
   
 
 

 

ABSTRACT 

In this paper we present a novel method for real-time pose 
estimation and tracking on low-end devices such as mobile phones. 
The presented system can track multiple known targets in real-time 
and simultaneously detect new targets for tracking. We present a 
method to automatically and dynamically balance the quality of 
detection and tracking to adapt to a variable time budget and ensure 
a constant frame rate. Results from real data of a mobile phone 
Augmented Reality system demonstrate the efficiency and 
robustness of the described approach. The system can track 6 
planar targets on a mobile phone simultaneously at framerates of 
23fps. 
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1. INTRODUCTION AND RELATED WORK 

Pose tracking for Augmented Reality (AR) applications has very 
demanding requirements: It must deliver full six degrees of 
freedom, give absolute measurements with respect to a given 
coordinate system, be very robust and run in real-time. Recently, 
mobile phones have become increasingly attractive for AR. With 
the built-in camera as the primary sensor, phones facilitate intuitive 
point-and-shoot interaction with the environment. However, the 
limited computational capabilities of the mobile phone CPU 
require that algorithms become 1-2 orders of magnitude more 
efficient. Moreover, the fidelity of the user interface demands that 
the real-time characteristics of the pose tracking should not be 
affected by the image content. We will first review other work on 
pose tracking suitable for AR, and then state our contribution. 

Kanade-Lucas-Tomasi [16] is the most prominent real-time 
keypoint tracking method. Alternatively, areas can be tracked 
under projective transformation, as demonstrated by Benhimane 
and Malis [2]. Both tracking approaches are still too 
computationally expensive for mobile phones. Instead, simpler 

methods based on optical flow have been presented; e. g., 
TinyMotion [25] tracks in real-time using optical flow, but 
estimates only a coarse 2D image movement. Similar systems are 
reported in [8], [9].  

Recent improvements in keypoint matching have made 
interest-point based approaches popular for real-time detection and 
tracking. The location invariance of interest point detectors is 
attractive for localization without prior knowledge. However, 
computation of descriptors that are invariant across large view 
point changes is expensive. For instance, Skrypnyk and Lowe [21] 
use SIFT descriptors [15] for object localization in AR. On-line 
selection of features can be done from a model [3] or mapped from 
the environment at runtime [6][12]. Lepetit et al. [13] recast 
matching as a classification problem using a decision tree and trade 
increased memory usage with avoiding expensive descriptor 
matching at runtime. Ozuysal et al. [17] improve the classification 
rates while further reducing necessary computational work. Takacs 
et al. [23] implemented the SURF [1] algorithm for mobile phones. 
They do not target real-time pose estimation, but maximum 
detection quality. In a more recent approach [22] Ta et al. improve 
speed by tracking SURF features in scale space. 

Multiple target tracking deals with the problem of not mixing 
up multiple objects that interact and overlap in the camera image. 
Typically particle filters are applied for motion and appearance 
estimation [4][26][27]. Other approaches use online learning to 
optimally distinguish multiple objects [28][7][19]. Closest to our 
work is [18], which also amortizes detection of new targets over 
multiple frames, but without real-time guarantees. 

The work in this paper builds upon our previous publication 
[24], where we described modified SIFT [15] and Ferns [17] 
approaches and created the first real-time 6DOF natural feature 
tracking system running on mobile phones. This paper extends that 
work. It deals with computationally efficient methods that permit 
simultaneous tracking and detection of multiple targets on 
computationally weak platforms (Section 2 presents an overview 
of the tracking method). Unlike previous approaches, we pose 
simultaneous tracking and detection as an optimization problem 
which has to be dynamically solved in real-time (Section 3). 
Several heuristics are applied to ensure tracking is not lost and 
additional targets are detected if feasible. To our knowledge we are 
the first to report a system that attempts to address this problem 
under tight real-time constraints of mobile AR. Section 4 presents 
several examples on a mobile phone achieving frame rates up to 
23fps whilst tracking 6 targets simultaneously. 

2. DETECTION AND TRACKING SYSTEM OVERVIEW 

Our pose tracking pipeline is split into distinct detection and 
tracking parts, which are implemented using different techniques 
and exhibit different timing characteristics. 
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The tracking system (left block in Figure 1) is the driving 
force always running at full frame rate, tracking the pose of targets 
that have previously been detected by the detection system. The 
tracking system creates a mask that instructs the detection system 
where to look at for new targets, thereby speeding up the detection 
task. The detection task only works on the unmasked image areas 
and uses a SIFT like approach to match keypoints against a feature 
database. It then checks the matches using geometrical constraints 
against outliers and estimates the pose of each newly detected 
target. 

 

Figure 1: Overview of the detection and tracking system. 

In the following, we explain in detail how the detection and 
tracking systems work, how they complement each other in their 
strengths and weaknesses and how they collaborate for faster 
overall execution. 

2.1. Detection 

The aim of the detection system is to find new (previously learned) 
tracking targets in the camera image and to estimate a 6DOF pose, 
which is then forwarded to the tracking system. Our target 
detection method is based on a modified SIFT [15] implementation 
that replaces the slow parts of the original SIFT with simpler 
variants, yet keeping many of the attractive properties of the 
original approach. The detection system is similar to our work 
published in [24], but its working principles are repeated here for 
completeness and to report on improvements applied since then. 

The original SIFT algorithm uses Difference of Gaussians 
(DoG) to perform a scale-space search that not only detects 
features but also estimates their scale. Although several faster 
implementations of Lowe's approach have been proposed, all these 
approaches are inherently resource intensive and therefore not 
suitable for real-time execution on mobile phones. We therefore 
replaced the DoG with the FAST corner detector [20] with 
non-maximum suppression that is known to be one of the fastest 
corner detectors, but still provides a high repeatability. 

Since FAST does not estimate a scale, we quantize the scale 
space into discrete steps of 1/√2 and search over all scales. Our 
tests showed that the SIFT descriptor is robust enough to also 
match features that fall between two scales. The descriptor 
database contains features from all scale steps over a meaningful 
range (typically 1:5). By describing the same feature multiple 
times over various scales, we trade memory for speed to avoid a 
CPU-intensive scale-space search. This approach is reasonable 
because of the low memory required for each SIFT descriptor. 

Although Lowe presents several versions of the SIFT 
descriptor, the most popular version uses 4x4 sub-regions with 8 
gradient bins each, resulting in a 128-dimensional vector. 
Conversely, we constrain computational and memory requirements 
by using only 3x3 sub-regions with 4 bins each, resulting in a 
36-dimensional vector. Lowe reports this variant to be only ~10% 
below optimum. 

Since we have fixed-scale interest points, we fix the SIFT 
kernel to 15 pixels. To gain robustness we blur the patch with a 3x3 

Gaussian kernel. Like in the original implementation we estimate 
feature orientations by calculating gradient direction and 
magnitude for all pixels of the kernel. The gradient direction is 
quantized to 36 bins and the magnitude, weighted using a distance 
measure, is added to the respective bin. We compensate for 
orientation by rotating the patch using sub-pixel accuracy. For each 
rotated patch, gradients are re-estimated, weighted by distance to 
the patch center and to the sub-region center, and finally written 
into the 4 bins of their sub-region. 

The descriptors for all features in the new camera image are 
created and matched against the descriptors in the database. For 
feature matching the original SIFT uses a k-d Tree with a 
Best-Bin-First strategy, but our tests showed that some (usually 
1-3) entries of the vectors vary strongly from those in the database, 
tremendously increasing the required tolerance for searching in the 
k-d Tree, making the approach infeasible on mobile phones. The 
higher robustness requirements arise from the simplifications made 
in the previous steps, most notably the coarsely quantized scale 
space. 

We perform descriptor matching using a forest of spill trees 
[14]. A spill tree is a variant of a k-d tree that uses an overlapping 
splitting area for higher robustness against noisy data. While a 
single spill tree turns out to be insufficient, multiple trees with 
randomized dimensions for pivoting allow for a highly robust 
voting process. When matching descriptors, we only visit a single 
leaf in each tree and merge the resulting candidates. Descriptors 
that are found in only one tree are discarded; all others are matched 
using Euclidean distance. 

Outlier removal operates in two steps. First, the relative 
orientations of all matched features are corrected to the absolute 
rotation using the feature orientations stored in the database. Since 
the tracker is limited to planar targets, all features should have a 
similar orientation. Entering all orientations into a histogram and 
searching for a peak, a main orientation is estimated in linear time 
and used to filter out those features which do not support this 
hypothesis. The remaining matches are used in a PROSAC scheme 
[5] to estimate a homography between the model points of the 
planar target and the input image. The final homography is 
estimated from the inlier set and used as a starting point in a 3D 
pose refinement scheme described next. 

The pose extracted from the inliers is coarse and needs to be 
improved using non-linear refinement. We apply a Gauss-Newton 
iteration to minimize the reprojection error of the 3D-2D point 
correspondences. For increased robustness we use a robust 
M-estimator [10] that weights the influence of all correspondences 
by their variance using a Tukey function. 

 

e C_ i = m in w (ri) $ ri
2

i = 1

N

/

ri C , xi_ i = pi - proj C , xi_ i
w ri_ i = 1 - ri /c_ i2` j2

if ri # c or 0 otherwise

c = 1.48261 + 5/ N - 5_ i` j $ m edian (ri)

 

(1) 
 

(2) 
 

(3) 
 

(4) 
 

For a set of N observations pi of model points xi, we minimize 
the overall observation error e(C) for a camera pose C, which is a 
weighted sum of individual squared residuals ri. The residuals are 
defined as the offset between the observation pi and the respective 
projection proj(C, xi) of the model point xi. Each squared residual is 
weighted by the Tukey function w. 



   
 
 

 

2.2. Tracking 

The target detector described above treats each image 
independently: Keypoints are detected, matched and used to 
estimate the camera pose. Frame-to-frame coherence is not 
exploited. In contrast to the detector, the tracker uses a purely 
active search approach: Based on a pose prior and a motion model, 
it estimates coarsely where to look for previously observed features 
and what locally affine feature transformation to expect. This 
approach removes the requirement for a descriptor that is invariant 
to affine changes. This is more efficient than tracking-by-detection 
because it makes use of the fact that both the scene and the camera 
pose change only slightly between frames. 

The tracker uses a reference image of the tracking target, 
stored at multiple scales, as the only data source. During 
initialization keypoints are detected in the reference image using a 
corner detector. The image is stored at multiple scales to avoid 
aliasing effects during large scale changes.  

Starting with a pose prior (either from the detector or from the 
previous frame) the tracker searches for known features at 
predicted locations in the camera image. The new feature locations 
are calculated by projecting the keypoints of the reference image 
into the camera image.  

After the new feature positions have been estimated, they are 
searched within a predefined search region of constant size. Using 
the pose prior, the tracker creates affinely warped 8x8 pixel 
representations of the features from the reference image. The exact 
feature locations are determined using normalized cross correlation 
(NCC) over a predefined search area. For each good match, we 
perform a quadratic fit into the NCC responses of the neighboring 
pixel positions to achieve sub-pixel accuracy. 

Template matching over a search window is fast, if the search 
window is small. However, a small search window limits the speed 
at which camera motion can be detected. To increase the search 
radius, we use a hierarchical approach. Similar to Klein [12], we 
estimate the new pose from an image scaled down by 50%. Only 
few, randomly selected feature positions are searched at this level, 
but with a large search radius. We employ the same pose 
refinement method as for the detector, using the pose prior as a 
starting point (rather than a pose from homography) for the 
iterative refinement. After a pose has been estimated for the low 
resolution image, it is further refined using the full resolution 
image with a larger number of feature points, but with a smaller 
search radius. 

Additionally, we use a motion model for each target to predict 
the camera's pose (translation and rotation) from the previous 
frame. Our motion model is linear, calculating the difference 
between the poses of the previous two frames in order to predict the 
current pose. This model works well, as long as the camera's 
motion does not change drastically. As our tracker typically runs at 
20Hz or more, this is a valid assumption in most cases. 

2.3. Combined Detection and Tracking 

The detection and tracking tasks described above are designed to 
work together and have complementary strengths (Table 1). The 
detection system can detect new targets in a camera image and 
estimates the camera's pose relative to these targets without prior 
knowledge on the exterior camera parameters. 

 

System Detection Tracking 
Detect targets + - 

Initialize tracking + - 
Speed - + 

Robust to blur - + 
Robust to tilt ~ + 

Robust to illumination changes ~ + 

Table 1: Strengths and weaknesses of the detection and tracking. 

The tracking system works with a pose prior and therefore 
knows where to search; consequently it runs much faster than the 
detection task. The combination of avoiding a keypoint detector, 
affinely warping patches and normalized cross correlation for 
matching makes the tracker very robust: Due to using NCC, the 
PatchTracker is robust to global changes in lighting, while the 
independent matching of many features increases the chance of 
obtaining good matches, even under extreme local lighting changes 
and reflections  (Figure 2a). Because of the affinely warped 
patches, it can track under extreme tilts close to 90° (Figure 2b), 
whereas the detector has problems handling tilts larger than ~45°. 
The absence of a keypoint detection step also makes it moderately 
robust to blur ( Figure 2c). Finally, the tracker is very fast, 
requiring only ~1ms on an average PC and ~6ms on a fast mobile 
phone per target in typical application scenarios. 

2.4. Speeding up Detection by Tracking 

As noted above, the time required for detection largely depends on 
the camera resolution and number of keypoints detected in the 
camera image. More precisely, it depends on the number of pixels 
to be searched and the number of pixels that are classified as 
keypoints. Reducing these numbers by re-using information from 
the tracking part represents an efficient way to speed up the 
recognition task. 

Our method is based on the simple idea of omitting areas 
covered by already tracked keypoints. A possible approach is to 
project the shape of the tracking target into the camera image in 
order to mask out the keypoints inside this area. However, such an 
approach does not work when tracking targets overlap in image 
space. For instance, a small target in front of a larger target cannot 
be detected, since the area of the large target completely surrounds 
the area of the small target. 

Instead, we adopt a splatting technique that is based on the 
assumption that after a keypoint has been positively matched 

Figure 2: a) Tracking despite reflections; b) Tracking under severe tilt; c) Tracking despite strong blur 

 



   
 
 

 

during tracking process, we can infer that a small area around that 
keypoint is visible in the camera image (see Figure 3). Hence, for 
each keypoint successfully matched, we paint (splat) a small square 
into the mask, covering the area around that keypoint in the camera 
image. The size of the square depends on the scale the feature 
originates from: features from level one (low-res) result splats 
twice as large as feature from level zero (high-res). Since all 
keypoints are randomly distributed over the target, this method 
nicely covers large areas of the tracked targets. Areas not covered 
are usually weak in texture and therefore do not create responses 
during keypoint detection. 

 

Figure 3: Masks (visualized in green color) created by the 
tracking task for speeding up the detection. 

Using an OR operation, the masks from all tracked targets are 
combined and forwarded to the keypoint detector, which then only 
processes those pixels that are not masked. As can be seen in Figure 
4 this method can vastly reduce the number of detected keypoints 
and therefore speed up the overall detection process. 

 

Figure 4: Keypoints detection without image mask 
(left, 486 keypoints) and with image mask (right, 70 keypoints). 

2.5. Analysis of Speed and Predictability 

We implemented different code paths for PCs and mobile phones. 
On the PC we use floating point, whereas on the mobile phone we 
always use a fixed point code path. Even though some modern 
mobile phones support floating point in hardware today, our tests 
showed that fixed point is still faster for our applications. We 
assume that this is related to a suboptimal intermixing of integer 
and floating point code in the current generation of compilers for 
mobile phones. We expect this situation to improve as mobile 
phones will increasingly support hardware floating point in the 
future. Except when noted otherwise, all tests and evaluations 
presented in this paper were performed in floating point on the PC 
and fixed-point on the mobile phone. 

The speed of the detection system is mainly dependent on the 
camera resolution and the number of keypoints detected. 

Additionally, speed is influenced by the size of the feature database 
and the number of outliers. 

The tracker’s speed depends largely on the number of 
keypoints to match and the size of the search window; speed can 
therefore by be directly influenced. The tracking time for each 
target is independent of number of targets tracked. Typically, 
detection for one image takes about 3-5 times longer than tracking 
of a single target. 

In order to detect and track while obeying a fixed time 
budget, we must be able to predict the time consumption of each 
algorithm. The keypoint detection using FAST corners can be well 
predicted, since the average speed per scan line is rather stable. 
Keypoint description using SIFT-like gradient histograms is also 
stable. Descriptor matching compares all descriptors against the 
feature database and assigns the matches to tracking targets. Again, 
the average time to match a descriptor can be well predicted. 
Outlier removal takes the matches of all those targets that are not 
tracked yet and performs various geometrical tests (consistent 
keypoint rotation and spatial tests based on homography). The time 
required for the outlier removal varies significantly, depending 
how early a tracking target is rejected. Finally, pose refinement 
(see section 2.1) takes the pose and the inlier set and performs a 
non-linear refinement. Since the prior pose is usually of good 
quality, only few iterations (typically 3) are required and the task 
therefore takes near constant time. 

Since we keep the size of the search windows constant, the 
speed of the tracker directly depends on the number of keypoints to 
match. In our two-level approach, we always match 25 keypoints at 
half camera resolution and between 30 and 100 keypoints at full 
resolution. The time for matching at half resolution is therefore 
mostly constant while the time for matching at full resolution 
changes almost linearly with the number of keypoints to match. 

In summary, the time consumption of most steps of the 
algorithm can be predicted well with the exception of the outlier 
removal step. 

3. COMBINED TRACKING AND DETECTION AT GUARANTEED 

FRAME RATES 

A system that supports multiple tracking targets needs to run both 
the detection as well as the tracking task simultaneously: While the 
tracker estimates the poses of all previously detected targets until 
they are lost, the detector needs to look out for new targets, which 
are then forwarded to the tracker. Rendering, image acquisition and 
system overhead add up to the overall frame time. 

The aim of the system is to keep the overall frame time 
constant, e.g. 50ms for a system running at 20Hz. The tracking 
system therefore has to adapt in order to fit into the time slice that is 
left after subtracting the application (rendering, system) and the 
image acquisition duration from the overall frame duration. While 
the application time can be accurately estimated, the image 
acquisition time is more problematic. Many cameras in mobile 
phones can only deliver the selected frame rate if the camera 
system process receives enough CPU time, by making the 
foreground task suspend to idle mode until the camera image is 
ready. The idling interval is hard to determine, as it depends on 
many factors including CPU, memory and bus load. If too little 
CPU time is dedicated to the camera, the camera frame rate drops. 
Only the effect of too little camera CPU time can be measured, 
whereas too much camera CPU time is simply spent with waiting 
for the next camera image to become available. Figure 5 shows an 
overview of this problem for a single frame. The aim is to minimize 



   
 
 

 

the "idle time for camera" to a level that does not reduce the camera 
frame rate. 

To be able to measure the effect in both directions, we target a 
frame rate that is slightly lower than the maximum camera rate. 
The tracking time budget is then adapted dynamically to fit this 
frame rate. If the overall frame rate is higher than anticipated we 
can increase the tracking time; if it is lower then we have to 
decrease it. 

 
Figure 5: Execution of the application has to leave enough idle time 

for the system to read the camera image. 

This problem can be outlined as follows: Once the overall 
tracking time budget Tv is determined, the tracking system can 
adapt its operations in order to detect and track within the available 
time frame. On a fast mobile phone, such as used in our tests 
(Section 4), tracking requires about 6-8ms per target, whereas the 
recognition process takes about 30ms for a full camera image. 
Consequently, given an overall budget of e.g. 30ms per frame 
(computed as 50ms per frame minus 20ms for the application), 
detection and tracking of multiple targets cannot both be executed 
without optimization. 

Tracking previously detected targets has the highest priority 
and must be running at full frame rate if possible at all. Detection of 
new targets has lower importance and is not required to run at full 
frame rate. Instead, it is sensible to amortize the cost of detection 
over multiple frames. 

We can formulate the task of scheduling the optimal detection 
and tracking within a certain time budget as a constraint 
optimization problem. More formally, we define Cost and Benefit 
heuristics for the tracking of target ti and the detection task.  

Cost(ti, qi, pi) is the time it takes to track target ti at quality qi; 
pi is the pose prior. The quality in this metric is assumed to be 
proportional to the number of feature points from the given target 
selected for warping and matching in the active search. The cost of 
not tracking target ti is set to be very high (higher than detection). 
Thereby we ensure that tracking has always a higher priority than 
detection. 

Benefit(ti, qi, pi) is an estimate for the contribution of tracking 
target ti at quality qi; pi is the pose prior. This benefit value is 
obviously higher (better accuracy) with increased quality, but also 
takes into account the target’s number of features and the pose 
change rate derived from the motion model. Small pose changes 
require fewer iterations in the pose computation, while large pose 
changes often introduce blur, which makes the matching more 
computationally intensive. 

Cost(d) is an estimate of the time it takes to perform a certain 
fraction d of a detection task. This is proportional to the number of 
features in the area not covered by the image mask derived from 
tracking the targets in the current frame. 

Benefit(d) is an estimate of the contribution of performing a 
certain amount d of the detection task in this frame. This 
contribution depends on the number of frames still required to 
complete the detection, assuming the currently chosen amount of 
the task is kept over the next frames. For example, if n candidate 
feature pixels must be examined, choosing an amount of 0.3n leads 
to upper(1/0.3)=4 frames, whereas choosing n/3 leads to only 3 
frames estimated completion time for the detection. Shorter 
completion times receive significantly higher benefit. 

Using this notation, the optimization can be stated as 
 

max
qi,d

Benefit t i,qi,pi^ h+ Benefit (d)
i

/
s.t.

Cost (t i,qi,pi) + Cost (d) # TV

i

/

 
 
(5) 

 

This constrained optimization problem is a variant of the 
NP-complete Multiple Choice Knapsack Problem [11]. This kind 
of Knapsack Problem allows to select (“pack”) only one from a 
number of options for each item, in our case the quality of the 
tracking and the amount of detection. Since we have very few items 
(typically <10 tracking targets), a simple greedy heuristic suffices: 

 
1. Maximize the cumulative relative value (Benefit/Cost) for all 

tracking targets while staying within frame time 
2. Assign the remaining time to detection 
3. Try to increase detection time at the expense of tracking 

quality until the overall benefit does no longer increase. This 
is done in discrete steps that reduce the number of frames 
until completion. 

 
Unfortunately, some of the variables used in the optimization 

procedure cannot be estimated reliably. In particular, the later steps 
in the detection such as the outlier removal depend on the keypoint 
detection in the earlier steps. The overall outlier removal time 
varies strongly depending on how early a potential target is 
rejected. 

Therefore we repeat or refine the planning at several stages 
within one frame’s work. After each step, the system will 
determine its used time and make sure that only as much work is 
scheduled as will likely fit into the time left, e.g., a limited number 
of image scan lines to search for keypoints. Likewise, any amount 
of detection left over after time runs out will be re-scheduled to 
continue at the next frame’s detection slot. 

4. EXPERIMENTAL RESULTS 

The following experiments were all run with the same 
configuration for detection and tracking. The keypoint detector 
was configured to adjust its threshold dynamically to detect 
keypoints for 0.5% of the number of pixels in the unmasked areas. 
The maximum allowed Euclidean distance for descriptor matching 
was set to 0.12 (using normalized vectors). We created a feature 
dataset of 8 targets with 15313 descriptors altogether, indexed by 3 
spill trees resulting in an overall detection dataset size of 1.75 
megabytes (777 KB for the descriptors and 340 KB for each tree). 

For the tracker we used grayscale reference images, sized at 
480 pixels for the longer side summing up to 1.23 megabytes of 
image data. We configured the tracker to match 25 points at half 
resolution with a search radius of 5 pixels and up to 100 points at 
full resolution with a search radius of 2 pixels only. Hence, for a 
frame rate of 20Hz, the system can track interest points at a speed 
of up to 5·2·20 = 200 pixels (5 pixels radius at half resolution at 
20Hz) per second plus the compensation provided by the motion 
model of the tracker. 

For both the tracker and detector the pose refinement was 
configured to iterate at least three times and then break as soon as 
the reprojection error improves less than 5%. 

 



   
 
 

 

4.1. Artificial Transformations 

To test the accuracy of the tracker, we created a sequence of 61 
frames rendered in 3dsMAX showing a target coming into the 
image from the right side and leaving to the left (see Figure 6). 
The renderings were done a using a virtual camera with a field of 
view of 45° at a resolution of 320x240 pixels. The camera was set 
at the center of the scene, whereas the target sized 480x272 units 
moved on a circular path at a distance of 750 units. 

  

Figure 6: Artificial transformation for accuracy tests. Left: Frame 17; 
Right: Frame 51. 

 Figure 7 shows the position and orientation errors of various 
configurations with respect to the ground truth from the scene 
settings in 3dsMAX. As to be expected the z-coordinate suffers 
from the largest positional error, whereas the x-values are good and 
the y-values are flawless with an error of 0.0 (note that the target 
moved horizontally only at the middle of the screen). Although the 
average errors are similar, the setups with more correspondences 

suffer less from jitter, noticeable as smoother lines in the charts of 
Figure 7. One can clearly see that in the middle of the sequence, 
where the target is fully visible in the camera image, the jitter is 
minimal for all configurations. 

It is interesting to notice that for all configurations the error 
trend of the z-coordinate is highly similar: In the beginning, the 
target is estimated too far away and then transitions to a pose that is 
too close. Similar trends can also be found other attributes dPosX, 
dPosY, dEulerX, dEulerY and dEulerZ. We don’t have an 
explanation for this behavior, but it is obviously system immanent 
rather than an issue due to limited precision in pose estimation. 

4.2. Visual Jitter 

We created a real setup (see Figure 8) that exaggerates the jitter an 
Augmented Reality user would perceive using our tracker. In this 
setup, we placed a virtual pole on top of a tracked printout and 
placed the camera such that the tip of the virtual pole is close to the 
camera. Due to the large distance of the target and the close 
distance to the camera, the visual jitter at the tip of the virtual 
object is strongly amplified. Since the scene is static, the pole 
should remain perfectly still in an ideal case. While the camera 
feed is 320x240 pixels, we rendered the virtual pole at 640x480 for 
improved measurement accuracy. The results can be viewed in the 
supplemental video. 

Additionally we estimated the reprojection error at the tip of 
the pole by sampling 1000 camera frames, calculating the average 
position, standard deviation and maximum derivation. As before, 
all calculations were done for a screen resolution of 640x480 
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Figure 7: Position and orientation  (in degrees) 
errors from a moving synthetic target over 61 
frames. 
1st line: 30, 65 and 150 floating point 
correspondences. 2nd line 300 floating point 
correspondences and fixed point with 30 and 65 
correspondences. 3rd line: 150 and 300 fixed 
point  correspondences. 



   
 
 

 

pixels. The whole sequence of tests was repeated 3 times and the 
averages of all measurements were taken. 

 

Figure 8: Setup for visual jitter estimation. 

The chart in the right image of Figure 9 shows the results for 1000, 
300, 100, 65 and 30 correspondences. At 100 correspondences or 
below, the quality of fixed point decreases. In all cases, standard 
deviation of the reprojection error is <0.6 pixels (fixed) and <0.2 
pixels (floating). 
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Figure 9: Reprojection error at the tip of the pole in the left image. 

4.3. Tests on a Mobile Phone 

We tested our approach on the Asus P565, a Windows Mobile 
phone with 800MHz and a camera delivering up to 30 images per 
second at a resolution of 320x240 pixels. The target frame rate of 
the system was set to 23 frames per second. The screenshots in 
Figure 10 show the progress of detecting and tracking one to six 
independent targets concurrently. The green transparent areas 
encode those parts of the screen that are tracked and therefore not 
searched for during the detection step. Each detected target is 
augmented with a cuboid. All targets are treated independent of 
each other. 

At the bottom of the screen the application displays feedback 
data. Line 1 reports how much time of the estimated vision budget 
was used in the current frame. Line 2 tells how much time was 
spent for tracking, how many targets were tracked and which 
quality setting was used. Line 3 reports how much time was spent 
for the detection task and over how many frames this work was 
distributed.  

One can notice in the top left image of Figure 10 that tracking 
a single target leaves enough time left for detection of new targets 
within a single frame only. This is due to a large area of the camera 

image being masked out by the tracking system. The 2nd image 
shows tracking of 2 targets, which requires about 20ms, still 
leaving enough time to the detection system to finish its task in a 
single frame most of the time. The 3rd image shows tracking of 3 
targets, now heavily reducing the detection time budget. In the first 
image of the second row, the tracking system starts reducing 
tracking quality in order to keep up the frame rate. There is only 
little time left for detection, but most of the image is covered by the 
tracked area. The next screenshot shows that the tracking system 
has degraded the tracking quality even more to maintain the target 
frame rate. Finally, in the last image, six targets are tracked, which 
leaves only little time for detection despite the strongly reduced 
tracking quality. The system would not be able to track another 
target once detected (please see supplemental video). 

The tests show that the mobile phone can track and detect up 
to six targets while maintaining a frame rate of 23 fps or more. In 
this test we deliberately chose simple virtual objects (cuboids) that 
are fast to render in order to estimate how far the tracking system 
can go. 

5. CONCLUSIONS 

We have presented a new method for detection and tracking of 
multiple planar targets in real-time on low end devices. Our system 
detects and tracks up to six targets with 23 frames per second a 
mobile phone in 6DOF while augmenting them at the same time. 
Splitting up detection and tracking in two separate subsystems that 
work at different frame rates allowed the creation of a highly 
efficient system that is several orders of magnitude faster than any 
other 6DOF tracker reported so far. 

We observe that the level of CPU performance on phones has 
not increased a lot in the last three years, probably because of a 
certain market saturation and the very tight power budget afforded 
by cell phone batteries. Instead, mobile phones with programmable 
GPUs are now becoming available. Especially the tracking 
subsystem is made up of basic operations (warping and template 
matching) that are suitable even for the rather simple shading units 
of first generation programmable mobile phone GPUs. 

In the future we plan to extend our system to true 3D targets 
thereby allowing tracking of more complicated targets such as real 
3D objects or the environment of a mobile user. Estimating a 
homography would then not suffice anymore. Furthermore, it 
would be necessary to cope with self-occlusions of the tracking 
target. 
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Figure 10: Screenshots from the test application running on a mobile phone. The graph in the right bottom of each screen shows where the vision pipeline 
spends its time. From bottom to top: Tracking (blue), keypoint detection (red), keypoint description (green), matching (purple ) and removal and pose 

estimation (cyan). Black represents the time left for the rest of the system. The yellow text reports: 1st line: how much time of the overall time budget has been 
used; 2nd line: how long tracking took, the number of tracked targets and the tracking quality; 3rd line: detection time split of number of frames. 


