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Abstract

Object detection and recognition algorithms are an inte-
gral part of the architecture of many modern image process-
ing systems employing Computer Vision (CV) techniques.
In this paper we describe our work in the area of segmen-
tation and recognition of simple objects in mobile phone
imagery. Given an image of several objects on a structured
background, we show how these objects can be segmented
efficiently and how features can be extracted efficiently for
further object recognition and classification. We prove the
algorithms presented are useful given a set of test cases,
and we show that the algorithms discussed can be used for
instant object segmentation and recognition in a real-world
application on ordinary off-the-shelf smartphones.

1. Introduction

Computer vision (CV) based object detection and recog-
nition has become an integral part of many modern image
processing systems. Especially in the area of CV for indus-
trial applications, many of these systems are based on al-
gorithms that put heavy requirements on the hardware used
and the image capturing conditions. This observation is still
valid, even if the objects to be detected or recognized are of
relatively simple shape, e.g. screws on a conveyor belt, sim-
ple workparts for manufacturing, medical pills, etc.

As a result of the complexity of the task and the need
for significant amounts of computational resources, the use
of CV based detection and recognition systems on mobile
phones has not been widely investigated yet. Nevertheless,
the deployment of such algorithms in mobile scenarios is
still an important task, and the steadily increasing power
of mobile devices opens up a huge field of applications for
these types of algorithms in mobile phone scenarios. There
is a strong motivation to push forward the development of
algorithms suitable for performing these tasks on common
off-the-shelf mobile phones.
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In this work we discuss an approach to efficiently use ob-
ject detection and recognition algorithms together on mo-
bile phones. We present a way for efficient detection and
segmentation of simple objects on a structured background.
Based on the result of segmentation, a set of features is es-
timated which can be used for object classification, either
on site with an on-board database, or by using an online
database on the Internet. This setup allows for the genera-
tion of powerful mobile applications.

The rest of the paper is structured as follows. In Sec-
tion 2 we give a short overview of CV on mobile phones.
In Section 3 we discuss our approach for object segmenta-
tion on a structured background. Section 4 contains a closer
description of the feature extraction and classification ap-
proach, followed by an extensive experimental evaluation
in Section 5. Final remarks and an outlook on future work
is finally given in 6.

2. Related Work

Since mobile phones have only recently become compu-
tationally powerful devices, the use of CV algorithms on
mobile phones does not have a long history.

There is, however, some related work from a number of
different research areas. Also, since mobile phone hardware
is essentially embedded hardware, many algorithms have
been developed in the embedded CV community'.

Face detection for example is a popular research topic.
Some camera phones have this feature nowadays, since
most ordinary cameras have face detection algorithms al-
ready built in hardware. Theocharides et al. [18] propose
the hardware implementation of a face recognition system
based on neural network algorithm originally developed by
Rowley et al. [14]. Rahman et al. presented an algorithm
running in software on an 71 OMAP3430 platform [13]. The
algorithm performs color classification using Gaussian mix-

Note that in the following we will not discuss approaches which of-
fload the CV work to a server, but only refer to related work performing
the CV task on-site right on the mobile device.



ture models and basically detects skin-like areas as faces.
The authors also present a hybrid system combining their
original approach with the very popular Viola-and-Jones al-
gorithm [12]. Ng et al. describes a system for face verifica-
tion on mobile phones based on minimum average correla-
tion filters [10]. A study on iris detection and verification is
conducted by Park et al. [11].

In the field of Augmented Reality (AR) on mobile
phones, Wagner er al. present and evaluate natural fea-
tures for object tracking in real-time on mobile phones
[20]. Klein and Murray recently presented a version of
their PTAM software on an iPhone™for small workspace
self-localization and mapping (SLAM) [&]. For the task of
outdoor AR, Takacs et al. suggest an approach using fea-
tures subdivided into cells called Loxels [17]. An approach
for self-localization in large-scale environments was pre-
sented recently by Arth et al. using point cloud reconstruc-
tions of city areas [1]. A system for guiding visually im-
paired people in traffic situations was presented recently by
Ivanchenko et al. [7]. The system is running on a Nokia N95
mobile phone, detects two-striped crosswalks and guides
the user across streets.

The collectivity of related work mentioned above is not
exhaustive. Other approaches include OCR [9, 22] or mu-
seum guidance [5] for example. However, it is apparent that
CV has started to conquer the field of mobile phone devel-
opment in recent years. Although there are applications for
the most obvious tasks, to the best of our knowledge there is
no basic study in the area of object segmentation and recog-
nition on mobile phones available yet, which is comparable
to our work presented in this paper.

3. Object Segmentation

When using mobile phones as image capturing devices, a
non-fixed acquisition setup is typically the case. Segmenta-
tion methods, thus, should be invariant to changes in object
position, orientation and scale. Naturally, perspective dis-
tortion, varying lighting conditions and blurred input im-
ages pose additional problems. Thus the goal is to develop
an approach which is able to work despite adverse environ-
mental conditions, and deliver results reliably and instantly
on a mobile phone.

For solving the task successfully and instantly on mo-
bile phones, we propose a method for robust segmentation
based on a marker target with a structured background. A
checkerboard background is chosen to allow segmentation
of arbitrarily colored objects in a robust manner (see Figure
1). The marker target itself can be detected efficiently us-
ing readily available marker tracking software, like Studier-
stube or ARToolkitPlus®>. Moreover, the marker itself has a
fixed known size, which enables us to accurately measure

Zhttp://studierstube.icg.tu-graz.ac.at

Figure 1. A frame marker with a generic object. The detected
object contour is marked with green color.

the object dimensions. During the marker detection step,
a homography H is calculated which essentially maps the
marker in the image to the undistorted view of the marker (a
plane-to-plane mapping [6]). This homography H is used
to define a rectangular region of interest (ROI) within the
original image to reduce the amount of data for segmenta-
tion and to facilitate parameter selection. Note that we do
not rectify the image prior to segmentation. The final results
are acquired by local adaptive thresholding and applying a
set of morphological operations on a grayscale input image:

Mseg: (_‘(MThl .SEl)OSEQ).SEla (1)

In Equation 1, Myp, denotes a mask obtained by local
adaptive thresholding with a neighborhood size of (2-wy, )+
1, and S F; and S E5 denote square-shaped and disk-shaped
structuring elements of length (2-wp) + 1 and (2 wp,) + 3,
respectively. The symbol — is used for mathematical inver-
sion and the symbols o and e denote morphological opening
and closing. For local adaptive thresholding we use an effi-
cient method originally proposed by Shafait et al. [15]. To
extract contours, region labeling with integrated boundary
computation is carried out following the linear-time method
proposed by Chang et al. [3].

The choice of the single parameter wy, has turned out to
be noncritical. It may be automatically selected by using
prior knowledge about the image position of the checker-
board area and its amount of squares in each direction, if
necessary. However, the length of the checkerboard pattern
must be chosen with care, since it influences the quality of
segmentation to a large extent. In turn, this choice is de-
pendent on the desired image resolution, because a suffi-
ciently sharp image of the background pattern is required®.

3 As a good tradeoff between different image resolutions, segmentation
accuracy, runtime and usability, setting sq., to 0.6mm is suggested.
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Needless to say that the approach only works under the as-
sumption that objects do not contain a similar pattern to the
chosen background.

We have found the proposed method to be sufficiently in-
variant to perspective distortion and variable lighting. The
algorithm relies on a series of relatively simple process-
ing steps and the amount of input data can be consider-
ably reduced. These properties make the approach partic-
ularly interesting for non-fixed setups using mobile devices
with limited resources. Although the use of a marker with
checkerboard background seems to be prohibitive, there are
multiple justifications for this. For measuring object size,
some reference measurements are necessary which can sim-
ply be provided by knowledge about the real marker di-
mensions. Preceding tests have shown that even popular
and powerful segmentation algorithms like Graph Cuts or
MSER are not able to deliver satisfying segmentation re-
sults for arbitrarily colored objects on, for example, uniform
white background. Moreover, these algorithms can hardly
be used as efficiently as our approach in terms of computa-
tional and memory requirements.

4. Feature Extraction and Classification

For object classification, several features and properties
have to be estimated from the segmented object. Typi-
cal features include object size, color and shape, but also
material related properties like surface glossiness or object
transparency. However, the latter properties are hard to esti-
mate accurately, so the former ones must serve sufficiently
for reliable classification. For calculation of each feature,
efficient solutions are needed to allow instant computation
on mobile devices.

4.1. Object Size

Correct measurements of the object size can only be
acquired if invariance to perspective distortion is ensured.
This can be facilitated by rectification of the object (or its
boundary) according to the previously calculated homogra-
phy H. Still, some assumptions have to be made according
to the specific object category. While it is relatively simple
to calculate the length and width of circular or rectangular
objects, a more sophisticated method is needed for taking
such measurements on more general objects.

First, we determine the direction of maximum variance
within the segmented region. Because the boundary can be
distorted due to errors during segmentation, a subset of all
region points is taken for increased robustness. This sub-
set of points is selected and rectified using the homography
H. Subsequently, the direction of maximum variance vy
= [v1; v2] is determined by analysis of the covariance ma-
trix C [21]. Generally, we define the length of an object
as the extension of its boundary along the major axis of its
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Figure 2. Variance estimation for a generic object (beige color) is
shown on the left, the general definition of length and width is
depicted on the right side.

projection. The extension in the perpendicular direction is
then defined as width. Both measurements are acquired by
recording the minimum and maximum values of the corre-
sponding projection. As mentioned above, the definition of
length and width might vary according to the given object
category (see Figure 2 for an illustration of the measurement
process).

The square size sq,, of the checkerboard pattern, that
limits the accuracy of segmentation, also limits the accu-
racy of the measurements. Under the assumption that the
target entirely fills the viewable area and does not exhibit
other kinds of distortion, this is basically the only factor in-
fluencing the expected error. If we assume that objects may
be correctly segmented under the previous conditions, the
maximum error e,,,, can be estimated to be:

€max = 2. Sqw (2)

Using an ordinary ruler as a measurement tool, it is rather
difficult to measure lengths below 1 mm, and arbitrary ob-
ject shapes further aggravate measurements. For these rea-
sons, the accuracy of the proposed method can be expected
to be better than what can be obtained with a ruler.

The most expensive step in the proposed method for size
estimation is the determination of the direction of the major
axis. By using a suitable spacing for sampling region points,
which in turn is dependent on the current region size, the re-
quired effort can be considerably reduced with little degra-
dation in accuracy. So, the problem can still be computed in
a reasonable amount of time for larger region sizes. Due to
the low amount of memory resources needed and the pos-
sibility to do all calculations using fixed-point arithmetics,
if necessary, the algorithm is ideally suitable for mobile de-
vices.

4.2. Object Color

Methods for object color estimation have to be tolerant
to varying lighting conditions, and the results should corre-
spond to human perception as closely as possible. In our
approach, as a first step we reduce the influence of varying
lighting conditions by applying a method for local white
balance. This method is based on reference measurements
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on the white border of the marker-based target and apply-
ing a subsequent correction to each segmented pixel accord-
ingly. For information on the algorithm used, the interested
reader is referred to the work of Siisstrunk et al. [16].

Depending on the given task, usually a restricted dis-
crete subset of colors is assumed to cover the entire range
of possible object colors. Facilitating this assumption and
for reasons of efficiency, we perform color estimation using
an sRGB lookup table containing the set of possible object
colors. This lookup table is generated by defining a set of
suitable colors manually, and partitioning the color space
with heuristic thresholds accordingly (including a class for
all colors not covered by any manually chosen one). Al-
ternatively, suitable color classes can be generated by cal-
culation from a set of training samples in an offline stage.
For assigning a discrete color to each pixel, we evaluate the
AFE¢crEoo color distance metric in CIE LAB space (for de-
tails refer to the work of Vik [19]). Through assigning each
pixel the most likely color, we get a per-pixel classification
result for a segmented object.

The classification results are aggregated in a histogram,
and the final color estimation result is drawn from subse-
quent analysis of this histogram information. Currently, we
assume objects to be of one single or two dominant colors,
and do not expose color gradients. We sort the histogram A,
in descending order and apply the four measurements:

he(0)

single color (i) coverage: ¢ = 3)

h
(he(0) + ho(1)

two color (7, j) coverage:  ¢;; = Sh 4)
he(0) — he(1

single color (¢) significance: s; = <0})l(0>() ®)
1

two color (i, j) significance: sij=— (6)
S;

An object is assumed to be of a specific color, if one of the
coverages is above a threshold ¢h.. The products

Pi=Ci S (7
Pij = Cij - Sij ®)

are used to decide, whether one or two dominant colors are
present. If p; > p; ;, the result is the corresponding label
¢ of the maximum entry in h.. Otherwise two colors are
assumed and the labels i, j corresponding to the first two
entries in h, are reported.

The proposed method is particularly suited for non-fixed
setups, because it is able to reduce the influence of ambi-
ent lighting and the results correspond to human perception
of color. The approach is rather efficient and thus instantly
computable on mobile phones, since costly color conver-
sions and distance computations are avoided. The size of

the lookup table (s entries per channel) can be chosen
depending on the memory resources available, thus the ap-
proach scales well for different hardware setups. Note that
color classification for more than two colors can easily be
performed using a more evolved histogram analysis.

4.3. Object Shape

The boundary of the segmented region can serve as a ba-
sis for the estimation of object shape. As for determining
object size, shape estimation should be invariant to changes
in translation, rotation, scale, and should also tolerate a cer-
tain degree of perspective distortion. In this respect, we pro-
pose a modified pairwise geometric histogram (PGH), orig-
inally proposed by Evans et al. [4] for this task. The PGH
descriptor features good descriptive power and also allows
for efficient shape matching.

In the PGH descriptor, oriented line segments are investi-
gated. Their relative orientation and perpendicular distance
is analyzed and this information is collected in a 2D his-
togram of size D - A. The set of possible angles and dis-
tances is mapped onto the histogram by accumulation of
occurrences. During the process, each line is used as a
reference line and the angle, as well as the perpendicular
distance, is computed to all the other lines. Every line is
represented as a histogram and the accumulation of all his-
tograms represents the shape of the object (see Figure 3).
The boundary of a segmented object has to be approximated
by a polygonal representation. An efficient implementation
of Critical Point Detection (CPD) proposed by Zhu et al.
[23] can be used therefor.

The PGH is not scale invariant in its original form. How-
ever, limited scale invariance may be achieved by applica-
tion of a suitable and stable similarity metric [2]. For effi-
ciency reasons we assume that the maximum distance for a
PGH can be estimated from the rectified contour. Thus, the
scale is estimated by searching for the maximum distance
Omaq Of the boundary from its centroid, and the maximum
PGH distance is computed as:

dpcH =2 dmax ©)

Shape matching is finally done by using the Euclidean dis-
tance as a similarity metric. Note that for simple convex
objects the PGH can be constructed solely by the points of
the object’s convex hull (no CPD required).

The proposed method for shape estimation can be in-
stantly computed on mobile devices, because the number
of input points needed for PGH computation can be scaled
on demand. For simple convex objects, information already
available about the convex hull can be used to avoid sam-
pling critical boundary points. For concave objects, the use
of the CPD only introduces negligible computation over-
head. Shape matching using the proposed similarity metric
can be further optimized by using suitable data structures.
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Figure 3. Line j is described in the pairwise geometric histogram
with reference to line ¢. The collectivity of all descriptions forms
the final shape descriptor of the object.

Objects
Coins [ Med. Pills | Screws/Nuts | Misc
Number 8 13 13 6
Convex true true false false
e 320x240 1 13 0 0
7] 422x318 8 13 6 5
) 506x380 8 13 10 5
g [ 576xa32 8 13 11 6
= 640x480 8 13 13 6

Table 1. The five different object categories used in our experi-
mental evaluation. The lower part of the table lists the number
of successfully segmented objects for varying image resolutions.
Note that we varied the image resolution linearly in the number of
image pixels.

This makes the algorithm ideally suited to mobile devices
due to its low computational complexity and the moderate
memory requirements.

5. Experiments

In the following, we evaluate the individual parts of our
approach in detail on different object categories. Finally we
demonstrate the application of our approach on the task of
medical pill recognition on a modern phone. All parts of
our algorithm were implemented in C/C++. As our mobile
platform we choose an Asus M530w smartphone* running
Windows Mobile 6. The device features a 2 mega-pixel aut-
ofocus camera, a 416MHz fixed-point CPU and 64 MB of
RAM, as well as 256 MB Flash memory. At the time of
writing, this phones hardware is already a little outdated, so
our approach is expected to run at a higher performance on
future smartphones.

5.1. Object Segmentation

First, we evaluate our segmentation method for varying
image resolutions. Table 1 lists the details about the dif-
ferent sets of object categories used. The categories are
sorted by increasing complexity, from relatively simple ob-

4http://www.asus.com

Figure 4. Sample results from the object segmentation step. The
two images in the last row show erroneous and inaccurate segmen-
tation results.

jects such as coins to arbitrary objects like keys. We gener-
ated ground-truth data by segmenting the object in the test
images manually.

Figure 4 shows some sample segmentation results. Quite
accurate segmentation results are generated in most cases,
but as can be seen from the last two images, in some cases
reflections or bad lighting effects can cause inaccurate or er-
roneous results. The lower part of Table 1 gives an overview
about the number of successfully segmented objects in the
individual categories for varying image resolutions. For a
considerable number of objects, the algorithm is not able
to generate a reasonable segmentation result at lower im-
age resolutions. This could be improved by using different
marker-based targets that match specifically to the current
resolution (modified square length sqy, ).

Figure 5 depicts the segmentation accuracy for varying
image resolutions and the runtime performance on the mo-
bile phone. As expected, the segmentation accuracy in-
creases with increasing image resolution, but saturates at
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averaged over all segmentation runs for all object categories in the
test set.
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Figure 6. Accuracy and runtime performance for varying image
resolutions on the mobile device. In the upper graph, the number
of objects is also plotted, which is delivered to the feature extrac-
tion algorithm from the segmentation step. Accuracy is measured
in terms of difference in object width/height measured, compared
to the ground truth object size. For shape and color, accuracy is
measured in terms of percentage of correct votes for shape and
color categories, compared to the overall number of objects.

a medium resolution level. Also the time spent in the seg-
mentation step on the mobile device increases accordingly,
so the fictional segmentation frame rate drops from about 6
fps for the lowest resolution to about 1.4 fps for the highest
tested resolution.

5.2. Feature Extraction

In the second experiment, we investigate the feature ex-
traction algorithms on our mobile device for varying image
resolutions. Figure 6 shows the accuracy and the runtime
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Figure 7. Four different shape classes with differently colored
boundaries and 13 color classes used in our experiments.

]

performance plotted against varying image resolutions. Ad-
ditionally, in the upper plot the number of objects delivered
by the previous segmentation step is given for each individ-
ual resolution. As can be seen, the accuracy for the indi-
vidual features stays approximately the same for all tested
resolutions. As an important aspect, for low resolutions
the number of objects passing the previous segmentation
stage is significantly lower than for images with high reso-
lution. This result directly implies that the limiting factor in
our approach is basically the segmentation step. Segmen-
tation does not work successfully on most objects for low
image resolutions, although the subsequent feature extrac-
tion would lead to accurate results. Thus, an improvement
to the previous segmentation algorithm is advised. In the
lower plot, it’s easy to see that the runtime for the size and
color estimation algorithm increases linearly with increas-
ing image resolution, while the shape estimation runtime
stays constant. The reason for this is that we chose to lin-
early increase the number of sample pixels used for the es-
timation of the former features. In contrast, the number of
investigated line segments for the shape feature stays almost
constant.

5.3. Application to Medical Pill Recognition

Finally we propose the use of our segmentation and fea-
ture extraction approach in the task of medical pill recog-
nition on mobile phones. Often, the process of drug iden-
tification must be carried out in a mobile scenario, where
for example a person is found unconscious. In the absence
of other tools, only a visual inspection is possible. In this
application scenario the proposed segmentation and feature
estimation methods are used to estimate the corresponding
properties of a pharmaceutical pill and to query a database.

We have generated a reference set of medical pills for
this experimental evaluation, where we have restricted our-
selves to use four different shape classes and 13 color
classes, as illustrated in Figure 7. Single pills were allowed

22



Shapes circular oval oblong special

Instances 41 26 33 8

Colors single multi

Instances 98 10

Sizes [mm] min. length | min width | max length | max width
5.68 5.68 18.07 18.07

Table 2. Reference testset of medical pills for our experimental
evaluation. The testset exhibits reasonable variation in shape and
pill size.

Color black white | blue beige brown
Instances 1 29 6 11 4
Color gray green | ocher | pink/violet | orange
Instances 1 5 6 3 6
Color rose/peach | red yellow

Instances 11 5 10

Table 3. Distribution of single-colored pills over the 13 color
classes used.

to be of one or two dominant colors. Note that collecting
a large amount of different medical pills is a tedious task,
especially when the aim is to collect samples from a larger
number of different color and shape classes. Because pills
with rarely used shapes are especially hard to get, we col-
lected them in a large class for special shapes. In Table 2
details about the testset are given, Table 3 describes the dis-
tribution over the 13 color classes for single-colored pills.

For the experiment we fixed the image resolution to
640x480 pixels. All samples were captured under two dif-
ferent lighting conditions, fluorescent light and daylight.
From initial evaluation of this data, optimal parameters for
shape estimation (D = 12, A = 12) and color estimation
(s = 36) were determined. In this step, the best recogni-
tion rate for shape is 89% and that for color is 84%. In size
estimation an average deviation of 0.43 mm and a maximum
deviation of 1.37 mm is achieved.

We retrieved pill information from the reference set de-
scribed in Tables 2 and 3 by querying, either using single
features or simple AND-combinations of several features.
Querying for object size, results in a range of £0.7 mm
from the measured value were allowed. From the final list
of possible candidates, we counted a reported pill as suc-
cessfully recognized if it is among the first IV candidates.

Retrieval performance for single features gives informa-
tion about the descriptive power of a feature (see Figure 8).
Size is determined to be most powerful feature, followed by
color and shape. Size and color give better results with less
candidates than the feature shape. Performance with the
feature size reaches a recognition rate of 84.26 % (N = 7
candidates). This rate can be significantly improved, if the
results are initially ordered by the minimum sum of devia-
tions in length and width (indicated as size-sorted result in
Table 4).
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Figure 8. Pill retrieval on the reference set.

[ Size | Size (sorted) | Shape [ Color | RRmaz | # ]
X 84.26 % 7
X 100.00 % 8
X 48.15 % 10
X 65.74 % 10
X X 76.39 % 7
X X 66.70 % 3
X X X 59.72 % 3
X X 90.28 % 6
X X 81.48 % 3
X X X 72.69 % 3

Table 4. Pill retrieval on the reference set with single features and
feature combinations (Ny,qz = 10). RRmaz denotes the highest
recognition rate achieved.

Peak performance drops when using feature combina-
tions. The reason can be seen in mutual reactions of errors
from the individual feature estimators and our use of a strict
AND combination. Although this way of combining fea-
tures seems to be a disadvantageous choice at first, this is
what online available databases are most likely to offer (see
for example the Identa’ online database). Without doubt,
using a probabilistic combination of features accounting for
estimation uncertainty of individual features, the recogni-
tion performance could be increased significantly. When
using size-sorted results, considerable gains in recogni-
tion rate are possible. With subsequent querying for color
matches, a recognition rate of 90.28 % (N = 6 candidates)
is achieved. The peak performance for several feature com-
binations is listed in Table 4.

6. Conclusion

In this paper we presented our approach to instant object
segmentation and recognition of simple objects on modern

Shttp://www.gelbe-liste.de/pharmindex/identa
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mobile phones. After describing the basic principles of our
algorithms in detail, the applicability and usefulness of our
approach was demonstrated on the real-world application of
medical pill recognition. The results of our extensive evalu-
ation prove the performance and accuracy of our approach,
and its suitability for several tasks. This was demonstrated
on the application of pill recognition on mobile phones. The
slim design of our algorithms was shown to be ideally suited
to modern mobile phone architectures despite existing hard-
ware limitations.

Although a lot of effort is put into generating an accurate
and fast object segmentation, under several circumstances
the results were still not satisfying. Difficult lighting condi-
tions can generate artifacts or highlights on objects, which
cause segmentation errors or, in the worst case, algorithm
failure. Thus, an important part of future work must be
dedicated to further improve the quality of the segmenta-
tion result. Another interesting topic of upcoming research
will be the estimation of additional object features. For
known categories, additional properties can probably be es-
timated, e.g. object transparency or surface glossiness, to
further draw conclusions on the object material from. Need-
less to mention that further optimization of our algorithms
to reach real-time performance on modern mobile phones is
left as an open issue.
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