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Figure 1. Outdoor and indoor panoramas created on the fly using real-time mapping and tracking.

ABSTRACT 

We present a novel method for the real-time creation and tracking 
of panoramic maps on mobile phones. The maps generated with 
this technique are visually appealing, very accurate and allow 
drift-free rotation tracking. This method runs on mobile phones at 
30Hz and has applications in the creation of panoramic images for 
offline browsing, for visual enhancements through environment 
mapping and for outdoor Augmented Reality on mobile phones. 
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1 INTRODUCTION 

Tracking for outdoor Augmented Reality (AR) applications has 
very demanding requirements: It must deliver an accurate 
registration with respect to a given coordinate system, be robust 
and run in real time. Despite recent improvements, outdoor 
tracking still remains a difficult problem. Recently, mobile phones 
have become increasingly attractive for AR. With the built-in 
camera as the primary sensor, phones facilitate intuitive point-
and-shoot interaction with the environment. 

Most outdoor tracking systems rely on inertial sensors to 

improve robustness. Even though some modern smart phones 
integrate a linear accelerometer, it is of little help in typical AR 
scenarios since it only delivers translational motion. Instead, most 
successful approaches rely on gyroscope sensors that measure 
rotations, which are primary sources for tracking instabilities. 
However, no mobile phone today possesses such sensors. 

It is likely that mobile phones will soon be equipped with 
gyroscopic sensors too. Schall et. al have shown [11] that 
carefully integrating a panoramic tracker into a system with GPS, 
compass, linear accelerometer and gyro can further improve the 
system’s robustness. 

In this paper we describe a natural-feature mapping and 
tracking method that is efficient, robust and allows for 3-degree-
of-freedom tracking in outdoor scenarios on mobile phones. 
Assuming pure rotational movements, the method creates a 
panoramic map from the live camera stream (see Figure 1). The 
conceptual approach is similar to simultaneous localization and 
mapping (SLAM) [4][6]: For each video frame, the camera is first 
registered based on features in the map; In a second step, the map 
is then extended with new features from viewing directions that 
have not been observed before. Yet, while traditional SLAM 
systems create a sparse map of the environment and refine 
features over multiple observations (typically using triangulation), 
our approach creates a dense map of features, which are mapped 
during their first observation and not refined again. 

The first camera image is completely projected onto the 
environment map. When possible, the orientation and position of 
the first frame in the map can be derived from the phone’s 
accelerometer and compass. For all successive frames, the camera 
pose is updated – based on the existing data in the map – and the 
map is extended by only projecting areas that have not yet been 
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stored. Since a large number of features and a sub-pixel-accurate 
projection model are used for camera tracking, we show that this 
is a valid approach for accurate, robust and drift-free tracking. 

Figure 2 shows the mapping and tracking pipeline. Tracking 
requires a map for estimating the orientation, whereas mapping 
requires an orientation for updating the map. A known starting 
orientation with a sufficient number of natural features in view 
must be used to initialize the map. 

 

Figure 2. High-level overview of the mapping and tracking pipeline. 
For each block, we embedded the corresponding section numbers. 

The method assumes a pure rotational motion. This assumption is 
not always viable for a mobile phone. However, in many outdoor 
scenarios the distance between the camera and the objects in the 
environment is large compared to the involuntary translational 
motion that occurs when rotating a handheld device. As shown by 
DiVerdi et. al [5], errors are therefore negligible. 

The contribution of this paper is a new method that creates and 
tracks panoramic maps in real time (30Hz) on a mobile phone. 
Similar results have previously only been available on hardware at 
least one order of magnitude more powerful. We present a careful 
analysis of the individual steps of panorama creation and tracking, 
and how higher efficiency can be obtained through various 
algorithmic means and trade-offs. 

We describe two proof-of-concept applications that show the 
practicability of our approach: A tool that guides a user in creating 
gapless panoramic pictures and an application to create and 
browse annotated panoramic images. 

2 RELATED WORK 

Panorama creation is a widely discussed topic in computer vision. 
Most of the existing approaches create panoramic images in an 
offline process [3][12][13]. These methods typically use SIFT [8] 
or similar descriptors to match image features. Szeliski [14] gives 
a good overview of the many existing techniques for image 
alignment and stitching. 

In contrast to these offline approaches, Adams et al. [1] align 
camera images in real time on mobile phones in their View Finder 
Alignment work. Consecutive camera images are roughly aligned 
by calculating a histogram of gradients for four 2D directions. The 
alignment is then refined using feature points. Successively, 
tracking of the optical flow is used to create a panoramic image. 
While this approach works in real time on current mobile phones, 
it neither permits the creation of a closed 360° panorama, nor does 
it track the 3D motion of the phone. In [16], the View Finder 
Alignment technology is used to trigger the automatic capturing 
of high-resolution images that can be used to generate a high-
quality panoramic image. The creation of this panoramic image 
does not run in real-time and requires offline processing. 

Baudisch et al. [2] created a real-time preview for panoramic 
imaging based on the work presented in [12]. Their application 
stitches low quality panoramas on the fly and thereby provides an 
estimate of the maximum rectangular cropping area that can be 
created from the set of images taken so far. The visualization of 

the already captured panorama is similar to the visualization used 
by our system. 

Envisor [5] tracks the orientation of a camera in real time and 
an environment map is created on the fly. This is achieved by 
calculating the optical flow between successive frames. Similar to 
[1], the optical flow measurements are refined with 
computationally expensive landmark tracking to avoid the drift 
introduced by frame-to-frame feature matching. While the results 
of this approach are similar to ours, the system cannot run on 
phones due to the high computational cost of the method, which 
requires extensive GPU processing to run in real time. 

Montiel and Davison created a visual compass [9] based on 
single-camera SLAM [4]. They used an extended-Kalman-filter 
formulation of the tracking problem to compute orientation from 
dynamically acquired landmark features. Since their approach 
creates a sparse 3D reconstruction of the environment, the system 
is not restricted to rotations only. Klein and Murray also 
introduced another successful approach of SLAM-based tracking 
for augmented reality [6]. Recently Klein and Murray showed a 
SLAM system running on a mobile phone [7]. However, due to 
low processing power of mobile phones Klein’s SLAM system is 
limited to a few hundred keypoints whereas our method can 
handle 1000s of keypoints and is several times faster on a similar 
device. 

The related work discussed above either does not run in real 
time on current phones due to high computational costs, or it 
solves only one task between panorama creation and panorama 
tracking. The approach described in this paper combines 
panoramic mapping and orientation tracking, both working on the 
same data set. It can therefore be used for creating panoramic 
content as well as for browsing and augmenting previously 
created panoramic images. 

3 PANORAMIC MAPPING 

Several types of maps can be used in order to create a map of the 
environment. Cube maps are common in computer graphics, but 
they present discontinuities at the cube’s edges. Spherical maps 
solve the problem of discontinuities at the price of strong 
nonlinearity: Up and down directions are mapped to all the top 
and bottom pixel rows of the map. We chose a cylindrical map 
(see SEQ) because it can be trivially unwrapped to a single texture 
with a single discontinuity on the left and right borders. While the 
horizontal axis does not suffer from nonlinearities, the map 
becomes more compressed at the top and the bottom. Since the 
cylinder is not closed vertically, there is a limit to the pitch angles 
that can be mapped. This limit is acceptable for practical use, 
since a map of the sky and ground is usually not required. 

We fix the cylinder’s radius to 1 and its height to π/2. Since the 
circumference of the cylinder is 2π, the map that is created by 
unwrapping the cylinder is exactly 4 times as wide as high (π/2 
high and 2π wide). A power of two for the aspect ratio simplifies 
using the map for texturing. The map covers 360° horizontally 
while the range covered vertically is given by the arctangent of 
the cylinder’s half-height (π/4), therefore [-38.15°, 38.15°]. 

3.1 Organization of the map 

Most mobile phones today can take multi-megapixel photos but 
the live video feed is usually restricted to 320x240 pixels. A 
typical mobile phone camera has roughly a 60° horizontal field of 
view. A complete 360° horizontal panorama would be about 320 
pixels / 60° · 360° = 1920 pixels wide. We chose a map resolution 
of 2048x512 pixels, which is the smallest power of two bigger 
than the camera’s resolution and therefore transfers image data 
from the camera into map space without any loss in image quality. 



To increase tracking robustness lower-resolution maps (1024x256 
and 512x128) are also created (see sections 4.2 and 4.3). 

The map is split into a regular grid of 32x8 cells that simplify 
working with the unfinished map (see Figure 3). Every cell can 
have two states: either unfinished (empty or partially filled with 
mapped pixels) or finished (completely filled). When a cell is 
finished, it is down-sampled from the full resolution to the lower 
levels and keypoints are extracted for tracking purposes. 

 

Figure 3. Grid of cells composing the map, after the first frame has 
been projected. The green dots mark keypoints used for tracking. 

3.2 Calibrating the camera 

Since the map is filled by projecting pixel data from the camera 
image onto the map, full knowledge on the intrinsic and extrinsic 
camera parameters is required for an accurate mapping process.  

Assuming that the mobile camera does not change zoom or 
focus, the intrinsic parameters can be estimated once in an off-line 
step and stored for later use. The principle point and the focal 
lengths in the x and y directions are estimated. Modern mobile 
phones internally correct most of the radial distortion introduced 
by the camera’s lens. However, there is still distortion left, so 
additional correction is required. To measure these parameters, 
pictures of a calibration pattern are taken, which are then 
evaluated with the Caltech camera calibration toolbox1. 

We additionally correct for artifacts due to vignetting, which 
consists of a reduction in pixel intensities at the image periphery. 
While there are several causes for vignetting, digital cameras 
mostly suffer from “pixel vignetting” which is caused by the 
sensors depending on the angle of the incoming light: Sensor 
elements farther from the image centre receive light at a steeper 
angle and therefore sense darker pixel intensities. This effect can 
be modeled with a non-linear radial falloff. The vignette strength 
is estimated by taking a picture of a diffusely-lit white board. The 
average intensities close to all the four corners are measured and 
the difference from the image centre is noted. 

3.3 Projecting from camera into map space 

Our method assumes pure rotational motion. Although this is 
unlikely for a handheld camera, a trained user can effectively 
minimize parallax errors. DiVerdi [5] provides a detailed analysis 
on the effect of violating the pure-rotation requirement with 
respect to the distance of the objects in the mapped environment. 
We conveniently set the camera position to the origin (0,0,0) at 
the centre of our mapping cylinder (see Figure 4). 

A fixed camera position leaves 3 rotational degrees of freedom 
to estimate for correctly projecting camera images onto the 
mapping cylinder. Depending on the availability of an 
accelerometer, the system is either initialized from the measured 
roll and pitch angles, or we assume a roughly horizontal 
orientation. In section 5 we show the effects of starting with a 
wrong orientation and how to fix them during the mapping 
process by warping the map. 

 
R = π' ( δ' ( K-1· P ) ) (1) 

M = μ ( ι ( O-1 · R, C ) ) (2) 

                                                                 
1 http://www.vision.caltech.edu/bouguetj/calib_doc/ 

Given a known (or assumed) camera orientation O, we use 
forward mapping to estimate the area of the cylinder’s surface that 
is covered by the current camera image. Given a pixel’s device 
coordinate P, we first transform it into an ideal coordinate by 
multiplying it with the inverse of the camera matrix K and 
removing radial distortion using a function δ' in (1). This 2D 
coordinate is then unprojected into a 3D ray R using a function π' 
by adding a z-coordinate of 1. The ray is then rotated from map 
space into object space using the inverse of the camera rotation 
matrix O-1. Next, the ray is intersected with the cylinder using a 
function ι to get the pixel’s 3D position on the mapping cylinder. 
Finally, the 3D position is converted into a 2D map position M 
using a function μ in (2). 

 
Figure 4. Projection of the camera image onto the cylindrical map. 

We define a rectangle for the camera frame in camera space, 
setting its corners in pixel coordinates of the camera image. The 
rectangle is then forward-mapped onto the map and defines the 
mask for those pixels that are covered by the current video frame. 
Due to radial distortion and the nonlinearity of the mapping, each 
rectangle side is sub-divided three times to get a smooth curve in 
the target space (see blue image frame in Figure 3). 

3.4 Filling the map with pixels 

The forward-mapped camera frame gives an almost pixel-accurate 
mask for those pixels that the current video image can contribute. 
However, using forward mapping to fill the map with pixels can 
cause holes or overdrawing of pixels. 

To fill the map with pixels we therefore use backward mapping. 
Starting with a 3D map position M' on the cylinder, we calculate a 
ray from M' to the camera centre using function μ', and then rotate 
the ray using the orientation O. This results in R' in (3), which is 
then projected onto the camera plane using function π. Radial 
distortion is applied using function δ and the resulting ideal 
coordinate is converted into a device coordinate P' via the camera 
matrix K in (4). The resulting coordinate generally lies somewhere 
between pixels, so we interpolate linearly to achieve a sub-pixel-
accurate color. Finally, we compensate for vignetting and store 
the pixel color in the map. 

 
R' = O * μ' ( M' ) (3)

P' = K * δ ( π ( R' ) ) (4)

3.5 Speeding up the mapping process 

One 320x240 camera image will always require back projecting 
roughly 75,000 pixels. Such a workload is too high to run in real 
time (at least 15 frames per second) on current mobile phones. To 
speed the process up, each map pixel is set only once as soon as it 
can be back projected for the first time. During the first camera 
frame a large number of pixels have to be transferred (as in Figure 
3). For all subsequent frames, only a few pixels are mapped: with 
slow camera movements only a few rows or columns of new 
pixels become visible per frame. This drastically reduces the 



required computational power for keeping the map up to date. For 
instance, horizontally rotating a camera (with a resolution of 
320x240 pixels and a field of view of 60°) by 90° in 2 seconds 
results in only about 16 pixel columns – or 3840 pixels – to be 
mapped per frame. This is only 5% of a whole camera image. 

 

Figure 5. Masks created during a rotation of the camera to the right. 
Blue: Mask M of the map so far; Black border: Mask T(P) for the 
current camera pose; Red: Intersection of M and T(P); Yellow: 

Mask N of operation (5) representing the pixels that still need to be 
mapped. N is exaggerated here for better visibility. 

This approach requires quickly filtering out those pixels that fall 
inside the projected camera frame and that have already been 
mapped. While a simple mask with one entry per pixel would be 
sufficient, the process would be too slow and too memory 
intensive. We use a run-length encoded (RLE) mask to store zero 
or more spans per row that define which pixels of the row are 
mapped and which are not. A span is a compact representation 
that only stores its left and right coordinates. Spans are highly 
efficient for Boolean operations, which can be quickly executed 
by simply comparing the left and right coordinates of two spans. 

A mask M (see Figure 5) is defined for the map at its highest 
resolution. Initially this mask is empty. For every frame, the 
projected camera frame is rasterized into spans creating a 
temporary mask T(P) that describes which pixels can be mapped 
under the current pose P. The camera mask T(P) and the map 
mask M are then combined using a row-wise Boolean operation. 
The resulting mask N in (5) contains locations for only those pixel 
that are set in the camera mask T(P) but not in the map mask M. 
Hence, N describes those pixels in the map that will be filled in 
the current frame. The map mask M is updated to include new 
pixels using the operation (6). 

 
N = T(P) AND NOT M (5)

M = T(P) OR M (6)

Fi = U(Ci) AND M (7)

 
The pixels covered by the mask N are back projected and the 
resulting color values are written into the map. As introduced in 
section 3.1, the map is subdivided into cells. While filling the 
map, a book of the cells that are updated during the current frame 
is kept. Once the mapping process for a frame is finished, we 
check whether each updated cell has been completely filled: For 
each updated cell Ci a mask U(Ci) is defined containing only the 
area of such a cell. This mask is then intersected with M using the 
operation (7). If the combined mask Fi in (7) covers the complete 
area of Ci, then this cell has been completely filled and can be 
marked as finished. A finished cell is downsampled to the smaller 
map levels and keypoints are extracted for tracking, as described 
in the next section. 

4 PANORAMIC TRACKING 

The mapping process assumes an accurate estimate of the camera 
orientation. We now present an efficient method for tracking the 
camera orientation from the map that is being built. 

4.1 Keypoint extraction 

The tracker applies the FAST corner detector [10] on finished 
cells to extract keypoints. For every keypoint, FAST gives a score 
of how strong the corner appears. The thresholds are adjusted for 
this score according to the resolution of the map the cell belongs 
to (as detailed in Table 1). E.g., for the cells of the highest-
resolution map (64x64 pixels in size) we use a FAST threshold of 
12. For the cells of the smaller levels a lower threshold is used, to 
consider the smoothing due to downsampling. These threshold 
values are chosen deliberately low to ensure that always more 
than enough keypoints are extracted. The keypoints are then 
sorted by corner strength and only the strongest keypoints are 
kept. E.g., for 64x64-pixel cells 40 keypoints are kept. 
 

cell size in pixels FAST threshold max keypoints per cell
64x64 12 40
32x32 9 20
16x16 9 15

Table 1. Cell configurations 

We organize keypoints on a cell-level because it is more efficient 
to extract keypoints in a single run once an area of a certain size is 
finished. It also avoids problems with looking for keypoints close 
to areas that have not yet been finished: Since each cell is 
considered as a separate image, the corner detector itself takes 
care to respect the cell’s border. Finally, organizing keypoints by 
cells provides an efficient method to determine which keypoints 
to match during tracking. 

4.2 Keypoint tracking 

We apply an active-search procedure based on a motion model in 
order to track keypoints from one frame to the following one. 
Keypoints in the camera image are always compared against their 
counterpart in the map. Hence, unlike other trackers, this tracking 
approach is generally drift-free. Still, errors in the mapping 
process accumulate so that the map is not 100% accurate: a 
rotation around a certain angle is not mapped exactly with the 
angle in the database (see section 8.1). However, once the map is 
built, tracking is as accurate as the map that has been created. 

To estimate the current camera orientation the tracker requires a 
rough guess. In the first frame this guess corresponds to the 
orientation used for initializing the system. For all successive 
frames, we use a motion model with constant velocity to guess an 
orientation. We calculate velocity as the difference in orientation 
between the current and the previous frame. 

We then refine the initial guess: Based on the guessed 
orientation, the camera frame is forward projected onto the map to 
find those cells that overlap with the visible part of the map. The 
keypoints of these cells are then back projected onto the camera 
image. All keypoints that are back projected outside the camera 
image are filtered out. We create 8x8-pixel patches for each 
keypoint by affinely warping the map area around the keypoint 
using the current orientation matrix. The warped patches represent 
the support areas of the corresponding keypoints, as they should 
appear in the current camera image. The tracker uses normalized 
cross correlation (over a search area) at the expected keypoint 
locations in the camera image. Since template matching is slow, it 
is important to limit the size of the search area. A multi-scale 
approach is applied to track keypoints over long distances while 
keeping the search area small: The first search is at the lowest 
resolution of the map (512x128 pixels) against a camera image 
that has been down-sampled to quarter size (80x60 pixels) using a 
search radius of 5 pixels. The coordinate with the best matching 
score is then refined to sub-pixel accuracy by fitting a 2D 
quadratic term to the matching scores of the 3x3 neighborhood. 



Since all three degrees of freedom of the camera are respected 
while warping the patches, the template matching works for 
arbitrary camera orientations. 

4.3 Orientation update 

The correspondences between 3D cylinder coordinates and 2D 
camera coordinates are used in a non-linear refinement process 
with the initial orientation guess as a starting point. The 
refinement uses a Gauss-Newton iteration: The same optimization 
takes place as by a 6-degree-of-freedom camera pose, but position 
terms are ignored and the Jacobians are only calculated for the 
three rotation parameters. Reprojection errors and inaccuracies are 
dealt with effectively using an M-estimator. The final 3x3 system 
is then solved using Cholesky decomposition. 

Starting at a low resolution with only a few keypoints and a 
search radius of 5 pixels allows correcting gross orientation errors 
efficiently but does not deliver a very accurate orientation. The 
orientation is therefore refined again by matching the keypoints 
from the medium-resolution map (1024x512 pixels) against a 
half-resolution camera image (160x120 pixels). Since the 
orientation is now much more accurate than the original guess, the 
search area is restricted to a radius of 2 pixels only. Finally, 
another refinement step is executed at the full resolution map 
against the full-resolution camera image. 

Since each successive refinement is based on larger cells it also 
uses more keypoints than the previous refinement. In the last step 
several hundred keypoints are typically available for estimating a 
highly accurate orientation. 

4.4 Relocalization 

The tracker can only follow the keypoints from one frame to the 
next. As any pure tracker it is therefore not able to reinitialize 
itself from an arbitrary orientation. However, at some point every 
tracker can fail and relocalization is fundamental for any practical 
system. A relocalization mechanism is therefore added in case the 
tracker does not find enough keypoints, or when the reprojection 
error after refinement is too large to trust the orientation. 

The relocalizer works by storing low-resolution keyframes with 
their respective camera orientation in the background, as the map 
is being created. In case the tracking is lost, the current camera 
image is compared to those keyframes using normalized cross 
correlation. To make the matching more robust both the 
keyframes (once, when we store them) and the camera image are 
blurred. If a matching keyframe is found, an orientation 
refinement is started using the keyframe's orientation as a starting 
point. 

In order to limit the memory overhead of storing keyframes, the 
camera image is downsampled to quarter resolution (80x60 
pixels). Additionally, the relocalizer keeps track of orientations 
already covered by a keyframe: The orientation is converted into a 
yaw/pitch/roll representation and the three components are 
quantized into 12 bins for yaw (±180°), 4 bins for pitch (±30°) 
and 6 bins for roll (±90°). Storing only ±90° for roll is a 
contribution to the limited memory usage but results in not being 
able to recover an upside-down orientation. For each bin a unique 
keyframe is stored, which is only overwritten if the stored 
keyframe is older than 20 seconds. In the described configuration, 
the relocalizer requires less than 1.5MByte of memory for a full 
set of keyframes. 

5 FIXING INCORRECT INITIAL ORIENTATIONS 

The mapping process relies on an initial rough guess of the 
camera orientation. Starting with a wrong initial guess for pitch or 
roll violates the limits of the cylindrical environment model. 
Figure 6 (right) shows the effect of a pure rotation around the yaw 

axis after a wrong initial guess for the pitch angle: The mapping 
module assumed that the initial pitch was zero, but in fact the 
camera was looking about 20° upwards. Rotating the camera 
around the vertical axis does not result in a horizontal movement 
in map space as expected, because the vertical axis is not where 
the mapping module believes it to be. The effect is that the camera 
quickly moves out of the map, which strongly limits the 
horizontal angle that can be mapped. Similar effects occur when 
the roll angle is wrongly initialized. 

Fortunately, a map that was built from an incorrect starting 
orientation can be fixed later on, by reprojecting it onto another 
cylinder's map. Carrying out this reprojection on a low-resolution 
map of 256x64 pixels allows interactive frame rates. A user can 
therefore warp the preview map, e.g. by dragging the map's center 
on the screen into its correct position. 

Internally, the remapper rotates a second cylinder around the x- 
or y-axis (see Figure 6, left), accordingly to the user’s input, and 
reprojects all pixels of the low-resolution map from the reference 
cylinder onto the rotated cylinder. The result can be displayed on 
the screen in real time. When the user is satisfied with the 
correction the remapper reprojects the map at its full resolution. It 
creates new down-sampled levels and extracts new keypoints for 
all levels, so that the tracker can work with the warped map. For 
quality reasons a Lanczos filter is used for resampling the map. 
 

Figure 6. Left: Mapping from the reference cylinder (red) onto 
another cylinder (gray), tilted 20°. Top-right: Effect of a pure 

horizontal camera movement after a wrongly initialized pitch angle. 
Bottom-right: The same map fixed using reprojection. 

Reprojection will always create holes in the map in those parts 
that were previously outside the map and have then been moved 
in. The user can continue to map the environment to fill these 
holes. 

6 INITIALIZATION FROM AN EXISTING MAP 

The relocalization method described in section 4.4 is fast, but it 
only works for orientations where camera image samples exist. 
Hence, this method is suitable for relocalization, but not for 
initializing from a previously existing map, because storing all 
camera image samples would require too much memory. In this 
section, the method for initializing the camera’s orientation is 
outlined, which relies only on a (partially) finished map that was 
previously created. This method is suitable for initializing the 
tracker after loading a map from the device’s storage or from the 
Internet. 

Starting with a map loaded from a file,  keypoints are extracted 
from the map and PhonySIFT descriptors [15] are created, which 
allow robust, rotation invariant matching (see Figure 7). 
Keypoints are also extracted and descriptors are created for the 
live camera image. Online creation of an efficient search structure 
such as the spill forest suggested in [15] is too slow to be executed 
on a mobile phone. Hence, brute force matching is relied upon. 

Given the descriptor sets from the map and the current camera 
image, a RANSAC-like approach is applied to find the 
orientation. To begin with, all camera features are matched 



against all map features, obtaining a set of correspondences. Next, 
a histogram of correspondence occurrences is created in the 
horizontal direction, and the direction with the largest number of 
correspondences in a window of 78,75° (7 cells) is selected. 
Following this, only correspondences that fall into this window 
are considered. 

 

Figure 7. Initialization from an existing map; Left: Camera image to 
localize. Right: 3DOF localization of the camera image. 

Since localization has three degrees of freedom, two matching 
features are required as a hypothesis. Pairs of two 
correspondences are built and an orientation is calculated, which 
is then validated against the other correspondences. If a large 
number of correspondences support this hypothesis it is checked 
again and the hypothesis is refined using the method described in 
section 4.3. If no orientation can be found in any possible pairs of 
correspondences, the whole process is repeated with the next live 
camera image. 

The rotation invariance of PhonySIFT enables this method to 
estimate an orientation under arbitrary device rotation as long as 
the currently visible environment is available in the map. Usually 
an orientation is found within a few frames. 

7 LOOP CLOSING 

Due to precision errors that accumulate as the map is extended 
away from its starting orientation, a full 360° sweep will not be 
mapped exactly at the map’s edges. There will be a noticeable 
discontinuity at the location in the map where the left-most and 
right-most mapped pixels touch. Loop closing is the process of 
accurately estimating the error in the map and transforming the 
map to adjust for such error. 

7.1 Estimating the loop error 

In order to estimate the loop error, the tracker must be able to 
recognize that is has returned to a previously visited direction. 
There are two possible approaches to this task: The features in the 
current camera image can be compared to features in the map, or 
an overlapping map can be created and features can be matched 
within the overlapping areas. 

The first approach has the advantage that the current mapping 
method is sufficient, but creates the problem that the tracking 
could directly jump to the previously visited direction without 
closing the loop. More importantly, this method can only use the 
current camera features for loop closing. 

The second approach was therefore decided upon. Since the 
map can only store one data item per pixel, an extended map that 
can deal with overlapping areas is required. The map is therefore 
enlarged to cover a horizontal angle larger than 360°. Our 
accuracy measurements suggest that an additional angle of 45° (4 
columns of cells) is sufficient for robust loop detection. Hence, if 
loop closing is enabled the map covers a range of 405° (2304 
pixels wide) horizontally. 

Again our cell structure is applied for jump-starting the loop 
closing procedure: The loop closer starts making hypotheses as 
soon as only one column of cells is unfinished in the map, 

meaning that 393.75° have been mapped horizontally. Since the 
completion of cells is already monitored during the regular 
mapping process, this task does not create any overhead. 

After the need for loop closing has been detected, keypoints are 
extracted from both overlapping regions (see Figure 8) and a 
RANSAC-like method for matching is used: For each keypoint on 
the left region, the best match is found in the right region using 
normalized cross correlation (NCC). Since loop closing is treated 
as a two-dimensional problem, a single match is sufficient for 
making a hypothesis. When a good match is found, it is checked 
to see how many other keypoint pairs supported this hypothesis. 
After all hypotheses have been checked, the one with the largest 
inlier set is used for calculating the mapping error: The offsets 
between all inliers are weighted by their NCC confidence to 
estimate a single, highly accurate mapping error. 

 

Figure 8. Loop closing; Top: Part of a 405° loop with overlapping 
areas. Bottom: Part of a same panorama closed to 360°. 

7.2 Fixing the loop error 

The accumulative tracking and mapping error, which finally 
results in the loop gap, arises from many sources, including 
imperfect orientation updates, camera calibration errors, violating 
the rotation-only restriction, etc. This error cannot be modeled and 
hence an optimal transformation for removing this error cannot be 
implemented using our system. 

A simple transformation is therefore chosen that aligns the 
matched keypoints in the overlapping areas in such a way that the 
offset between keypoint pairs becomes minimal: In order to move 
the keypoints horizontally to their ideal position, the map is scaled  
in a horizontal direction. For vertical alignment a shear 
transformation is applied using as a pivot the cell column farthest 
away from the gap. Both operations use Lanczos filtered sampling 
to minimize resampling artifacts. In the tests this method 
accurately closed the loops without noticeable artifacts (Figure 8). 

After the scale-shear operation, the map is cropped to 2048 
pixel width (360°) and shifted horizontally, such that the original 
map starting position is at the map center again. Finally, new 
keypoints are extracted and tracking is initialized as described in 
section 6. 

8 RESULTS 

We have created 30 panoramas at different indoor and outdoor 
locations. We specifically included difficult scenarios resulting in 
that 5 of the 30 panoramas could not be finished to a full 360° 
panorama since tracking broke in the process. Figure 9 shows 
examples of typical problems encountered in practice. The 25 
complete panoramas were used for accuracy measurements. 

8.1 Mapping accuracy 

The visual tracker works at a camera resolution of 320x240 
pixels. The map is created at a resolution of 2048x512 pixels. For 



a typical field of view of 60°, the camera resolution is therefore 
close to the map's resolution: 320 pixels / 60° · 360° = 1920 
pixels. The theoretical angular resolution of the map is therefore 
360° / 2048 pixels = 0.176 degrees per pixel. In practice, mapping 
errors accumulate, especially along the rotation around the 
vertical axis (yaw). 

We evaluated the accumulated mapping error on the 25 full 
360° panoramas and measured the offset in the overlapping 
regions using the method of section 7.1. We noticed that most 
panoramas had a horizontal error of +4°, which is obviously 
related to a systematic imprecision of our approach. However, by 
adapting the focal length in our calibration data we could shift the 
average error close to zero as can be seen in Figure 10. With the 
updated calibration 16 out of 25 panoramas have an error of ~1°. 

We also analyzed pose jitter from live camera feed under zero 
motion, resulting in a measured jitter of ~0.05° for head, pitch and 
roll respectively. 
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Figure 10. Mapping errors of 25 panoramas. 

8.2 Speed on mobile phone and PC 

The panoramic tracker was benchmarked on a 2.5GHz quad-core 
notebook (only a single core was used) and an Asus P565 
smartphone with an XScale ARM CPU running at 800MHz. Since 
the mobile phone’s CPU does not have hardware floating point 
support, a version with fixed-point math was created whereas the 
PC version runs using floating point. 
 

 PC Phone
Down sample <0.1ms 0.5ms
Track low-res 0.5ms 1.9ms
Track mid-res 0.2ms 1.8ms
Track high-res 1.0ms 6.4ms
Map color (b/w) 0.4ms (0.4ms) 4.5ms (4.2ms)
Overall (b/w) 2.2ms (2.2ms) 15.2ms (14.9ms)

Table 2. Average tracking and mapping times per frame. 

Table 2 shows the timings for PC and mobile phone for tracking 
the camera and updating the map for a new camera image. The 
values in Table 2 represent average durations per task while 
creating a complete map. Exact values vary depending on the 

environment (number of keypoints possible to track) and user 
behavior. E.g. if the camera only points to areas that have already 
been mapped then the mapping time goes close to zero. 

Loop closing is an expensive operation taking 10 seconds (see 
Table 3) for a full color map on the mobile phone when using the 
Lanczos filter for sampling. Only about 50-100ms (PC) and 200-
500ms (phone) are used for finding the loop gap; the rest of the 
time is spent on updating the map. If we use nearest neighbor 
filtering instead (creating noticeable artifacts, but still good for 
tracking), loop closing takes less than 2 seconds on the phone. 
The duration can be reduced further by only using grayscale 
maps. However, in practice loop closing is a rare situation since 
the creation of 360° maps takes ~1-2 minutes and is required only 
once for a map. 

A considerable amount of the localization time goes into 
extracting features from a loaded map (usually several thousands). 
Fortunately, this is only required once, whereas all successive 
frames only need to extract features from the camera image, 
match then against the map features and find a pose, which takes 
~40ms on the PC and ~120ms on the phone. 
 

PC Phone
Loop-close Lanzos (b/w) ~290 (170) ms ~9800 (3900) ms
Loop-close NN (b/w) ~150 (130) ms ~1700 (1300) ms
Localize - first frame ~60ms ~190ms
Localize - further frames ~40ms ~120ms

Table 3. Average timings for loop closing: Lanzos and Nearest 
Neighbor (NN), color and grayscale; localizing from a loaded map. 

8.3 Guidance for taking high-resolution panoramas 

The proposed method for panoramic mapping and tracking 
internally generates color and grayscale panoramas of the 
environment. Such panoramas can be stored on disk and later 
viewed by users like normal photographs. Yet, the panoramas 
cannot compete in quality and resolution with a panorama that is 
generated offline on a desktop computer from several multi-
megapixel photographs. 

Since modern mobile phones integrate good-quality digital 
cameras, our tracking method is exploited for guiding users in 
capturing high-resolution photos of the environment. As a user 
taps on the screen of her mobile phone, the camera of the phone is 
triggered to capture a photograph and to later store it on disk. The 
tracking system, and the internally generated panorama, can be 
used for providing a live preview of the orientation of all photos 
that have already been taken, thus empowering users with a tool to 
verify optimal photo coverage of a panoramic scene (see Figure 
11 left). 

8.4 Augmenting annotations 

Since the proposed method can create and track high-res 
panoramas on the fly, users are enabled to put annotations on such 

Figure 9. Problematic scenes: a) Floor that is poor on texture. b) Wall that is poor on texture, only line details on the floor. c) Line details on the 
wall (keypoints are due to sampling artefacts), pebbles on the floor. d) Moving objects (tram, people) covering most of the image. 



panoramas directly on a mobile phone. This can be useful in 
several application domains, such as posting geo-referenced 
messages or supporting navigation tasks, as well as exploring the 
panoramic image from desktop applications like Google Earth. 

Users can identify the position of the annotation by clicking on 
the corresponding location of their device’s screen. After the user 
has typed in the annotation’s text, it is automatically referenced to 
the chosen position in the panoramic image. The application can 
then store all annotations and their map coordinates in a XML file, 
and save this file together with the panoramic image into a zip 
container. Since many of the current mobile phones ship with a 
location system (GPS or WiFi triangulation) a GPS tag is added to 
the created data and the zip file is sent to a server hosting GPS-
tagged content. 

If another user is exploring the same location at a later stage, 
the user’s phone will send its current GPS position to the server 
and retrieve the zip file again. Our system is able to initialize the 
tracking using the panoramic image contained in the zip file, as 
described in section 6, and can therefore overlay the view with the 
annotations created by the previous user (see Figure 11 right). 

Desktop applications can also access this geo-referenced 
content and embed the annotated panoramas on a virtual globe, 
similarly to the Street View images presented in Google Earth. 

9 CONCLUSIONS 

The paper presented an approach for accurate, robust and drift-
free rotation tracking in outdoor scenarios. The method is efficient 
enough to run at high frame rates on mobile phones. As a side 
effect, the method creates colored, cylindrical panoramic maps 
with little user input. Creating GPS tagged panoramas with this 
method is a first step to allow user participation in creating 
tracking data for outdoor Augmented Reality. Furthermore it 
opens the way for other applications like user-annotated street-
side views, which can be explored in-situ or on a desktop 
computer. 

The presented method does not target the problem of auto-
exposure yet. A work around exists by disabling auto-exposure; 
however, this is not possible on all mobile phones. Actively 
addressing this issue is therefore left as future work. 
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Figure 11. Running at 30Hz on mobile phones, our method gives room for end-user applications. Left: Our method can be used to guide users 
in taking hi-res photos of the environment to be later stitched with a desktop application. The system can show a live preview of where photos 
have been taken, to ensure optimal coverage of the whole panorama. Right: Our method can be used for annotating panoramas and sharing 

them with other mobile users coming later in-situ, or with desktop users. 


