

ABSTRACT

In this paper we present a novel method for real-time pose
estimation and tracking on low-end devices such as mobile phones.
The presented system can track multiple known targets in real-time
and simultaneously detect new targets for tracking. We present a
method to automatically and dynamically balance the quality of
detection and tracking to adapt to a variable time budget and ensure
a constant frame rate. Results from real data of a mobile phone
Augmented Reality system demonstrate the efficiency and
robustness of the described approach. The system can track 6
planar targets on a mobile phone simultaneously at framerates of
23fps.

KEYWORDS: Pose estimation, 6DOF, mobile phone, natural
features

INDEX TERMS: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems–Artificial, augmented, and
virtual realities; I.4.1 [Image Processing and Computer Vision]:
Scene Analysis–Tracking

1. INTRODUCTION AND RELATED WORK

Pose tracking for Augmented Reality (AR) applications has very
demanding requirements: It must deliver full six degrees of
freedom, give absolute measurements with respect to a given
coordinate system, be very robust and run in real-time. Recently,
mobile phones have become increasingly attractive for AR. With
the built-in camera as the primary sensor, phones facilitate intuitive
point-and-shoot interaction with the environment. However, the
limited computational capabilities of the mobile phone CPU
require that algorithms become 1-2 orders of magnitude more
efficient. Moreover, the fidelity of the user interface demands that
the real-time characteristics of the pose tracking should not be
affected by the image content. We will first review other work on
pose tracking suitable for AR, and then state our contribution.

Kanade-Lucas-Tomasi [16] is the most prominent real-time
keypoint tracking method. Alternatively, areas can be tracked
under projective transformation, as demonstrated by Benhimane
and Malis [2]. Both tracking approaches are still too
computationally expensive for mobile phones. Instead, simpler

methods based on optical flow have been presented; e. g.,
TinyMotion [25] tracks in real-time using optical flow, but
estimates only a coarse 2D image movement. Similar systems are
reported in [8], [9].

Recent improvements in keypoint matching have made
interest-point based approaches popular for real-time detection and
tracking. The location invariance of interest point detectors is
attractive for localization without prior knowledge. However,
computation of descriptors that are invariant across large view
point changes is expensive. For instance, Skrypnyk and Lowe [21]
use SIFT descriptors [15] for object localization in AR. On-line
selection of features can be done from a model [3] or mapped from
the environment at runtime [6][12]. Lepetit et al. [13] recast
matching as a classification problem using a decision tree and trade
increased memory usage with avoiding expensive descriptor
matching at runtime. Ozuysal et al. [17] improve the classification
rates while further reducing necessary computational work. Takacs
et al. [23] implemented the SURF [1] algorithm for mobile phones.
They do not target real-time pose estimation, but maximum
detection quality. In a more recent approach [22] Ta et al. improve
speed by tracking SURF features in scale space.

Multiple target tracking deals with the problem of not mixing
up multiple objects that interact and overlap in the camera image.
Typically particle filters are applied for motion and appearance
estimation [4][26][27]. Other approaches use online learning to
optimally distinguish multiple objects [28][7][19]. Closest to our
work is [18], which also amortizes detection of new targets over
multiple frames, but without real-time guarantees.

The work in this paper builds upon our previous publication
[24], where we described modified SIFT [15] and Ferns [17]
approaches and created the first real-time 6DOF natural feature
tracking system running on mobile phones. This paper extends that
work. It deals with computationally efficient methods that permit
simultaneous tracking and detection of multiple targets on
computationally weak platforms (Section 2 presents an overview
of the tracking method). Unlike previous approaches, we pose
simultaneous tracking and detection as an optimization problem
which has to be dynamically solved in real-time (Section 3).
Several heuristics are applied to ensure tracking is not lost and
additional targets are detected if feasible. To our knowledge we are
the first to report a system that attempts to address this problem
under tight real-time constraints of mobile AR. Section 4 presents
several examples on a mobile phone achieving frame rates up to
23fps whilst tracking 6 targets simultaneously.

2. DETECTION AND TRACKING SYSTEM OVERVIEW

Our pose tracking pipeline is split into distinct detection and
tracking parts, which are implemented using different techniques
and exhibit different timing characteristics.

Multiple Target Detection and Tracking with Guaranteed Framerates
on Mobile Phones

Daniel Wagner1, Dieter Schmalstieg2, Horst Bischof3

Graz University of Technology

1wagner@icg.tugraz.at
2schmalstieg@icg.tugraz.at
3bischof@icg.tugraz.at

The tracking system (left block in Figure 1) is the driving
force always running at full frame rate, tracking the pose of targets
that have previously been detected by the detection system. The
tracking system creates a mask that instructs the detection system
where to look at for new targets, thereby speeding up the detection
task. The detection task only works on the unmasked image areas
and uses a SIFT like approach to match keypoints against a feature
database. It then checks the matches using geometrical constraints
against outliers and estimates the pose of each newly detected
target.

Figure 1: Overview of the detection and tracking system.

In the following, we explain in detail how the detection and
tracking systems work, how they complement each other in their
strengths and weaknesses and how they collaborate for faster
overall execution.

2.1. Detection

The aim of the detection system is to find new (previously learned)
tracking targets in the camera image and to estimate a 6DOF pose,
which is then forwarded to the tracking system. Our target
detection method is based on a modified SIFT [15] implementation
that replaces the slow parts of the original SIFT with simpler
variants, yet keeping many of the attractive properties of the
original approach. The detection system is similar to our work
published in [24], but its working principles are repeated here for
completeness and to report on improvements applied since then.

The original SIFT algorithm uses Difference of Gaussians
(DoG) to perform a scale-space search that not only detects
features but also estimates their scale. Although several faster
implementations of Lowe's approach have been proposed, all these
approaches are inherently resource intensive and therefore not
suitable for real-time execution on mobile phones. We therefore
replaced the DoG with the FAST corner detector [20] with
non-maximum suppression that is known to be one of the fastest
corner detectors, but still provides a high repeatability.

Since FAST does not estimate a scale, we quantize the scale
space into discrete steps of 1/√2 and search over all scales. Our
tests showed that the SIFT descriptor is robust enough to also
match features that fall between two scales. The descriptor
database contains features from all scale steps over a meaningful
range (typically 1:5). By describing the same feature multiple
times over various scales, we trade memory for speed to avoid a
CPU-intensive scale-space search. This approach is reasonable
because of the low memory required for each SIFT descriptor.

Although Lowe presents several versions of the SIFT
descriptor, the most popular version uses 4x4 sub-regions with 8
gradient bins each, resulting in a 128-dimensional vector.
Conversely, we constrain computational and memory requirements
by using only 3x3 sub-regions with 4 bins each, resulting in a
36-dimensional vector. Lowe reports this variant to be only ~10%
below optimum.

Since we have fixed-scale interest points, we fix the SIFT
kernel to 15 pixels. To gain robustness we blur the patch with a 3x3

Gaussian kernel. Like in the original implementation we estimate
feature orientations by calculating gradient direction and
magnitude for all pixels of the kernel. The gradient direction is
quantized to 36 bins and the magnitude, weighted using a distance
measure, is added to the respective bin. We compensate for
orientation by rotating the patch using sub-pixel accuracy. For each
rotated patch, gradients are re-estimated, weighted by distance to
the patch center and to the sub-region center, and finally written
into the 4 bins of their sub-region.

The descriptors for all features in the new camera image are
created and matched against the descriptors in the database. For
feature matching the original SIFT uses a k-d Tree with a
Best-Bin-First strategy, but our tests showed that some (usually
1-3) entries of the vectors vary strongly from those in the database,
tremendously increasing the required tolerance for searching in the
k-d Tree, making the approach infeasible on mobile phones. The
higher robustness requirements arise from the simplifications made
in the previous steps, most notably the coarsely quantized scale
space.

We perform descriptor matching using a forest of spill trees
[14]. A spill tree is a variant of a k-d tree that uses an overlapping
splitting area for higher robustness against noisy data. While a
single spill tree turns out to be insufficient, multiple trees with
randomized dimensions for pivoting allow for a highly robust
voting process. When matching descriptors, we only visit a single
leaf in each tree and merge the resulting candidates. Descriptors
that are found in only one tree are discarded; all others are matched
using Euclidean distance.

Outlier removal operates in two steps. First, the relative
orientations of all matched features are corrected to the absolute
rotation using the feature orientations stored in the database. Since
the tracker is limited to planar targets, all features should have a
similar orientation. Entering all orientations into a histogram and
searching for a peak, a main orientation is estimated in linear time
and used to filter out those features which do not support this
hypothesis. The remaining matches are used in a PROSAC scheme
[5] to estimate a homography between the model points of the
planar target and the input image. The final homography is
estimated from the inlier set and used as a starting point in a 3D
pose refinement scheme described next.

The pose extracted from the inliers is coarse and needs to be
improved using non-linear refinement. We apply a Gauss-Newton
iteration to minimize the reprojection error of the 3D-2D point
correspondences. For increased robustness we use a robust
M-estimator [10] that weights the influence of all correspondences
by their variance using a Tukey function.

e C_ i = m in w (ri) $ ri
2

i = 1

N

/

ri C , xi_ i = pi - proj C , xi_ i
w ri_ i = 1 - ri /c_ i2` j2

if ri # c or 0 otherwise

c = 1.48261 + 5/ N - 5_ i` j $ m edian (ri)

(1)

(2)

(3)

(4)

For a set of N observations pi of model points xi, we minimize
the overall observation error e(C) for a camera pose C, which is a
weighted sum of individual squared residuals ri. The residuals are
defined as the offset between the observation pi and the respective
projection proj(C, xi) of the model point xi. Each squared residual is
weighted by the Tukey function w.

2.2. Tracking

The target detector described above treats each image
independently: Keypoints are detected, matched and used to
estimate the camera pose. Frame-to-frame coherence is not
exploited. In contrast to the detector, the tracker uses a purely
active search approach: Based on a pose prior and a motion model,
it estimates coarsely where to look for previously observed features
and what locally affine feature transformation to expect. This
approach removes the requirement for a descriptor that is invariant
to affine changes. This is more efficient than tracking-by-detection
because it makes use of the fact that both the scene and the camera
pose change only slightly between frames.

The tracker uses a reference image of the tracking target,
stored at multiple scales, as the only data source. During
initialization keypoints are detected in the reference image using a
corner detector. The image is stored at multiple scales to avoid
aliasing effects during large scale changes.

Starting with a pose prior (either from the detector or from the
previous frame) the tracker searches for known features at
predicted locations in the camera image. The new feature locations
are calculated by projecting the keypoints of the reference image
into the camera image.

After the new feature positions have been estimated, they are
searched within a predefined search region of constant size. Using
the pose prior, the tracker creates affinely warped 8x8 pixel
representations of the features from the reference image. The exact
feature locations are determined using normalized cross correlation
(NCC) over a predefined search area. For each good match, we
perform a quadratic fit into the NCC responses of the neighboring
pixel positions to achieve sub-pixel accuracy.

Template matching over a search window is fast, if the search
window is small. However, a small search window limits the speed
at which camera motion can be detected. To increase the search
radius, we use a hierarchical approach. Similar to Klein [12], we
estimate the new pose from an image scaled down by 50%. Only
few, randomly selected feature positions are searched at this level,
but with a large search radius. We employ the same pose
refinement method as for the detector, using the pose prior as a
starting point (rather than a pose from homography) for the
iterative refinement. After a pose has been estimated for the low
resolution image, it is further refined using the full resolution
image with a larger number of feature points, but with a smaller
search radius.

Additionally, we use a motion model for each target to predict
the camera's pose (translation and rotation) from the previous
frame. Our motion model is linear, calculating the difference
between the poses of the previous two frames in order to predict the
current pose. This model works well, as long as the camera's
motion does not change drastically. As our tracker typically runs at
20Hz or more, this is a valid assumption in most cases.

2.3. Combined Detection and Tracking

The detection and tracking tasks described above are designed to
work together and have complementary strengths (Table 1). The
detection system can detect new targets in a camera image and
estimates the camera's pose relative to these targets without prior
knowledge on the exterior camera parameters.

System Detection Tracking
Detect targets + -

Initialize tracking + -
Speed - +

Robust to blur - +
Robust to tilt ~ +

Robust to illumination changes ~ +

Table 1: Strengths and weaknesses of the detection and tracking.

The tracking system works with a pose prior and therefore
knows where to search; consequently it runs much faster than the
detection task. The combination of avoiding a keypoint detector,
affinely warping patches and normalized cross correlation for
matching makes the tracker very robust: Due to using NCC, the
PatchTracker is robust to global changes in lighting, while the
independent matching of many features increases the chance of
obtaining good matches, even under extreme local lighting changes
and reflections (Figure 2a). Because of the affinely warped
patches, it can track under extreme tilts close to 90° (Figure 2b),
whereas the detector has problems handling tilts larger than ~45°.
The absence of a keypoint detection step also makes it moderately
robust to blur (Figure 2c). Finally, the tracker is very fast,
requiring only ~1ms on an average PC and ~6ms on a fast mobile
phone per target in typical application scenarios.

2.4. Speeding up Detection by Tracking

As noted above, the time required for detection largely depends on
the camera resolution and number of keypoints detected in the
camera image. More precisely, it depends on the number of pixels
to be searched and the number of pixels that are classified as
keypoints. Reducing these numbers by re-using information from
the tracking part represents an efficient way to speed up the
recognition task.

Our method is based on the simple idea of omitting areas
covered by already tracked keypoints. A possible approach is to
project the shape of the tracking target into the camera image in
order to mask out the keypoints inside this area. However, such an
approach does not work when tracking targets overlap in image
space. For instance, a small target in front of a larger target cannot
be detected, since the area of the large target completely surrounds
the area of the small target.

Instead, we adopt a splatting technique that is based on the
assumption that after a keypoint has been positively matched

Figure 2: a) Tracking despite reflections; b) Tracking under severe tilt; c) Tracking despite strong blur

during tracking process, we can infer that a small area around that
keypoint is visible in the camera image (see Figure 3). Hence, for
each keypoint successfully matched, we paint (splat) a small square
into the mask, covering the area around that keypoint in the camera
image. The size of the square depends on the scale the feature
originates from: features from level one (low-res) result splats
twice as large as feature from level zero (high-res). Since all
keypoints are randomly distributed over the target, this method
nicely covers large areas of the tracked targets. Areas not covered
are usually weak in texture and therefore do not create responses
during keypoint detection.

Figure 3: Masks (visualized in green color) created by the
tracking task for speeding up the detection.

Using an OR operation, the masks from all tracked targets are
combined and forwarded to the keypoint detector, which then only
processes those pixels that are not masked. As can be seen in Figure
4 this method can vastly reduce the number of detected keypoints
and therefore speed up the overall detection process.

Figure 4: Keypoints detection without image mask
(left, 486 keypoints) and with image mask (right, 70 keypoints).

2.5. Analysis of Speed and Predictability

We implemented different code paths for PCs and mobile phones.
On the PC we use floating point, whereas on the mobile phone we
always use a fixed point code path. Even though some modern
mobile phones support floating point in hardware today, our tests
showed that fixed point is still faster for our applications. We
assume that this is related to a suboptimal intermixing of integer
and floating point code in the current generation of compilers for
mobile phones. We expect this situation to improve as mobile
phones will increasingly support hardware floating point in the
future. Except when noted otherwise, all tests and evaluations
presented in this paper were performed in floating point on the PC
and fixed-point on the mobile phone.

The speed of the detection system is mainly dependent on the
camera resolution and the number of keypoints detected.

Additionally, speed is influenced by the size of the feature database
and the number of outliers.

The tracker’s speed depends largely on the number of
keypoints to match and the size of the search window; speed can
therefore by be directly influenced. The tracking time for each
target is independent of number of targets tracked. Typically,
detection for one image takes about 3-5 times longer than tracking
of a single target.

In order to detect and track while obeying a fixed time
budget, we must be able to predict the time consumption of each
algorithm. The keypoint detection using FAST corners can be well
predicted, since the average speed per scan line is rather stable.
Keypoint description using SIFT-like gradient histograms is also
stable. Descriptor matching compares all descriptors against the
feature database and assigns the matches to tracking targets. Again,
the average time to match a descriptor can be well predicted.
Outlier removal takes the matches of all those targets that are not
tracked yet and performs various geometrical tests (consistent
keypoint rotation and spatial tests based on homography). The time
required for the outlier removal varies significantly, depending
how early a tracking target is rejected. Finally, pose refinement
(see section 2.1) takes the pose and the inlier set and performs a
non-linear refinement. Since the prior pose is usually of good
quality, only few iterations (typically 3) are required and the task
therefore takes near constant time.

Since we keep the size of the search windows constant, the
speed of the tracker directly depends on the number of keypoints to
match. In our two-level approach, we always match 25 keypoints at
half camera resolution and between 30 and 100 keypoints at full
resolution. The time for matching at half resolution is therefore
mostly constant while the time for matching at full resolution
changes almost linearly with the number of keypoints to match.

In summary, the time consumption of most steps of the
algorithm can be predicted well with the exception of the outlier
removal step.

3. COMBINED TRACKING AND DETECTION AT GUARANTEED

FRAME RATES

A system that supports multiple tracking targets needs to run both
the detection as well as the tracking task simultaneously: While the
tracker estimates the poses of all previously detected targets until
they are lost, the detector needs to look out for new targets, which
are then forwarded to the tracker. Rendering, image acquisition and
system overhead add up to the overall frame time.

The aim of the system is to keep the overall frame time
constant, e.g. 50ms for a system running at 20Hz. The tracking
system therefore has to adapt in order to fit into the time slice that is
left after subtracting the application (rendering, system) and the
image acquisition duration from the overall frame duration. While
the application time can be accurately estimated, the image
acquisition time is more problematic. Many cameras in mobile
phones can only deliver the selected frame rate if the camera
system process receives enough CPU time, by making the
foreground task suspend to idle mode until the camera image is
ready. The idling interval is hard to determine, as it depends on
many factors including CPU, memory and bus load. If too little
CPU time is dedicated to the camera, the camera frame rate drops.
Only the effect of too little camera CPU time can be measured,
whereas too much camera CPU time is simply spent with waiting
for the next camera image to become available. Figure 5 shows an
overview of this problem for a single frame. The aim is to minimize

the "idle time for camera" to a level that does not reduce the camera
frame rate.

To be able to measure the effect in both directions, we target a
frame rate that is slightly lower than the maximum camera rate.
The tracking time budget is then adapted dynamically to fit this
frame rate. If the overall frame rate is higher than anticipated we
can increase the tracking time; if it is lower then we have to
decrease it.

Figure 5: Execution of the application has to leave enough idle time

for the system to read the camera image.

This problem can be outlined as follows: Once the overall
tracking time budget Tv is determined, the tracking system can
adapt its operations in order to detect and track within the available
time frame. On a fast mobile phone, such as used in our tests
(Section 4), tracking requires about 6-8ms per target, whereas the
recognition process takes about 30ms for a full camera image.
Consequently, given an overall budget of e.g. 30ms per frame
(computed as 50ms per frame minus 20ms for the application),
detection and tracking of multiple targets cannot both be executed
without optimization.

Tracking previously detected targets has the highest priority
and must be running at full frame rate if possible at all. Detection of
new targets has lower importance and is not required to run at full
frame rate. Instead, it is sensible to amortize the cost of detection
over multiple frames.

We can formulate the task of scheduling the optimal detection
and tracking within a certain time budget as a constraint
optimization problem. More formally, we define Cost and Benefit
heuristics for the tracking of target ti and the detection task.

Cost(ti, qi, pi) is the time it takes to track target ti at quality qi;
pi is the pose prior. The quality in this metric is assumed to be
proportional to the number of feature points from the given target
selected for warping and matching in the active search. The cost of
not tracking target ti is set to be very high (higher than detection).
Thereby we ensure that tracking has always a higher priority than
detection.

Benefit(ti, qi, pi) is an estimate for the contribution of tracking
target ti at quality qi; pi is the pose prior. This benefit value is
obviously higher (better accuracy) with increased quality, but also
takes into account the target’s number of features and the pose
change rate derived from the motion model. Small pose changes
require fewer iterations in the pose computation, while large pose
changes often introduce blur, which makes the matching more
computationally intensive.

Cost(d) is an estimate of the time it takes to perform a certain
fraction d of a detection task. This is proportional to the number of
features in the area not covered by the image mask derived from
tracking the targets in the current frame.

Benefit(d) is an estimate of the contribution of performing a
certain amount d of the detection task in this frame. This
contribution depends on the number of frames still required to
complete the detection, assuming the currently chosen amount of
the task is kept over the next frames. For example, if n candidate
feature pixels must be examined, choosing an amount of 0.3n leads
to upper(1/0.3)=4 frames, whereas choosing n/3 leads to only 3
frames estimated completion time for the detection. Shorter
completion times receive significantly higher benefit.

Using this notation, the optimization can be stated as

max
qi,d

Benefit t i,qi,pi^ h+ Benefit (d)
i

/
s.t.

Cost (t i,qi,pi) + Cost (d) # TV

i

/

(5)

This constrained optimization problem is a variant of the
NP-complete Multiple Choice Knapsack Problem [11]. This kind
of Knapsack Problem allows to select (“pack”) only one from a
number of options for each item, in our case the quality of the
tracking and the amount of detection. Since we have very few items
(typically <10 tracking targets), a simple greedy heuristic suffices:

1. Maximize the cumulative relative value (Benefit/Cost) for all

tracking targets while staying within frame time
2. Assign the remaining time to detection
3. Try to increase detection time at the expense of tracking

quality until the overall benefit does no longer increase. This
is done in discrete steps that reduce the number of frames
until completion.

Unfortunately, some of the variables used in the optimization

procedure cannot be estimated reliably. In particular, the later steps
in the detection such as the outlier removal depend on the keypoint
detection in the earlier steps. The overall outlier removal time
varies strongly depending on how early a potential target is
rejected.

Therefore we repeat or refine the planning at several stages
within one frame’s work. After each step, the system will
determine its used time and make sure that only as much work is
scheduled as will likely fit into the time left, e.g., a limited number
of image scan lines to search for keypoints. Likewise, any amount
of detection left over after time runs out will be re-scheduled to
continue at the next frame’s detection slot.

4. EXPERIMENTAL RESULTS

The following experiments were all run with the same
configuration for detection and tracking. The keypoint detector
was configured to adjust its threshold dynamically to detect
keypoints for 0.5% of the number of pixels in the unmasked areas.
The maximum allowed Euclidean distance for descriptor matching
was set to 0.12 (using normalized vectors). We created a feature
dataset of 8 targets with 15313 descriptors altogether, indexed by 3
spill trees resulting in an overall detection dataset size of 1.75
megabytes (777 KB for the descriptors and 340 KB for each tree).

For the tracker we used grayscale reference images, sized at
480 pixels for the longer side summing up to 1.23 megabytes of
image data. We configured the tracker to match 25 points at half
resolution with a search radius of 5 pixels and up to 100 points at
full resolution with a search radius of 2 pixels only. Hence, for a
frame rate of 20Hz, the system can track interest points at a speed
of up to 5·2·20 = 200 pixels (5 pixels radius at half resolution at
20Hz) per second plus the compensation provided by the motion
model of the tracker.

For both the tracker and detector the pose refinement was
configured to iterate at least three times and then break as soon as
the reprojection error improves less than 5%.

4.1. Artificial Transformations

To test the accuracy of the tracker, we created a sequence of 61
frames rendered in 3dsMAX showing a target coming into the
image from the right side and leaving to the left (see Figure 6).
The renderings were done a using a virtual camera with a field of
view of 45° at a resolution of 320x240 pixels. The camera was set
at the center of the scene, whereas the target sized 480x272 units
moved on a circular path at a distance of 750 units.

Figure 6: Artificial transformation for accuracy tests. Left: Frame 17;
Right: Frame 51.

 Figure 7 shows the position and orientation errors of various
configurations with respect to the ground truth from the scene
settings in 3dsMAX. As to be expected the z-coordinate suffers
from the largest positional error, whereas the x-values are good and
the y-values are flawless with an error of 0.0 (note that the target
moved horizontally only at the middle of the screen). Although the
average errors are similar, the setups with more correspondences

suffer less from jitter, noticeable as smoother lines in the charts of
Figure 7. One can clearly see that in the middle of the sequence,
where the target is fully visible in the camera image, the jitter is
minimal for all configurations.

It is interesting to notice that for all configurations the error
trend of the z-coordinate is highly similar: In the beginning, the
target is estimated too far away and then transitions to a pose that is
too close. Similar trends can also be found other attributes dPosX,
dPosY, dEulerX, dEulerY and dEulerZ. We don’t have an
explanation for this behavior, but it is obviously system immanent
rather than an issue due to limited precision in pose estimation.

4.2. Visual Jitter

We created a real setup (see Figure 8) that exaggerates the jitter an
Augmented Reality user would perceive using our tracker. In this
setup, we placed a virtual pole on top of a tracked printout and
placed the camera such that the tip of the virtual pole is close to the
camera. Due to the large distance of the target and the close
distance to the camera, the visual jitter at the tip of the virtual
object is strongly amplified. Since the scene is static, the pole
should remain perfectly still in an ideal case. While the camera
feed is 320x240 pixels, we rendered the virtual pole at 640x480 for
improved measurement accuracy. The results can be viewed in the
supplemental video.

Additionally we estimated the reprojection error at the tip of
the pole by sampling 1000 camera frames, calculating the average
position, standard deviation and maximum derivation. As before,
all calculations were done for a screen resolution of 640x480

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

‐13

‐11

‐9

‐7

‐5

‐3

‐1

1

3

5

P
o
si
ti
o
n
 a
n
d
 O
ri
e
n
ta
ti
o
n
 E
rr
o
r

Frames

dPosX

dPosY

dPosZ

dEulerX

dEulerY

dEulerZ

Figure 7: Position and orientation (in degrees)
errors from a moving synthetic target over 61
frames.
1st line: 30, 65 and 150 floating point
correspondences. 2nd line 300 floating point
correspondences and fixed point with 30 and 65
correspondences. 3rd line: 150 and 300 fixed
point correspondences.

pixels. The whole sequence of tests was repeated 3 times and the
averages of all measurements were taken.

Figure 8: Setup for visual jitter estimation.

The chart in the right image of Figure 9 shows the results for 1000,
300, 100, 65 and 30 correspondences. At 100 correspondences or
below, the quality of fixed point decreases. In all cases, standard
deviation of the reprojection error is <0.6 pixels (fixed) and <0.2
pixels (floating).

0

0,2

0,4

0,6

0,8

1

1,2

1000 300 100 65 30

P
ix
e
ls

Correspondences

floating‐point
std‐dev

floating‐point
maximum

fixed‐point
std‐dev

fixed‐point
max

Figure 9: Reprojection error at the tip of the pole in the left image.

4.3. Tests on a Mobile Phone

We tested our approach on the Asus P565, a Windows Mobile
phone with 800MHz and a camera delivering up to 30 images per
second at a resolution of 320x240 pixels. The target frame rate of
the system was set to 23 frames per second. The screenshots in
Figure 10 show the progress of detecting and tracking one to six
independent targets concurrently. The green transparent areas
encode those parts of the screen that are tracked and therefore not
searched for during the detection step. Each detected target is
augmented with a cuboid. All targets are treated independent of
each other.

At the bottom of the screen the application displays feedback
data. Line 1 reports how much time of the estimated vision budget
was used in the current frame. Line 2 tells how much time was
spent for tracking, how many targets were tracked and which
quality setting was used. Line 3 reports how much time was spent
for the detection task and over how many frames this work was
distributed.

One can notice in the top left image of Figure 10 that tracking
a single target leaves enough time left for detection of new targets
within a single frame only. This is due to a large area of the camera

image being masked out by the tracking system. The 2nd image
shows tracking of 2 targets, which requires about 20ms, still
leaving enough time to the detection system to finish its task in a
single frame most of the time. The 3rd image shows tracking of 3
targets, now heavily reducing the detection time budget. In the first
image of the second row, the tracking system starts reducing
tracking quality in order to keep up the frame rate. There is only
little time left for detection, but most of the image is covered by the
tracked area. The next screenshot shows that the tracking system
has degraded the tracking quality even more to maintain the target
frame rate. Finally, in the last image, six targets are tracked, which
leaves only little time for detection despite the strongly reduced
tracking quality. The system would not be able to track another
target once detected (please see supplemental video).

The tests show that the mobile phone can track and detect up
to six targets while maintaining a frame rate of 23 fps or more. In
this test we deliberately chose simple virtual objects (cuboids) that
are fast to render in order to estimate how far the tracking system
can go.

5. CONCLUSIONS

We have presented a new method for detection and tracking of
multiple planar targets in real-time on low end devices. Our system
detects and tracks up to six targets with 23 frames per second a
mobile phone in 6DOF while augmenting them at the same time.
Splitting up detection and tracking in two separate subsystems that
work at different frame rates allowed the creation of a highly
efficient system that is several orders of magnitude faster than any
other 6DOF tracker reported so far.

We observe that the level of CPU performance on phones has
not increased a lot in the last three years, probably because of a
certain market saturation and the very tight power budget afforded
by cell phone batteries. Instead, mobile phones with programmable
GPUs are now becoming available. Especially the tracking
subsystem is made up of basic operations (warping and template
matching) that are suitable even for the rather simple shading units
of first generation programmable mobile phone GPUs.

In the future we plan to extend our system to true 3D targets
thereby allowing tracking of more complicated targets such as real
3D objects or the environment of a mobile user. Estimating a
homography would then not suffice anymore. Furthermore, it
would be necessary to cope with self-occlusions of the tracking
target.

6. ACKNOWLEDGEMENTS

The authors thank Gerhard Reitmayr for discussions regarding the
pose refinement step and the reviewers for their many suggestions.
This research was funded by the Austrian Science Fund FWF under
contracts Y193 and W1209-N15, and the Christian Doppler
Research Association.

REFERENCES

[1] Bay, H., Tuytelaars, T., Gool, L. V., Surf: Speeded up robust features,
In Proc. ECCV 2006, 2006.

[2] Benhimane, S., Malis, E., Real-time image-based tracking of planes
using Efficient Second-order Minimization, In Proc. of International
Conference on Intelligent Robots and Systems, Vol. 1, pp. 943-948,
2004

[3] Bleser, G., Stricker, D., Advanced tracking through efficient image
processing and visual-inertial sensor fusion. In Proc. IEEE VR 2008,
pp. 137-144 2008

[4] Cai, Y., Freitas, N., Little, J.J., Robust Visual Tracking for Multiple
Targets. In Proc. ECCV2006, pp. 107-118, 2006

[5] Chum, O., Matas, J., Matching with PROSAC Progressive Sample
Consensus, In Proc. CVPR'05 - Volume 1, 220 - 226, 2005

[6] Davison, A.J., Mayol, W.W., Murray, D.W., Real-time localisation
and mapping with wearable active vision. In Proc. of IEEE ISMAR
2003, pp. 18-27, 2003

[7] Grabner, M., Grabner, H., Bischof, H., Real-time tracking via on-line
boosting. In Proc. of British Machine Vision Conference (BMVC),
Volume I, pp. 47-56, 2006

[8] Hannuksela J., Sangi P. and Heikkilä J., A Vision-Based Approach for
Controlling User Interfaces of Mobile Devices, In Proc. CVPR,
Workshop on Vision for Human-Computer Interaction (V4HCI),
2005

[9] Haro, A., Mori, K., Setlur, V., Capin, T., Mobile Camera-based
Adaptive Viewing, In Proc of 4th International Conference on Mobile
Ubiquitous Multimedia, MUM 2005

[10] Huber, P.J., Robust estimation of a location parameter. In Annals of
Mathematical Statistics, pp 73-101, 1964

[11] Ibaraki, T., Hasegawa, T., Teranaka, K., and Iwase J. The Multiple
Choice Knapsack Problem. J. Oper. Res. Soc. Japan 21, pp. 59-94,
1978

[12] Klein, G., Murray, D., Parallel tracking and mapping for small ar
workspaces. In Proc. of ISMAR 2007, pp. 225-234, 2007

[13] Lepetit, V., Lagger, P., Fua, P., Randomized trees for real-time
keypoint recognition. In Proc. CVPR 2005, pp. 775-781, 2005

[14] Liu, T., Moore, A.W., Gray, A., Yang, K., An investigation of
practical approximate nearest neighbor algorithms. In Advances in
Neural, In Information Processing Systems, MIT Press, pp. 825-832,
2004

[15] Lowe, D., Distinctive image features from scale-invariant keypoints.
Int. Journal of Computer Vision, Volume 60, Issue 2, pp. 91-110,
2004

[16] Lucas, B.D., Kanade, T., An iterative image registration technique
with an application to stereo vision. In Proc. of 7th International
Conference on Artificial Intelligence, pp. 674-679, 1981

[17] Ozuysal, M., Fua, P., Lepetit, V., Fast keypoint recognition in ten lines
of code. In of Proc. CVPR 2007, pp. 1-8, 2007

[18] Park, Y., Lepetit, V., Woo, W., Multiple 3D Object tracking for
augmented reality, In Proc. of ISMAR2008, pp. 117-120, 2008

[19] Pernkopf, F., Tracking of Multiple Targets Using On-Line Learning
for Appearance Model Adaptation, In Proc. of International
Conference on Image Analysis and Recognition (ICIAR07), pp.
602-614, 2007

[20] Rosten, E., Drummond, T., Machine learning for high-speed corner
detection. In Proc. of 9th European Conference on Computer Vision
(ECCV2006), pp. 430-443, 2006

[21] Skrypnyk, I., Lowe, D., Scene modeling, recognition and tracking
with invariant image features. In Proc. of ISMAR 2004, pp. 110-119,
2004

[22] Ta, D.-N., Chen, W.-C., Gelfand, N., Pulli, K., SURFTrac: Efficient
Tracking and Continuous Object Recognition using Local Feature
Descriptors, Conference on Computer Vision and Pattern Recognition
(CVPR'09), pp. 2937-2943, 2009

[23] Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.-C.,
Bismpigiannis, T., Grzeszczuk, R., Pulli, K., and Girod, B., Outdoors
Augmented Reality on Mobile Phone using Loxel-Based Visual
Feature Organization, In Proc. of the 1st ACM international
conference on Multimedia information retrieval, pp. 427-434, 2008

[24] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg,
D., Pose Tracking from Natural Features on Mobile Phones, In Proc.
IEEE ISMAR2008, pp. 125-134, 2008

[25] Wang, J. Zhai, S., Canny, J., Camera Phone Based Motion Sensing:
Interaction Techniques, Applications and Performance Study, In
ACM UIST 2006, pp. 101-110, 2006

[26] Yang, C., Duraiswami, R. Davis, L., Fast Multiple Object Tracking
via a Hierarchical Particle Filter, In Proc. ICCV'05, pp. 212-219, 2005

[27] Yu, T., Wu, Y., Collaborative Tracking of Multiple Targets, In Proc.
CVPR'04, pp.834-841, Volume 1, 2004

[28] Yuan, X., Li, S.Z., Learning Feature Extraction and Classification for
Tracking Multiple Objects: A Unified Framework, In Proc. of the
IEEE International Conference on Video and Signal Based
Surveillance (AVSS'06), pp.22-27, 2006

Figure 10: Screenshots from the test application running on a mobile phone. The graph in the right bottom of each screen shows where the vision pipeline
spends its time. From bottom to top: Tracking (blue), keypoint detection (red), keypoint description (green), matching (purple) and removal and pose

estimation (cyan). Black represents the time left for the rest of the system. The yellow text reports: 1st line: how much time of the overall time budget has been
used; 2nd line: how long tracking took, the number of tracked targets and the tracking quality; 3rd line: detection time split of number of frames.

