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F e a t u r e :  A u g m e n t e d  R e a l i t y

Online Creation of 
Panoramic Augmented-
Reality Annotations  
on Mobile Phones

J im Spohrer first envisioned the idea of 
superimposing georeferenced informa-
tion using augmented reality (AR) in 
his 1999 essay on the WorldBoard.1 
This idea has recently gained popu-
larity with applications such as Layar 
(http://layar.com), which use camera 

phones equipped with a compass and GPS 
as an inexpensive, albeit crude, platform for 

AR. However, GPS sensors 
and compasses have limited 
accuracy and can’t provide 
precise pose information. Fur-
thermore, these sensors have 
update rates of approximately 
1 Hz, so overlays onto the 
live video image in a mobile 
phone’s viewfinder are roughly 
placed, sometimes resembling 
a directional hint rather than 
an overlay matched to an exact 
location.

Here, we present a novel system that improves 
compass accuracy using vision-based orienta-
tion tracking, enabling accurate object registra-
tion. However, vision tracking can only work 
in relation to an image database or 3D recon-
struction, which must either be predetermined 

or constructed on the fly. We thus employ a  
natural-feature mapping and tracking approach 
for mobile phones that’s efficient and robust 
enough to track with three degrees of freedom. 
By assuming pure rotational movements, the 
system creates a panoramic map from live video 
on the fly and simultaneously tracks from it (see  
Figure 1).

We also investigate how to annotate the envi-
ronment directly on the mobile phone. Previous 
authoring tools were mostly bound to desktop 
computers or could operate only at the accuracy 
of the employed mobile sensors. Our approach 
lets users create annotations at that moment and 
store them in a self-descriptive way on a server 
for later re-identification. We identify the label 
positions using template matching against the 
panoramic map, so users can register annotations 
with the environment even if their current posi-
tion differs slightly from the original position.

Consider the following example. Peter creates 
a panoramic map and labels objects of interest 
(see Figure 2). The system transmits to the server 
the annotations, Peter’s GPS location, and a  
description of the annotated area’s visual ap-
pearance. Later, Mary wants to retrieve Peter’s 
annotations. Her phone, using GPS information,  
notifies her when she’s close to the locations 
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Peter annotated. A map view lets her 
reach a spot close to where Peter was 
when he created the annotations. Af-
ter Mary points the phone upward, the 
phone creates a new panorama to effi-
ciently match Peter’s annotations to the 
environment. Mary’s phone displays 
the corresponding annotation as soon 
as it detects a particular annotation’s 
supporting area. Mary can now create 
additional annotations.

Panoramic Mapping  
and Tracking
The system uses a simultaneous map-
ping and tracking approach, operating 
on cylindrical panoramic images. Its 
algorithm is conceptually comparable 
to simultaneous localization and map-
ping (see the “Related Work in Aug-
mented Reality” sidebar). However, 
we don’t create a 3D map of the envi-
ronment; instead, we limit the map to 
a 2D panorama. This lets users oper-
ate the application from any assumed 
standpoint—they needn’t walk to des-
ignated hotspots. It also corresponds 
well to the way in which people explore 
an environment—that is, by finding an 
interesting location and then looking 
around. Furthermore, the system runs 
at real-time rates of up to 30 Hz on mo-
bile phones and can be deployed spon-
taneously, because it doesn’t require 
any preparations.

We briefly introduce our method here 
(more detailed information appears 
elsewhere2).

Panoramic Mapping
Our panoramic mapping method as-
sumes that the camera undergoes only 
rotational motion. Under this con-
straint, there are no parallax effects, 
and we can map the environment onto 
a closed 2D surface. Although a perfect  

rotation-only motion is unlikely for a 
handheld camera, our method can tol-
erate enough error for casual operation. 
Mapping errors tend to be negligible, es-
pecially outdoors, where distances are 
usually large compared to the mobile  
phone’s translational movements. A 
detailed analysis of the effect of violat-
ing the pure rotation requirement with 
respect to the distance of the mapped 
objects appears elsewhere.3

Figure 1. Our vision-based system presents an improvement over regular compass-based annotation systems. By creating and 
storing panoramas, it can locate and visualize annotations with pixel accuracy.

Figure 2. The workflow of the panoramic augmented-reality (AR) annotation system 
involves two users. Peter creates annotations, and later on, Mary browses through 
them.
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We use a cylindrical mapping model, 
which doesn’t suffer from discontinui-
ties (as with cubic environment maps). 
When the mapping process starts, the 

first camera frame is projected into the 
map and serves as a starting point for 
tracking. We assume that the phone is 
held with zero pitch and roll during the 

first frame. For mobile phones with a 
linear accelerometer, roll and pitch can 
be automatically inferred to initialize 
the application. For subsequent camera 

W e can divide previous related work on augmented real-

ity (AR) into two areas: annotation authoring and ap-

proaches for tracking mobile devices in large-scale environments 

in real time.

Current AR applications on mobile phones augment the world 

with annotations bound to physical objects using the current 

GPS position and orientation information from an accelerom-

eter and a digital compass. These kinds of applications resemble 

Spohrer’s WorldBoard,1 a georeferenced information display us-

ing AR on a handheld device. The Touring Machine was the first 

prototypical mobile AR system to demonstrate the advantage of 

augmenting information over physical objects by using a back-

pack AR system and head-mounted display.2 Later work by Rob 

Kooper and Blair MacIntyre showed how to link the display of 

georegistered information with AR to online information sources 

such as the Web.3 However, these prototypes achieved accept-

able registration performance using bulky equipment or station-

ary infrastructure and weren’t intended for daily use.

Jose Montiel and Andrew Davison created a visual compass 

based on single-camera simultaneous localization and mapping 

(SLAM).4 They used an extended Kalman filter formulation of 

the tracking problem to compute orientation from dynamically 

acquired landmark features. Their approach creates a sparse 3D 

reconstruction of the environment, so the system isn’t restricted 

to rotations. Gerhard Reitmayr and his colleagues describe a 

SLAM system for sharing dynamically generated annotations 

with a remote observer.5 Georg Klein and David Murray recently 

introduced a variant of SLAM-based tracking that can run on 

mobile phones.6 However, all these SLAM systems work only in 

small areas, and the maps aren’t designed to store annotations 

permanently.

Only a few related works focus on creating annotations di-

rectly in an AR view. Early work on in situ authoring placed vir-

tual objects in the real scene and to support users through trian-

gulation from different views.7 Jun Rekimoto and his colleagues 

presented Augment-able Reality, which lets users annotate an 

environment prepared with barcode markers referring to contex-

tual information.8 More recently, Jason Wither and his colleagues 

showed how to add depth to annotations using aerial maps.9 

Later, they used a laser range finder to automatically calculate 

the depth information from a given position and orientation,  

allowing better label placement.10

Envisor, on the other hand, uses a vision-based approach 

for orientation tracking.11 It tracks the camera orientation in 

real time and simultaneously creates an environment map by 

calculating the optical flow between successive frames. These 

measurements are refined with more computationally expensive 

landmark tracking to avoid the drift that frame-to-frame feature 

matching introduces. Although the results of this approach are 

similar to our approach, Envisor can’t run on phones due to high 

computational costs, because the method requires extensive 

GPU processing to run in real time.
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frames, projecting only those parts of 
the image that haven’t yet been mapped 
preserves the compute cycles.

The system organizes the map into 
tiles, and it only considers a tile for 
tracking after the tile is completely 
filled with pixels. We used a run-length- 
encoded coverage mask to achieve pixel-
accurate bookkeeping for the mapping. 
This lets us quickly sort out map pixels 
that don’t require updating. As a result, 
every pixel of the map is written only 
once, and usually only around 1,000 
pixels are mapped per frame, which 
guarantees high frame rates.

Panoramic Tracking
We track the camera orientation  
needed for the mapping process with 
an efficient and accurate method using 
the map as it’s being built. We apply 
an active search procedure based on a  
constant-velocity motion model to 
track keypoints from one frame to the 
next. Keypoints in the map are com-
pared against their counterparts in the 
camera image. We subdivide the map 
into 32 × 8 cells, and once we’ve com-
pletely mapped a cell, we extract its 
keypoints using a corner detector.

The tracking approach is generally 
drift-free, but errors in the mapping 
process still accumulate, so the map 
isn’t 100-percent accurate. As a result, 
our method allows loop closing, which 
can minimize errors that accumulate 
over a 360-degree horizontal rotation.

The motion model provides a rough 
estimate for the camera orientation 
in the next camera frame, which the 
system then refines based on normal-
ized cross-correlation (NCC) template 
matching. Based on the estimated ori-
entation, the system projects keypoints 
from the map into the camera im-
age and matches an 8 × 8 pixel-wide 
patch against the projected keypoints  
using NCC.

As long as tracking succeeds, we 
store the camera frames at quarter res-
olution together with their estimated 
pose. When tracking fails, we compare 
the current camera image against all 

stored keyframes and take the pose of 
the best match as the coarse guess to re-
initialize the tracking process. In prac-
tice, tracking quickly restarts within  
45 milliseconds (on an ASUS P565 phone) 
as soon as the user points the camera in 
a previously observed direction.

Annotation Detection  
and Tracking
In our previous work on panoramic 
mapping and tracking,2 we saved the 
created map together with 2D map 
locations of annotations so that an-
other user could reload the map and 
explore the annotations. Because we 
didn’t store the keyframes together 
with the map, we used the PhonySIFT 
(scale-invariant feature transform) ap-
proach to register the loaded map with 
the camera images.4 This required 
the user to be close to where the map 
was originally created—within 20 to 
100 cm, depending on the distance of 
the object in the camera frame. If the 
standpoint deviated too much, Phony-
SIFT wouldn’t always register the map 
or correctly align the annotations with 
the physical objects. This sensitivity to 
the standpoint, together with the ele-
vated memory requirements for storing 
and transmitting a complete map, was 
a major limitation.

With our new method, users don’t 
need to rely on previously created maps 

for tracking, because they can always 
build a new map on the fly. Instead 
of describing the annotations using a  
position in a previously created map, 
we store them in a self-descriptive way, 
suitable for robust redetection in a  
new map.

However, SIFT (or similar descrip-
tors) isn’t suitable for storing key-
points surrounding the annotation in 

the camera image. Although we have 
an efficient SIFT-based solution for 
tracking on mobile phones,4 building 
a support search structure on the en-
tire 2048 × 512-pixel panorama and 
maintaining it every time a cell gets 
updated is currently too slow to run 
in real time on a phone. Furthermore,  
because of the support area’s size, SIFT 
can be problematic when matching 
small objects (those that are less than  
50 × 50 pixels).

So, instead of matching points of 
interest against the camera image, we 
match them against the panoramic 
map. This lets us search in regions that 
have been seen but are no longer in the 
camera view. We can decouple object 
detection from the current camera view 
and run it in the background.

These special restrictions also make 
several of SIFT’s features unnecessary. 
Because the map is always expected to 
be more or less upright, and because 
maps are recreated at similar locations, 
rotation and scale invariance aren’t re-
quired. Instead, we identify label posi-
tions using NCC, which shares only the 
brightness and contrast invariance with 
the SIFT descriptor.

We describe a single annotation us-
ing nine templates in a 3 × 3 configu-
ration (see Figure 3a). Each template is 
16 × 16 pixels, because this configura-
tion provides the best detection rate. 

Also, as opposed to one large template, 
small templates independently located 
in the map can better detect changes 
in scale and rotation. The 3 × 3  
templates don’t need to perfectly re-
produce the arrangement in the origi-
nal map—they just need to roughly 
form the original arrangement with a 
tolerance of five pixels in any direc-
tion (see Figure 3b). This makes the 

With our method, users don’t need to rely on 

previously created maps for tracking, because 

they can always build a new map on the fly.
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annotation detection robust to small, 
nonuniform scaling, such as when an 
object is seen from a slightly different 
angle.

Compared to a complete map, which 
requires approximately one megabyte 
of storage, each annotation requires 
only around two kilobytes of storage. 
Furthermore, we can easily combine 
annotations from different users by 
loading all annotations created in a 
close proximity. Finally, detecting inde-
pendent annotations is generally more 
robust to slight offsets in the user po-
sition than matching a complete map 
from a different location.

Walsh Transforms for  
Faster Template Matching
In a typical scenario, we must match 
dozens of annotations, described by 
image templates, against a map that’s 
2,048 × 512 pixels. Matching numer-
ous templates against an image of 
this size is slow; we use Walsh trans-
forms as a precheck5 because they’re 
fast to execute, and because using 
integral images makes the execution 
speed independent of the templates’ 
size.6 Matching multiple templates 
against the same image scales well, 
because the same Walsh transform 
of the image can be matched against 
an arbitrary number of transformed 
templates.

Integral images are memory inten-
sive.6 Furthermore, they’re difficult to 
create for incomplete images such as 
the panoramic map, which is subject 
to change by successively adding new 
pixels to the image. Updating the map 
would require updating most of the in-
tegral image as well.

To solve this, we subdivide the map 
into tiles. We don’t consider match-
ing a tile against annotation tem-
plates until it’s completely filled. We 
can then build an integral image for 
each tile with enough overlap to the 
right and bottom that we can place 
the templates at every possible pixel 
location inside that tile, performing a 
dense search. For each pixel location, 
we create eight Walsh transforms, 
which are then compared against the 
Walsh transforms of the annotations’ 
templates.

Walsh transforms are fast to com-
pute, but they only give the matching  
error’s lower bound. So, for good 
matches, we also apply NCC. For each 
template, we keep the 10 best match-
ing locations together with their NCC 
score. If at least four of the nine tem-
plates have been matched, we check if 
they form a 3 × 3 arrangement in the 
map (see Figure 3b). Our tests show 
that four out of nine provide a good 
balance between false positives and 
failed detections. Once this check 

succeeds, we mark the annotation as 
detected.

Real-Time Scheduling  
of Annotation Detection
Because the annotation templates are 
matched against the map instead of 
the camera image, we can schedule the 
matching to guarantee a desired frame 
rate. Rather than check each finished 
tile immediately, the system puts them 
into a queue. During each frame, the 
system schedules only as much work 
from the queue as allowed given the 
time budget. Because the operations 
are simple and their timings are predict-
able, we can easily limit the workload 
to remain within the budgeted amount 
of time.

Our system can thus run at constant 
speed on any phone that can perform 
real-time panoramic mapping and 
tracking. The annotation speed de-
pends on the phone’s processing speed. 
We benchmarked the detection on an 
ASUS P565 smartphone. Matching one 
cell against 12 annotations took ap-
proximately 54 ms. Targeting a frame 
rate of 20 Hz (50 ms per frame), the 
system can schedule approximately  
10 ms for each frame detection.

Once the system has searched all 
available map cells for annotations, it 
can use any surplus compute time to 
search at different scales (for increased 
scale invariance) until the new map tiles 
are complete.

Browsing and  
Creating Annotations
We applied our technique in an AR 
browser application. In this appli-
cation, the user initially sees the 
environment in an aerial map (see  
Figure 4a). This 2D map view shows 
the user’s current GPS position and 
highlights nearby annotations. The 
user can employ the map to navigate 
the environment and find annotated 
spots. Once the user walks closer to 
an annotated spot, the application 
downloads the annotation data from 
a server. All annotations in immediate 

Figure 3. The support area of an annotation is described (a) using a 3 ë 3 grid of 
templates encoded using a Walsh transform. (b) The system can match the templates 
from a slightly different camera perspective.

(a) (b)
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proximity—as indicated by their GPS 
tags—are considered, so that inaccu-
racies in the GPS data don’t affect the 
experience.

If a user decides to browse the an-
notations, he or she can switch to a 
first-person view (see Figure 4b) to see 
the current camera image. This auto-
matically triggers the system to start 
the panoramic mapping and tracking.  
As the user rotates the phone to explore 
the environment, the application finds 
the correct position of the surround-
ing annotations as the best match of 
the stored template in the newly cre-
ated panoramic map. Once the sys-
tem successfully matches a template, 
it updates the view by displaying the 
annotation at the correct position. Fur-
thermore, it updates the preview map 
by displaying the annotation’s position 
in the miniaturized version of the pan-
oramic image. This helps the user find 
the annotations from his or her current 
position.

The process for creating new anno
tations is similar to exploring annota-
tions. The user moves to a position 
from which he or she wants to create 
an annotation. Switching to the first-
person view prompts the application 
to start tracking the orientation and 
creates a panoramic image of the cur-
rent environment. The user can now 
create annotations by simply touch-
ing the display at the desired position 
and entering a textual description or 
a voice annotation. A self-contained 
annotation is stored as a 48 × 48-pixel 
subimage centered on the chosen point 
in the panorama image. This subim-
age is later used for template matching. 
Besides the annotation itself, the sub
image is the only information required 
for finding the annotation anchor  
point again.

To share annotations, users can up-
load them to a server-side database that 
uses standard Web software and proto-
cols (Apache/Tomcat, MySQL). For bet-
ter indexing, the system tags each anno-
tation with the current GPS coordinate 
and user information before uploading 

it to the server. We file the submitted 
annotations according to a spatial in-
dex (the GPS coordinate), so the sys-
tem can efficiently respond to que-
ries for information near a particular  
standpoint. Information about the  
user’s identity and optionally provided 
tags let us efficiently filter out many 
annotations.

Results
We used our application prototype for 
a first exploratory field trial to gain 
user feedback. We recruited eight us-
ers (three females and five males), aged 
22 to 34, with no previous experience  
using AR.

We prepared two sets of six annota-
tions for each user in an urban outdoor 
environment, with labeled objects be-
ing 10–200 meters from the user. In 
each set, we created two annotations 

from slightly different positions (5 m 
away). We made the first set the day be-
fore the user trials and the second set 
within 30 minutes of the user tests. So, 
users had to browse one set that didn’t 
match the current environment condi-
tions (there might be different light-
ing or shadows) and a second set that 

matched the current environment con-
ditions but was different for each user. 
During the test, we asked the users to 
identify the labeled objects and label 
some new objects. After the trial, we 
used a semistructured interview to col-
lect user feedback.

Usability
The test showed for the second sets, us-
ers detected 43 out of 48 annotations— 
that is, the success rate was 89.53 per-
cent when the annotations were re-
corded under similar environment con-
ditions. The detection rate was lower for 
annotations created under a different  
environment condition (27 out of 48; 
56.25 percent). There were no false 
positive detections during any of  
the tests.

All users could annotate the given 
objects. Although the users found the 

display to be very small for clearly 
identifying objects, nobody perceived 
this as a real problem. Most of the 
users’ gaze often switched from the 
display to the real environment for 
verification. To cope with the small-
screen constraint, users proposed 
adjusting the size of annotation  

To cope with the small-screen constraint, users 

proposed adjusting the size of annotation points 

and adding a video zoom function.

Figure 4. Our technique in an AR browser application. (a) A 2D map overview 
showing nearby annotations and (b) a first-person view of the annotated panorama.

(a) (b)
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points and adding a video zoom 
function for annotating very small  
objects.

All users agreed that the tracking 
was stable and fast. They experienced 
occasional loss of tracking, which was 
signified by a question mark on the 
screen, but they consistently recovered 
quickly by pointing the camera toward 
a previously visited region. Six out of 
the eight users stated that as they be-
came more familiar with the applica-
tions, they could avoid tracking prob-
lems. This was also noticeable as users  
progressed from a stiff posture to  
a more relaxed one over time. Users  
reported that they mostly broke the 
panorama-based orientation track-
ing by moving too fast or pointing the 
phone to the sky.

To detect the annotations, six out of 
the eight users felt they could improve 
detection by exploring the neighbor-
hood of an annotation. The remain-
ing users said that the label was at 
the correct position as soon as they 
looked toward that position through 
the camera. None of them noticed any 
drifting or jumping in the labels once 
detected.

Finally, the user interface generally 
received positive comments—especially 
the panorama preview function, which 
was employed by all but one user for 
orientation and to identify unexplored 
regions. Five of the eight users also 
took advantage of the preview to locate 
known positions for reinitializing the 
tracking. All of the users agreed that 
the browsing operation was easy and 
that the tracking was robust.

Matching
The results of the preliminary user 
test showed significant differences in 
matching quality. A further analysis 
showed that changing light conditions 
throughout the day caused most of the 
failed matches.

New or missing shadows can largely 
change the appearance of objects.  
Figure 5a shows an example of a failed 
match—in the morning, the wall behind 
the sign is half dark and half bright, 
whereas in the afternoon, the whole 
background has similar brightness 
and is shadowed by a tree. Figure 5b  
shows how object structures (visible as 
self-shadows) vanish once the object it-
self is in the shadow. Figure 5c shows 

artifacts due to parallax caused by a 
different user location. In contrast, the 
house in Figure 5d matched throughout 
the entire day, because the major struc-
tures were always highly visible.

O ur current detection ap-
proach is optimized for 
no false positives and for 
speed. In the future, we 

plan to improve the redetection rate un-
der environmental changes. We’ll look 
into describing annotations as sets of 
data collected from multiple panora-
mas with various lighting conditions. 
It will be interesting to evaluate how 
many panoramic sources are required 
for robust results.

Furthermore, the availability of a 
compass and accelerometer will let 
us position annotations—albeit with 
reduced accuracy—even when our 
vision-based matching fails. Finally, 
sensor-based tracking, together with 
georeferenced annotations, will let us 
improve the template-matching process 
by narrowing down the search area 
within the panorama.
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