, San Francisco, CA, 2011.

[10] G. Klein and D. Murray. Parallel Tracking and Mapping on a
Camera Phone. In Proc. International Symposium on Mixed
and Augmented Reality (ISMAR), Orlando, October 2009.

[11] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Trans. Pattern Anal. Mach. In-
tell., 16:150–162, February 1994.

[12] J. Lee, G. Hirota, and A. State. Modeling Real Objects Using
Video See-Through Augmented Reality. In In Proc. ISMR 01
(Int. Symp. on Mixed Reality, pages 144–157, 2001.

[13] W. Matusik, C. Buehler, and L. McMillan. Polyhedral vi-
sual hulls for real-time rendering. In In Proceedings of
Twelfth Eurographics Workshop on Rendering, pages 115–
125, 2001.

[14] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. Image-based Visual Hulls. In Proceedings
of the 27th annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH ’00, pages 369–374, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publish-
ing Co.

[15] E. Molla and V. Lepetit. Augmented Reality for Board
Games. In Proc. International Symposium on Mixed and
Augmented Reality (ISMAR), pages 1–8, 2010.

[16] Q. Pan, C. Arth, E. Rosten, and G. Reitmayr. Towards Rapid
3d Reconstruction on Mobile Phones from Wide-Field-of-
View Images. In Augmented Reality Supermodels Workshop
(held in conjunction with ISMAR), pages 1–8, 2010.

[17] W. Piekarski and B. Thomas. Tinmith-Metro: New Outdoor
Techniques for Creating City Models with an Augmented
Reality Wearable Computer. In Wearable Computers, 2001.
Proceedings. Fifth International Symposium on, pages 31 –
38, 2001.

[18] M. Potmesil. Generating octree models of 3d objects from
their silhouettes in a sequence of images. Comput. Vision
Graph. Image Process., 40:1–29, October 1987.

[19] G. Simon. In-Situ 3D Sketching Using a Video Camera as
an Interaction and Tracking Device. In 31st Annual Confer-
ence of the European Association for Computer Graphics -
Eurographics 2010, Norrköping Suède, 05 2010.

[20] A. van den Hengel, A. Dick, T. Thormählen, B. Ward, and
P. H. S. Torr. Videotrace: Rapid Interactive Scene Modelling
from Video. ACM Trans. Graph., 26, July 2007.

27

