
Real-time Panoramic Mapping and Tracking on Mobile Phones

Daniel Wagner, Alessandro Mulloni, Tobias Langlotz, Dieter Schmalstieg

Graz University of Technology

Figure 1. Outdoor and indoor panoramas created on the fly using real-time mapping and tracking.

ABSTRACT

We present a novel method for the real-time creation and tracking
of panoramic maps on mobile phones. The maps generated with
this technique are visually appealing, very accurate and allow
drift-free rotation tracking. This method runs on mobile phones at
30Hz and has applications in the creation of panoramic images for
offline browsing, for visual enhancements through environment
mapping and for outdoor Augmented Reality on mobile phones.

KEYWORDS: Panorama creation, Tracking, Mobile phone

INDEX TERMS: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems-Artificial, augmented, and
virtual realities; I.4.1 [Image Processing and Computer Vision]:
Scene Analysis-Tracking

1 INTRODUCTION

Tracking for outdoor Augmented Reality (AR) applications has
very demanding requirements: It must deliver an accurate
registration with respect to a given coordinate system, be robust
and run in real time. Despite recent improvements, outdoor
tracking still remains a difficult problem. Recently, mobile phones
have become increasingly attractive for AR. With the built-in
camera as the primary sensor, phones facilitate intuitive point-
and-shoot interaction with the environment.

Most outdoor tracking systems rely on inertial sensors to

improve robustness. Even though some modern smart phones
integrate a linear accelerometer, it is of little help in typical AR
scenarios since it only delivers translational motion. Instead, most
successful approaches rely on gyroscope sensors that measure
rotations, which are primary sources for tracking instabilities.
However, no mobile phone today possesses such sensors.

It is likely that mobile phones will soon be equipped with
gyroscopic sensors too. Schall et. al have shown [11] that
carefully integrating a panoramic tracker into a system with GPS,
compass, linear accelerometer and gyro can further improve the
system’s robustness.

In this paper we describe a natural-feature mapping and
tracking method that is efficient, robust and allows for 3-degree-
of-freedom tracking in outdoor scenarios on mobile phones.
Assuming pure rotational movements, the method creates a
panoramic map from the live camera stream (see Figure 1). The
conceptual approach is similar to simultaneous localization and
mapping (SLAM) [4][6]: For each video frame, the camera is first
registered based on features in the map; In a second step, the map
is then extended with new features from viewing directions that
have not been observed before. Yet, while traditional SLAM
systems create a sparse map of the environment and refine
features over multiple observations (typically using triangulation),
our approach creates a dense map of features, which are mapped
during their first observation and not refined again.

The first camera image is completely projected onto the
environment map. When possible, the orientation and position of
the first frame in the map can be derived from the phone’s
accelerometer and compass. For all successive frames, the camera
pose is updated – based on the existing data in the map – and the
map is extended by only projecting areas that have not yet been

{wagner|mulloni|langlotz|schmalstieg} @ icg.tugraz.at
Institute for Computer Graphics and Vision; Inffeldg. 16, 8010 Graz, Austria

stored. Since a large number of features and a sub-pixel-accurate
projection model are used for camera tracking, we show that this
is a valid approach for accurate, robust and drift-free tracking.

Figure 2 shows the mapping and tracking pipeline. Tracking
requires a map for estimating the orientation, whereas mapping
requires an orientation for updating the map. A known starting
orientation with a sufficient number of natural features in view
must be used to initialize the map.

Figure 2. High-level overview of the mapping and tracking pipeline.
For each block, we embedded the corresponding section numbers.

The method assumes a pure rotational motion. This assumption is
not always viable for a mobile phone. However, in many outdoor
scenarios the distance between the camera and the objects in the
environment is large compared to the involuntary translational
motion that occurs when rotating a handheld device. As shown by
DiVerdi et. al [5], errors are therefore negligible.

The contribution of this paper is a new method that creates and
tracks panoramic maps in real time (30Hz) on a mobile phone.
Similar results have previously only been available on hardware at
least one order of magnitude more powerful. We present a careful
analysis of the individual steps of panorama creation and tracking,
and how higher efficiency can be obtained through various
algorithmic means and trade-offs.

We describe two proof-of-concept applications that show the
practicability of our approach: A tool that guides a user in creating
gapless panoramic pictures and an application to create and
browse annotated panoramic images.

2 RELATED WORK

Panorama creation is a widely discussed topic in computer vision.
Most of the existing approaches create panoramic images in an
offline process [3][12][13]. These methods typically use SIFT [8]
or similar descriptors to match image features. Szeliski [14] gives
a good overview of the many existing techniques for image
alignment and stitching.

In contrast to these offline approaches, Adams et al. [1] align
camera images in real time on mobile phones in their View Finder
Alignment work. Consecutive camera images are roughly aligned
by calculating a histogram of gradients for four 2D directions. The
alignment is then refined using feature points. Successively,
tracking of the optical flow is used to create a panoramic image.
While this approach works in real time on current mobile phones,
it neither permits the creation of a closed 360° panorama, nor does
it track the 3D motion of the phone. In [16], the View Finder
Alignment technology is used to trigger the automatic capturing
of high-resolution images that can be used to generate a high-
quality panoramic image. The creation of this panoramic image
does not run in real-time and requires offline processing.

Baudisch et al. [2] created a real-time preview for panoramic
imaging based on the work presented in [12]. Their application
stitches low quality panoramas on the fly and thereby provides an
estimate of the maximum rectangular cropping area that can be
created from the set of images taken so far. The visualization of

the already captured panorama is similar to the visualization used
by our system.

Envisor [5] tracks the orientation of a camera in real time and
an environment map is created on the fly. This is achieved by
calculating the optical flow between successive frames. Similar to
[1], the optical flow measurements are refined with
computationally expensive landmark tracking to avoid the drift
introduced by frame-to-frame feature matching. While the results
of this approach are similar to ours, the system cannot run on
phones due to the high computational cost of the method, which
requires extensive GPU processing to run in real time.

Montiel and Davison created a visual compass [9] based on
single-camera SLAM [4]. They used an extended-Kalman-filter
formulation of the tracking problem to compute orientation from
dynamically acquired landmark features. Since their approach
creates a sparse 3D reconstruction of the environment, the system
is not restricted to rotations only. Klein and Murray also
introduced another successful approach of SLAM-based tracking
for augmented reality [6]. Recently Klein and Murray showed a
SLAM system running on a mobile phone [7]. However, due to
low processing power of mobile phones Klein’s SLAM system is
limited to a few hundred keypoints whereas our method can
handle 1000s of keypoints and is several times faster on a similar
device.

The related work discussed above either does not run in real
time on current phones due to high computational costs, or it
solves only one task between panorama creation and panorama
tracking. The approach described in this paper combines
panoramic mapping and orientation tracking, both working on the
same data set. It can therefore be used for creating panoramic
content as well as for browsing and augmenting previously
created panoramic images.

3 PANORAMIC MAPPING

Several types of maps can be used in order to create a map of the
environment. Cube maps are common in computer graphics, but
they present discontinuities at the cube’s edges. Spherical maps
solve the problem of discontinuities at the price of strong
nonlinearity: Up and down directions are mapped to all the top
and bottom pixel rows of the map. We chose a cylindrical map
(see SEQ) because it can be trivially unwrapped to a single texture
with a single discontinuity on the left and right borders. While the
horizontal axis does not suffer from nonlinearities, the map
becomes more compressed at the top and the bottom. Since the
cylinder is not closed vertically, there is a limit to the pitch angles
that can be mapped. This limit is acceptable for practical use,
since a map of the sky and ground is usually not required.

We fix the cylinder’s radius to 1 and its height to π/2. Since the
circumference of the cylinder is 2π, the map that is created by
unwrapping the cylinder is exactly 4 times as wide as high (π/2
high and 2π wide). A power of two for the aspect ratio simplifies
using the map for texturing. The map covers 360° horizontally
while the range covered vertically is given by the arctangent of
the cylinder’s half-height (π/4), therefore [-38.15°, 38.15°].

3.1 Organization of the map

Most mobile phones today can take multi-megapixel photos but
the live video feed is usually restricted to 320x240 pixels. A
typical mobile phone camera has roughly a 60° horizontal field of
view. A complete 360° horizontal panorama would be about 320
pixels / 60° · 360° = 1920 pixels wide. We chose a map resolution
of 2048x512 pixels, which is the smallest power of two bigger
than the camera’s resolution and therefore transfers image data
from the camera into map space without any loss in image quality.

To increase tracking robustness lower-resolution maps (1024x256
and 512x128) are also created (see sections 4.2 and 4.3).

The map is split into a regular grid of 32x8 cells that simplify
working with the unfinished map (see Figure 3). Every cell can
have two states: either unfinished (empty or partially filled with
mapped pixels) or finished (completely filled). When a cell is
finished, it is down-sampled from the full resolution to the lower
levels and keypoints are extracted for tracking purposes.

Figure 3. Grid of cells composing the map, after the first frame has
been projected. The green dots mark keypoints used for tracking.

3.2 Calibrating the camera

Since the map is filled by projecting pixel data from the camera
image onto the map, full knowledge on the intrinsic and extrinsic
camera parameters is required for an accurate mapping process.

Assuming that the mobile camera does not change zoom or
focus, the intrinsic parameters can be estimated once in an off-line
step and stored for later use. The principle point and the focal
lengths in the x and y directions are estimated. Modern mobile
phones internally correct most of the radial distortion introduced
by the camera’s lens. However, there is still distortion left, so
additional correction is required. To measure these parameters,
pictures of a calibration pattern are taken, which are then
evaluated with the Caltech camera calibration toolbox1.

We additionally correct for artifacts due to vignetting, which
consists of a reduction in pixel intensities at the image periphery.
While there are several causes for vignetting, digital cameras
mostly suffer from “pixel vignetting” which is caused by the
sensors depending on the angle of the incoming light: Sensor
elements farther from the image centre receive light at a steeper
angle and therefore sense darker pixel intensities. This effect can
be modeled with a non-linear radial falloff. The vignette strength
is estimated by taking a picture of a diffusely-lit white board. The
average intensities close to all the four corners are measured and
the difference from the image centre is noted.

3.3 Projecting from camera into map space

Our method assumes pure rotational motion. Although this is
unlikely for a handheld camera, a trained user can effectively
minimize parallax errors. DiVerdi [5] provides a detailed analysis
on the effect of violating the pure-rotation requirement with
respect to the distance of the objects in the mapped environment.
We conveniently set the camera position to the origin (0,0,0) at
the centre of our mapping cylinder (see Figure 4).

A fixed camera position leaves 3 rotational degrees of freedom
to estimate for correctly projecting camera images onto the
mapping cylinder. Depending on the availability of an
accelerometer, the system is either initialized from the measured
roll and pitch angles, or we assume a roughly horizontal
orientation. In section 5 we show the effects of starting with a
wrong orientation and how to fix them during the mapping
process by warping the map.

R = π' (δ' (K-1· P)) (1)

M = μ (ι (O-1 · R, C)) (2)

1 http://www.vision.caltech.edu/bouguetj/calib_doc/

Given a known (or assumed) camera orientation O, we use
forward mapping to estimate the area of the cylinder’s surface that
is covered by the current camera image. Given a pixel’s device
coordinate P, we first transform it into an ideal coordinate by
multiplying it with the inverse of the camera matrix K and
removing radial distortion using a function δ' in (1). This 2D
coordinate is then unprojected into a 3D ray R using a function π'
by adding a z-coordinate of 1. The ray is then rotated from map
space into object space using the inverse of the camera rotation
matrix O-1. Next, the ray is intersected with the cylinder using a
function ι to get the pixel’s 3D position on the mapping cylinder.
Finally, the 3D position is converted into a 2D map position M
using a function μ in (2).

Figure 4. Projection of the camera image onto the cylindrical map.

We define a rectangle for the camera frame in camera space,
setting its corners in pixel coordinates of the camera image. The
rectangle is then forward-mapped onto the map and defines the
mask for those pixels that are covered by the current video frame.
Due to radial distortion and the nonlinearity of the mapping, each
rectangle side is sub-divided three times to get a smooth curve in
the target space (see blue image frame in Figure 3).

3.4 Filling the map with pixels

The forward-mapped camera frame gives an almost pixel-accurate
mask for those pixels that the current video image can contribute.
However, using forward mapping to fill the map with pixels can
cause holes or overdrawing of pixels.

To fill the map with pixels we therefore use backward mapping.
Starting with a 3D map position M' on the cylinder, we calculate a
ray from M' to the camera centre using function μ', and then rotate
the ray using the orientation O. This results in R' in (3), which is
then projected onto the camera plane using function π. Radial
distortion is applied using function δ and the resulting ideal
coordinate is converted into a device coordinate P' via the camera
matrix K in (4). The resulting coordinate generally lies somewhere
between pixels, so we interpolate linearly to achieve a sub-pixel-
accurate color. Finally, we compensate for vignetting and store
the pixel color in the map.

R' = O * μ' (M') (3)

P' = K * δ (π (R')) (4)

3.5 Speeding up the mapping process

One 320x240 camera image will always require back projecting
roughly 75,000 pixels. Such a workload is too high to run in real
time (at least 15 frames per second) on current mobile phones. To
speed the process up, each map pixel is set only once as soon as it
can be back projected for the first time. During the first camera
frame a large number of pixels have to be transferred (as in Figure
3). For all subsequent frames, only a few pixels are mapped: with
slow camera movements only a few rows or columns of new
pixels become visible per frame. This drastically reduces the

required computational power for keeping the map up to date. For
instance, horizontally rotating a camera (with a resolution of
320x240 pixels and a field of view of 60°) by 90° in 2 seconds
results in only about 16 pixel columns – or 3840 pixels – to be
mapped per frame. This is only 5% of a whole camera image.

Figure 5. Masks created during a rotation of the camera to the right.
Blue: Mask M of the map so far; Black border: Mask T(P) for the
current camera pose; Red: Intersection of M and T(P); Yellow:

Mask N of operation (5) representing the pixels that still need to be
mapped. N is exaggerated here for better visibility.

This approach requires quickly filtering out those pixels that fall
inside the projected camera frame and that have already been
mapped. While a simple mask with one entry per pixel would be
sufficient, the process would be too slow and too memory
intensive. We use a run-length encoded (RLE) mask to store zero
or more spans per row that define which pixels of the row are
mapped and which are not. A span is a compact representation
that only stores its left and right coordinates. Spans are highly
efficient for Boolean operations, which can be quickly executed
by simply comparing the left and right coordinates of two spans.

A mask M (see Figure 5) is defined for the map at its highest
resolution. Initially this mask is empty. For every frame, the
projected camera frame is rasterized into spans creating a
temporary mask T(P) that describes which pixels can be mapped
under the current pose P. The camera mask T(P) and the map
mask M are then combined using a row-wise Boolean operation.
The resulting mask N in (5) contains locations for only those pixel
that are set in the camera mask T(P) but not in the map mask M.
Hence, N describes those pixels in the map that will be filled in
the current frame. The map mask M is updated to include new
pixels using the operation (6).

N = T(P) AND NOT M (5)

M = T(P) OR M (6)

Fi = U(Ci) AND M (7)

The pixels covered by the mask N are back projected and the
resulting color values are written into the map. As introduced in
section 3.1, the map is subdivided into cells. While filling the
map, a book of the cells that are updated during the current frame
is kept. Once the mapping process for a frame is finished, we
check whether each updated cell has been completely filled: For
each updated cell Ci a mask U(Ci) is defined containing only the
area of such a cell. This mask is then intersected with M using the
operation (7). If the combined mask Fi in (7) covers the complete
area of Ci, then this cell has been completely filled and can be
marked as finished. A finished cell is downsampled to the smaller
map levels and keypoints are extracted for tracking, as described
in the next section.

4 PANORAMIC TRACKING

The mapping process assumes an accurate estimate of the camera
orientation. We now present an efficient method for tracking the
camera orientation from the map that is being built.

4.1 Keypoint extraction

The tracker applies the FAST corner detector [10] on finished
cells to extract keypoints. For every keypoint, FAST gives a score
of how strong the corner appears. The thresholds are adjusted for
this score according to the resolution of the map the cell belongs
to (as detailed in Table 1). E.g., for the cells of the highest-
resolution map (64x64 pixels in size) we use a FAST threshold of
12. For the cells of the smaller levels a lower threshold is used, to
consider the smoothing due to downsampling. These threshold
values are chosen deliberately low to ensure that always more
than enough keypoints are extracted. The keypoints are then
sorted by corner strength and only the strongest keypoints are
kept. E.g., for 64x64-pixel cells 40 keypoints are kept.

cell size in pixels FAST threshold max keypoints per cell
64x64 12 40
32x32 9 20
16x16 9 15

Table 1. Cell configurations

We organize keypoints on a cell-level because it is more efficient
to extract keypoints in a single run once an area of a certain size is
finished. It also avoids problems with looking for keypoints close
to areas that have not yet been finished: Since each cell is
considered as a separate image, the corner detector itself takes
care to respect the cell’s border. Finally, organizing keypoints by
cells provides an efficient method to determine which keypoints
to match during tracking.

4.2 Keypoint tracking

We apply an active-search procedure based on a motion model in
order to track keypoints from one frame to the following one.
Keypoints in the camera image are always compared against their
counterpart in the map. Hence, unlike other trackers, this tracking
approach is generally drift-free. Still, errors in the mapping
process accumulate so that the map is not 100% accurate: a
rotation around a certain angle is not mapped exactly with the
angle in the database (see section 8.1). However, once the map is
built, tracking is as accurate as the map that has been created.

To estimate the current camera orientation the tracker requires a
rough guess. In the first frame this guess corresponds to the
orientation used for initializing the system. For all successive
frames, we use a motion model with constant velocity to guess an
orientation. We calculate velocity as the difference in orientation
between the current and the previous frame.

We then refine the initial guess: Based on the guessed
orientation, the camera frame is forward projected onto the map to
find those cells that overlap with the visible part of the map. The
keypoints of these cells are then back projected onto the camera
image. All keypoints that are back projected outside the camera
image are filtered out. We create 8x8-pixel patches for each
keypoint by affinely warping the map area around the keypoint
using the current orientation matrix. The warped patches represent
the support areas of the corresponding keypoints, as they should
appear in the current camera image. The tracker uses normalized
cross correlation (over a search area) at the expected keypoint
locations in the camera image. Since template matching is slow, it
is important to limit the size of the search area. A multi-scale
approach is applied to track keypoints over long distances while
keeping the search area small: The first search is at the lowest
resolution of the map (512x128 pixels) against a camera image
that has been down-sampled to quarter size (80x60 pixels) using a
search radius of 5 pixels. The coordinate with the best matching
score is then refined to sub-pixel accuracy by fitting a 2D
quadratic term to the matching scores of the 3x3 neighborhood.

Since all three degrees of freedom of the camera are respected
while warping the patches, the template matching works for
arbitrary camera orientations.

4.3 Orientation update

The correspondences between 3D cylinder coordinates and 2D
camera coordinates are used in a non-linear refinement process
with the initial orientation guess as a starting point. The
refinement uses a Gauss-Newton iteration: The same optimization
takes place as by a 6-degree-of-freedom camera pose, but position
terms are ignored and the Jacobians are only calculated for the
three rotation parameters. Reprojection errors and inaccuracies are
dealt with effectively using an M-estimator. The final 3x3 system
is then solved using Cholesky decomposition.

Starting at a low resolution with only a few keypoints and a
search radius of 5 pixels allows correcting gross orientation errors
efficiently but does not deliver a very accurate orientation. The
orientation is therefore refined again by matching the keypoints
from the medium-resolution map (1024x512 pixels) against a
half-resolution camera image (160x120 pixels). Since the
orientation is now much more accurate than the original guess, the
search area is restricted to a radius of 2 pixels only. Finally,
another refinement step is executed at the full resolution map
against the full-resolution camera image.

Since each successive refinement is based on larger cells it also
uses more keypoints than the previous refinement. In the last step
several hundred keypoints are typically available for estimating a
highly accurate orientation.

4.4 Relocalization

The tracker can only follow the keypoints from one frame to the
next. As any pure tracker it is therefore not able to reinitialize
itself from an arbitrary orientation. However, at some point every
tracker can fail and relocalization is fundamental for any practical
system. A relocalization mechanism is therefore added in case the
tracker does not find enough keypoints, or when the reprojection
error after refinement is too large to trust the orientation.

The relocalizer works by storing low-resolution keyframes with
their respective camera orientation in the background, as the map
is being created. In case the tracking is lost, the current camera
image is compared to those keyframes using normalized cross
correlation. To make the matching more robust both the
keyframes (once, when we store them) and the camera image are
blurred. If a matching keyframe is found, an orientation
refinement is started using the keyframe's orientation as a starting
point.

In order to limit the memory overhead of storing keyframes, the
camera image is downsampled to quarter resolution (80x60
pixels). Additionally, the relocalizer keeps track of orientations
already covered by a keyframe: The orientation is converted into a
yaw/pitch/roll representation and the three components are
quantized into 12 bins for yaw (±180°), 4 bins for pitch (±30°)
and 6 bins for roll (±90°). Storing only ±90° for roll is a
contribution to the limited memory usage but results in not being
able to recover an upside-down orientation. For each bin a unique
keyframe is stored, which is only overwritten if the stored
keyframe is older than 20 seconds. In the described configuration,
the relocalizer requires less than 1.5MByte of memory for a full
set of keyframes.

5 FIXING INCORRECT INITIAL ORIENTATIONS

The mapping process relies on an initial rough guess of the
camera orientation. Starting with a wrong initial guess for pitch or
roll violates the limits of the cylindrical environment model.
Figure 6 (right) shows the effect of a pure rotation around the yaw

axis after a wrong initial guess for the pitch angle: The mapping
module assumed that the initial pitch was zero, but in fact the
camera was looking about 20° upwards. Rotating the camera
around the vertical axis does not result in a horizontal movement
in map space as expected, because the vertical axis is not where
the mapping module believes it to be. The effect is that the camera
quickly moves out of the map, which strongly limits the
horizontal angle that can be mapped. Similar effects occur when
the roll angle is wrongly initialized.

Fortunately, a map that was built from an incorrect starting
orientation can be fixed later on, by reprojecting it onto another
cylinder's map. Carrying out this reprojection on a low-resolution
map of 256x64 pixels allows interactive frame rates. A user can
therefore warp the preview map, e.g. by dragging the map's center
on the screen into its correct position.

Internally, the remapper rotates a second cylinder around the x-
or y-axis (see Figure 6, left), accordingly to the user’s input, and
reprojects all pixels of the low-resolution map from the reference
cylinder onto the rotated cylinder. The result can be displayed on
the screen in real time. When the user is satisfied with the
correction the remapper reprojects the map at its full resolution. It
creates new down-sampled levels and extracts new keypoints for
all levels, so that the tracker can work with the warped map. For
quality reasons a Lanczos filter is used for resampling the map.

Figure 6. Left: Mapping from the reference cylinder (red) onto
another cylinder (gray), tilted 20°. Top-right: Effect of a pure

horizontal camera movement after a wrongly initialized pitch angle.
Bottom-right: The same map fixed using reprojection.

Reprojection will always create holes in the map in those parts
that were previously outside the map and have then been moved
in. The user can continue to map the environment to fill these
holes.

6 INITIALIZATION FROM AN EXISTING MAP

The relocalization method described in section 4.4 is fast, but it
only works for orientations where camera image samples exist.
Hence, this method is suitable for relocalization, but not for
initializing from a previously existing map, because storing all
camera image samples would require too much memory. In this
section, the method for initializing the camera’s orientation is
outlined, which relies only on a (partially) finished map that was
previously created. This method is suitable for initializing the
tracker after loading a map from the device’s storage or from the
Internet.

Starting with a map loaded from a file, keypoints are extracted
from the map and PhonySIFT descriptors [15] are created, which
allow robust, rotation invariant matching (see Figure 7).
Keypoints are also extracted and descriptors are created for the
live camera image. Online creation of an efficient search structure
such as the spill forest suggested in [15] is too slow to be executed
on a mobile phone. Hence, brute force matching is relied upon.

Given the descriptor sets from the map and the current camera
image, a RANSAC-like approach is applied to find the
orientation. To begin with, all camera features are matched

against all map features, obtaining a set of correspondences. Next,
a histogram of correspondence occurrences is created in the
horizontal direction, and the direction with the largest number of
correspondences in a window of 78,75° (7 cells) is selected.
Following this, only correspondences that fall into this window
are considered.

Figure 7. Initialization from an existing map; Left: Camera image to
localize. Right: 3DOF localization of the camera image.

Since localization has three degrees of freedom, two matching
features are required as a hypothesis. Pairs of two
correspondences are built and an orientation is calculated, which
is then validated against the other correspondences. If a large
number of correspondences support this hypothesis it is checked
again and the hypothesis is refined using the method described in
section 4.3. If no orientation can be found in any possible pairs of
correspondences, the whole process is repeated with the next live
camera image.

The rotation invariance of PhonySIFT enables this method to
estimate an orientation under arbitrary device rotation as long as
the currently visible environment is available in the map. Usually
an orientation is found within a few frames.

7 LOOP CLOSING

Due to precision errors that accumulate as the map is extended
away from its starting orientation, a full 360° sweep will not be
mapped exactly at the map’s edges. There will be a noticeable
discontinuity at the location in the map where the left-most and
right-most mapped pixels touch. Loop closing is the process of
accurately estimating the error in the map and transforming the
map to adjust for such error.

7.1 Estimating the loop error

In order to estimate the loop error, the tracker must be able to
recognize that is has returned to a previously visited direction.
There are two possible approaches to this task: The features in the
current camera image can be compared to features in the map, or
an overlapping map can be created and features can be matched
within the overlapping areas.

The first approach has the advantage that the current mapping
method is sufficient, but creates the problem that the tracking
could directly jump to the previously visited direction without
closing the loop. More importantly, this method can only use the
current camera features for loop closing.

The second approach was therefore decided upon. Since the
map can only store one data item per pixel, an extended map that
can deal with overlapping areas is required. The map is therefore
enlarged to cover a horizontal angle larger than 360°. Our
accuracy measurements suggest that an additional angle of 45° (4
columns of cells) is sufficient for robust loop detection. Hence, if
loop closing is enabled the map covers a range of 405° (2304
pixels wide) horizontally.

Again our cell structure is applied for jump-starting the loop
closing procedure: The loop closer starts making hypotheses as
soon as only one column of cells is unfinished in the map,

meaning that 393.75° have been mapped horizontally. Since the
completion of cells is already monitored during the regular
mapping process, this task does not create any overhead.

After the need for loop closing has been detected, keypoints are
extracted from both overlapping regions (see Figure 8) and a
RANSAC-like method for matching is used: For each keypoint on
the left region, the best match is found in the right region using
normalized cross correlation (NCC). Since loop closing is treated
as a two-dimensional problem, a single match is sufficient for
making a hypothesis. When a good match is found, it is checked
to see how many other keypoint pairs supported this hypothesis.
After all hypotheses have been checked, the one with the largest
inlier set is used for calculating the mapping error: The offsets
between all inliers are weighted by their NCC confidence to
estimate a single, highly accurate mapping error.

Figure 8. Loop closing; Top: Part of a 405° loop with overlapping
areas. Bottom: Part of a same panorama closed to 360°.

7.2 Fixing the loop error

The accumulative tracking and mapping error, which finally
results in the loop gap, arises from many sources, including
imperfect orientation updates, camera calibration errors, violating
the rotation-only restriction, etc. This error cannot be modeled and
hence an optimal transformation for removing this error cannot be
implemented using our system.

A simple transformation is therefore chosen that aligns the
matched keypoints in the overlapping areas in such a way that the
offset between keypoint pairs becomes minimal: In order to move
the keypoints horizontally to their ideal position, the map is scaled
in a horizontal direction. For vertical alignment a shear
transformation is applied using as a pivot the cell column farthest
away from the gap. Both operations use Lanczos filtered sampling
to minimize resampling artifacts. In the tests this method
accurately closed the loops without noticeable artifacts (Figure 8).

After the scale-shear operation, the map is cropped to 2048
pixel width (360°) and shifted horizontally, such that the original
map starting position is at the map center again. Finally, new
keypoints are extracted and tracking is initialized as described in
section 6.

8 RESULTS

We have created 30 panoramas at different indoor and outdoor
locations. We specifically included difficult scenarios resulting in
that 5 of the 30 panoramas could not be finished to a full 360°
panorama since tracking broke in the process. Figure 9 shows
examples of typical problems encountered in practice. The 25
complete panoramas were used for accuracy measurements.

8.1 Mapping accuracy

The visual tracker works at a camera resolution of 320x240
pixels. The map is created at a resolution of 2048x512 pixels. For

a typical field of view of 60°, the camera resolution is therefore
close to the map's resolution: 320 pixels / 60° · 360° = 1920
pixels. The theoretical angular resolution of the map is therefore
360° / 2048 pixels = 0.176 degrees per pixel. In practice, mapping
errors accumulate, especially along the rotation around the
vertical axis (yaw).

We evaluated the accumulated mapping error on the 25 full
360° panoramas and measured the offset in the overlapping
regions using the method of section 7.1. We noticed that most
panoramas had a horizontal error of +4°, which is obviously
related to a systematic imprecision of our approach. However, by
adapting the focal length in our calibration data we could shift the
average error close to zero as can be seen in Figure 10. With the
updated calibration 16 out of 25 panoramas have an error of ~1°.

We also analyzed pose jitter from live camera feed under zero
motion, resulting in a measured jitter of ~0.05° for head, pitch and
roll respectively.

0

1

2

3

4

5

‐6 ‐4 ‐2 0 2 4 6ve
rt
ic
al
 m

ap
p
in
g
e
rr
o
r

in
 d
e
gr
e
e
s

horizonzal mapping error in degrees

Figure 10. Mapping errors of 25 panoramas.

8.2 Speed on mobile phone and PC

The panoramic tracker was benchmarked on a 2.5GHz quad-core
notebook (only a single core was used) and an Asus P565
smartphone with an XScale ARM CPU running at 800MHz. Since
the mobile phone’s CPU does not have hardware floating point
support, a version with fixed-point math was created whereas the
PC version runs using floating point.

 PC Phone
Down sample <0.1ms 0.5ms
Track low-res 0.5ms 1.9ms
Track mid-res 0.2ms 1.8ms
Track high-res 1.0ms 6.4ms
Map color (b/w) 0.4ms (0.4ms) 4.5ms (4.2ms)
Overall (b/w) 2.2ms (2.2ms) 15.2ms (14.9ms)

Table 2. Average tracking and mapping times per frame.

Table 2 shows the timings for PC and mobile phone for tracking
the camera and updating the map for a new camera image. The
values in Table 2 represent average durations per task while
creating a complete map. Exact values vary depending on the

environment (number of keypoints possible to track) and user
behavior. E.g. if the camera only points to areas that have already
been mapped then the mapping time goes close to zero.

Loop closing is an expensive operation taking 10 seconds (see
Table 3) for a full color map on the mobile phone when using the
Lanczos filter for sampling. Only about 50-100ms (PC) and 200-
500ms (phone) are used for finding the loop gap; the rest of the
time is spent on updating the map. If we use nearest neighbor
filtering instead (creating noticeable artifacts, but still good for
tracking), loop closing takes less than 2 seconds on the phone.
The duration can be reduced further by only using grayscale
maps. However, in practice loop closing is a rare situation since
the creation of 360° maps takes ~1-2 minutes and is required only
once for a map.

A considerable amount of the localization time goes into
extracting features from a loaded map (usually several thousands).
Fortunately, this is only required once, whereas all successive
frames only need to extract features from the camera image,
match then against the map features and find a pose, which takes
~40ms on the PC and ~120ms on the phone.

PC Phone
Loop-close Lanzos (b/w) ~290 (170) ms ~9800 (3900) ms
Loop-close NN (b/w) ~150 (130) ms ~1700 (1300) ms
Localize - first frame ~60ms ~190ms
Localize - further frames ~40ms ~120ms

Table 3. Average timings for loop closing: Lanzos and Nearest
Neighbor (NN), color and grayscale; localizing from a loaded map.

8.3 Guidance for taking high-resolution panoramas

The proposed method for panoramic mapping and tracking
internally generates color and grayscale panoramas of the
environment. Such panoramas can be stored on disk and later
viewed by users like normal photographs. Yet, the panoramas
cannot compete in quality and resolution with a panorama that is
generated offline on a desktop computer from several multi-
megapixel photographs.

Since modern mobile phones integrate good-quality digital
cameras, our tracking method is exploited for guiding users in
capturing high-resolution photos of the environment. As a user
taps on the screen of her mobile phone, the camera of the phone is
triggered to capture a photograph and to later store it on disk. The
tracking system, and the internally generated panorama, can be
used for providing a live preview of the orientation of all photos
that have already been taken, thus empowering users with a tool to
verify optimal photo coverage of a panoramic scene (see Figure
11 left).

8.4 Augmenting annotations

Since the proposed method can create and track high-res
panoramas on the fly, users are enabled to put annotations on such

Figure 9. Problematic scenes: a) Floor that is poor on texture. b) Wall that is poor on texture, only line details on the floor. c) Line details on the
wall (keypoints are due to sampling artefacts), pebbles on the floor. d) Moving objects (tram, people) covering most of the image.

panoramas directly on a mobile phone. This can be useful in
several application domains, such as posting geo-referenced
messages or supporting navigation tasks, as well as exploring the
panoramic image from desktop applications like Google Earth.

Users can identify the position of the annotation by clicking on
the corresponding location of their device’s screen. After the user
has typed in the annotation’s text, it is automatically referenced to
the chosen position in the panoramic image. The application can
then store all annotations and their map coordinates in a XML file,
and save this file together with the panoramic image into a zip
container. Since many of the current mobile phones ship with a
location system (GPS or WiFi triangulation) a GPS tag is added to
the created data and the zip file is sent to a server hosting GPS-
tagged content.

If another user is exploring the same location at a later stage,
the user’s phone will send its current GPS position to the server
and retrieve the zip file again. Our system is able to initialize the
tracking using the panoramic image contained in the zip file, as
described in section 6, and can therefore overlay the view with the
annotations created by the previous user (see Figure 11 right).

Desktop applications can also access this geo-referenced
content and embed the annotated panoramas on a virtual globe,
similarly to the Street View images presented in Google Earth.

9 CONCLUSIONS

The paper presented an approach for accurate, robust and drift-
free rotation tracking in outdoor scenarios. The method is efficient
enough to run at high frame rates on mobile phones. As a side
effect, the method creates colored, cylindrical panoramic maps
with little user input. Creating GPS tagged panoramas with this
method is a first step to allow user participation in creating
tracking data for outdoor Augmented Reality. Furthermore it
opens the way for other applications like user-annotated street-
side views, which can be explored in-situ or on a desktop
computer.

The presented method does not target the problem of auto-
exposure yet. A work around exists by disabling auto-exposure;
however, this is not possible on all mobile phones. Actively
addressing this issue is therefore left as future work.

10 ACKNOWLEDGEMENTS

This work was sponsored in part by the Christian Doppler Lab for
Handheld Augmented Reality and the European Union under
contracts FP6-IST-27571 and FP6-IST-27731.

REFERENCES

[1] A. Adams, N. Gelfand, and K. Pulli, "View Finder Alignment," Computer
Graphics Forum (Proceedings of Eurographics) 27, 2008, pp. 597-606.

[2] P. Baudisch, D. Tan, D. Steedly, E. Rudolph, M. Uyttendaele, C. Pal, and
R. Szeliski, "Panoramic viewfinder: providing a real-time preview to help
users avoid flaws in panoramic pictures," In Proceedings of the 17th
Australia conference on Computer-Human Interaction: Citizens Online:
Considerations for Today and the Future, 2005, pp. 1-10.

[3] M. Brown and D.G. Lowe, "Recognising Panoramas," Proc. of the Ninth
IEEE International Conference on Computer Vision, 2003, pp. 1218-1225.

[4] A. Davison, "Real-time simultaneous localisation and mapping with a
single camera," Proceedings of the Ninth IEEE International Conference
on Computer Vision, IEEE, 2003, pp. 1403-1410.

[5] S. DiVerdi, J. Wither, T. Höllerer, Envisor: Online Environment Map
Construction for Mixed Reality. In Proc. of IEEE VR 2008, pp. 19-26.

[6] G. Klein and D. Murray, Parallel Tracking and Mapping for Small AR
Workspaces, In Proceedings of ISMAR'07, 2007, pp. 225-234.

[7] Klein, G., Murray D., Parallel Tracking and Mapping on a Camera Phone,
In Proceedings of ISMAR'09, 2009, pp. 83-86.

[8] D.G. Lowe, Distinctive image features from scale-invariant keypoints, In
International Journal of Computer Vision, Vol.60, Nr. 2, pp. 91-110, 2004.

[9] J. Montiel and A. Davison, "A visual compass based on SLAM,"
Proceedings of the 2006 IEEE International Conference on Robotics and
Automation, ICRA 2006., IEEE, 2006, pp. 1917-1922.

[10] E. Rosten and T. Drummond, "Machine Learning for High-Speed Corner
Detection," In Proceedings of ECCV 2006, Berlin/Heidelberg: Springer-
Verlag, 2006, pp. 430-443.

[11] Schall, G., Wagner, D., Reitmayr, G., Wieser, M., Teichmann, E.,
Schmalstieg, D., Hofmann-Wellenhof, B., Global Pose Estimation using
Multi-Sensor Fusion for Outdoor Augmented Reality, In Proc. ISMAR'09,,
2009, pp. 153-162.

[12] D. Steedly, C. Pal, and R. Szeliski, "Efficiently Registering Video into
Panoramic Mosaics," Tenth IEEE International Conference on Computer
Vision (ICCV'05) Volume 1, IEEE, 2005, pp. 1300-1307.

[13] R. Szeliski and H. Shum, "Creating full view panoramic image mosaics
and environment maps," Proc. of the 24th annual conference on Computer
graphics and interactive techniques (Siggraph 1997), 1997, pp. 251 - 258.

[14] R. Szeliski, "Image alignment and stitching: a tutorial," Foundations and
Trends in Computer Graphics and Vision, vol. 2, 2006, pp. 1 - 104.

[15] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg,
"Pose Tracking from Natural Features on Mobile Phones," Proceedings of
the 7th IEEE/ACM International Symposium on Mixed and Augmented
Reality, 2008, pp. 125-134.

[16] X. Wang, M. Tico, and K. Pulli, "Panoramic Imaging System for Mobile
Devices," Poster at the 36th international conference and exhibition on
Computer graphics and interactive techniques (SIGGRAPH 2009), 2008.

Figure 11. Running at 30Hz on mobile phones, our method gives room for end-user applications. Left: Our method can be used to guide users
in taking hi-res photos of the environment to be later stitched with a desktop application. The system can show a live preview of where photos
have been taken, to ensure optimal coverage of the whole panorama. Right: Our method can be used for annotating panoramas and sharing

them with other mobile users coming later in-situ, or with desktop users.

