
Wide Area Localization on Mobile Phones
Clemens Arth, Daniel Wagner, Manfred Klopschitz, Arnold Irschara, Dieter Schmalstieg∗

Graz University of Technology , Austria

ABSTRACT

We present a fast and memory efficient method for localizing a mo-
bile user’s 6DOF pose from a single camera image. Our approach
registers a view with respect to a sparse 3D point reconstruction.
The 3D point dataset is partitioned into pieces based on visibility
constraints and occlusion culling, making it scalable and efficient
to handle. Starting with a coarse guess, our system only considers
features that can be seen from the user’s position. Our method is
resource efficient, usually requiring only a few megabytes of mem-
ory, thereby making it feasible to run on low-end devices such as
mobile phones. At the same time it is fast enough to give instant
results on this device class.

Index Terms: I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis I.4.8 [Image Processing
And Computer Vision]: Scene Analysis—Tracking; I.5.4 [Pattern
Recognition]: Applications—Computer Vision C.5.3 [Computer
System Implementation]: Microcomputers—Portable devices (e.g.,
laptops, personal digital assistants)

1 INTRODUCTION

In this work we aim at localizing a mobile user’s 6DOF pose di-
rectly on a mobile phone using the phone’s built-in camera. It is
therefore important to consider the unique limitations introduced
by this platform. For our purposes, the most important platform
considerations are computing speed, memory and storage size as
well as camera capabilities.

All units in a mobile phone are primarily optimized for low
power consumption rather than raw processing speed. Addition-
ally, memory is slow and caches are small, such that cache misses
create serious performance hits. Code that is well written for a mod-
ern mobile phone will still run about 20-40 times slower than on a
modern PC.

Another important factor is memory size. Limitations in the mo-
bile phone operating systems do usually not allow more than about
5-10 MB per application. However, modern smart phones possess
storage capabilities of several gigabytes, making hierarchical data
handling attractive. Although the file storage is too slow for live
data processing, it can be used for out of core processing or to cache
large datasets to prevent continuous downloading.

Finally, the mobile phone’s camera contributes to the level of
detection quality that can be expected. We have seen enormous
improvements in the still image taking quality of mobile phone
cameras. Multi-megapixel cameras are common today, and given
enough light, the quality is now comparable to compact cameras.
Video capabilities, however, have only minimally improved, mak-
ing it hard to select a good device for Augmented Reality (AR) us-
age. A severe limitation comes from the small field of view of mo-
bile phone cameras, which typically lies in the range of 50◦−60◦,
much less than what is common used in computer vision research.
The limitations outlined above require developers to build a solu-
tion from the ground up for mobile phone platforms.

∗e-mail: {arth,daniel,klopschitz,irschara,schmalstieg}@icg.tugraz.at

Offline Data Acquisition

3D Data Set Segment 1

Image
Acquisition

Sparse 
Reconstruction

Featureset
Generation

Global 
Registration

PVS 
Generation

Mobile Data
Structure

Generation

3D Data Set Segment N

Image
Acquisition

Sparse 
Reconstruction

Featureset
Generation

Online Localization
Initialization

Matching

PVS Management

Robust Pose 
Estimation

Figure 1: Work flow overview. The system can be divided into an of-
fline data acquisition and an online localization part. The offline data
acquisition step creates globally registered 3D points with associated
feature descriptors that are grouped into potentially visible sets. Op-
timized representations of this data are used on the mobile phone to
localize the user efficiently.

We propose a system for full 6DOF pose estimation from wide-
area 3D reconstructions based on natural features, which is scalable
and allows for highly efficient self-localization on mobile phones.
To the best of our knowledge, there is no previous work in this
research area that uses the idea of sparse 3D reconstructions and
visibility information.

Our approach builds upon the idea of using image based recon-
struction methods from computer vision to solve the data acquisi-
tion step. Because the image based reconstruction methods operate
on the same type of data as the image based localization and pose
estimation, it is straightforward to feed data from a 3D reconstruc-
tion into a localization system. Furthermore, reconstruction and
localization both depend on texture information present in an envi-
ronment. This means that if an environment is suitable for image
based localization, it is usually also suitable for image based recon-
struction and vice versa. A major advantage of this approach is that
we do not have to segment our environment into explicit tracking
targets and we are not limited to planar or other special geometrical
structure. On this account we propose to use a globally registered
image based reconstruction of an environment as a large 3D track-
ing target.

Because real world buildings usually contain untextured areas
that are not suitable for image based reconstruction or localization



we use a pragmatic approach to create large-scale reconstructions.
We divide the problem of reconstruction into suitable blocks and do
not try to reconstruct complete buildings in one step. In this work,
we manually register individual reconstruction into a single global
coordinate system to create a single large globally registered 3D re-
construction which serves as a base for self-localization. Automatic
global registration of reconstructed parts is left for future work.

Our goal is to build a system which is highly efficient and can
be run on mobile phones. In order to accomplish this, the recon-
struction has to be represented efficiently in terms of memory con-
sumption, scalability and computational handling. Apart from that,
a pose estimation algorithm must be fast, yet robust to deliver stable
results even under the presence of a significant amount of noise and
outliers. We propose an approach for generating a compact repre-
sentation of 3D reconstructions in an indoor environment which is
highly efficient in terms of memory consumption and handling on
mobile phones.

Taking advantage of well-known approaches from computer
graphics for visibility estimation, we propose a method for dividing
large 3D reconstructions into several smaller parts that can be com-
pactly represented and allow for building a highly scalable system.
We build upon the idea of potentially visible sets (PVS) originating
from work in the computer graphics community. Although PVS
have a long tradition, to the best of our knowledge there exists no
related work about their use in tackling computer vision problems.

We start the presentation with reviewing related work in the area
of AR and robust localization in Section 2 . The system proposed
in this paper can be divided into two major parts (see Figure 1).
The first part is described in Section 3. It deals with the offline cre-
ation of the image based 3D reconstructions and the generation of
highly efficient database structure. Furthermore, we describe how
to generate a special cells-and-portals representation, which can be
handled efficiently on mobile phones. The second part is presented
in Section 4. It describes the online process of 6DOF pose estima-
tion, i.e., the task of self localization within an environment repre-
sented as sparse 3D reconstruction of natural features. This process
covers feature calculation, database management and robust pose
estimation on a mobile phone. Experimental results are delineated
in Section 5. The paper concludes with a summary and an outlook
on future work in Section 6.

2 RELATED WORK

In the following we review related work in the area of localization
for AR, as well as previous work on localization purely based on
computer vision techniques. Furthermore we introduce some work
previously done for location recognition on mobile phones and the
occlusion handling principle used in our approach that originates
from well established concepts in computer graphics.

2.1 Localization for Augmented Reality
Among the first dedicated wearable location systems was the Ac-
tive Badge system [36], which consisted of infrared (IR) badges
sending location information signals to a server. Its successor, the
Bat system [1], used ultrasonic location estimation to provide more
accurate position data. PlaceLab [24] is a system that relies on sig-
nal strength of existing infrastructure, such as GSM, Bluetooth and
WiFi, for indoor and outdoor location tracking. Accuracy strongly
depends on the number of senders in the environment and has been
reported in the range of 3-6 meters for indoor usage.

Markers have a strong tradition in Augmented Reality due to
their robustness and low computational requirements. Hence,
marker based approaches have also been applied for indoor local-
ization. Kalkusch et al. [11] employed localization by tracking 2D
barcodes (fiducial markers) that were installed in the environment.
The IS-1200 tracker [20] is a commercial variant of this approach,
combining tracking of circular fiducials with an inertial sensor for

increased robustness. Although there is a large body of publica-
tions for indoor and outdoor tracking for Augmented Reality, little
work has gone into localization. Reitmayr proposed an accurate
localization technique [25] based on modeling the GPS error with
a Gaussian process for fast outdoor localization without user inter-
vention.

Markerless registration for Augmented Reality on mobile phones
has only recently become possible due to increased processing ca-
pabilities of modern smart phones. First approaches were based
on optical flow based methods such as TinyMotion [35]. Our own
previous work [33] marks the first real-time 6DOF pose estimation
from natural features on a mobile phone. However, none of these
works addresses wide area tracking.

2.2 Vision based localization
In the computer vision literature, the problem of location recogni-
tion has been addressed in the past by a variety of approaches [26,
38, 39]. The most successful methods rely on wide baseline match-
ing techniques based on sparse features such as scale invariant inter-
est points and local image descriptors. The basic idea behind these
methods is to compute the position of a query image with respect to
a database of registered reference images [27], planar surfaces [26]
or 3D models [10, 21]. Assuming a static scene, geometric verifi-
cation can be used to determine the actual pose of the camera with
respect to the exemplar database. Different viewpoints or illumina-
tion changes are largely handled by robust features like SIFT [16]
and SURF [3] that act as descriptors of local image patches. These
features have been found to be highly distinctive and repeatable in
performance evaluation [18].

For example, Schindler et al. [27] present a city scale location
recognition approach based on geo-tagged video streams and spe-
cific trained vocabulary trees using SIFT features. The vocabulary
tree concept and inverted file scoring as described in [23] allows
sub-linear search of large descriptor databases requiring low stor-
age space. In contrast, Lepetit et al. [14] recast matching as a clas-
sification problem using a decision tree and trade increased memory
usage for expensive computation of descriptors at runtime.

Skrypnyk and Lowe [28] present one of the first systems for
3D scene modelling, recognition and tracking with invariant im-
age features. First, a sparse 3D model from the object of interest
is reconstructed using multi-view vision methods. Second, SIFT
descriptors associated with the sparse 3D points are organized into
a kd-tree structure, and a best-bin first search strategy is employed
to establish putative 2D-3D correspondences. A robust pose esti-
mation algorithm is used for geometric verification and delivers the
accurate pose of the query image with respect to the 3D model.

Based on the same fundamental concept, Irschara et al. [10]
present a location recognition system for large scale scenes with
full 6DOF localization. A precomputed set of synthetic views pro-
vides 3D point fragments that cover the space of admissible view-
points. The 3D point fragments are globally indexed with a vo-
cabulary tree data structure that is used for coarse matching. Real
time performance for view registration on a desktop PC is achieved
by utilizing modern graphics processing units for feature extraction
and matching.

2.3 Localization for mobile phones
Because phones did not have sufficient computational power, the
first approaches for mobile phone localization were based on a
client-server architecture [5, 8]. To overcome resource constraints
of mobile phones, tracking is outsourced to a PC connected via a
wireless connection. All of these approaches suffer from low per-
formance due to restricted bandwidth as well as the imposed in-
frastructure dependency, which limits scalability in the number of
client devices. The AR-PDA project [6] used digital image stream-
ing from and to an application server, outsourcing all processing



tasks of the AR application reducing the client device to a pure
display plus camera. Hile reports a SIFT based indoor navigation
system [8], which relies on a server to do all computer vision work.
The server-based approaches are not suitable for AR; typical re-
sponse times are reported to be about 10 seconds for processing a
single frame.

However, recent approaches have shown that natural fea-
ture tracking with 6DOF can be done in real-time on mobile
phones [33]. Takacs et al. [31] present an outdoor localization sys-
tem working on mobile devices. Keypoint detection and matching
is performed directly on the mobile phone. Features are clustered in
a 2D grid and pre-fetched by proximity. Each grid element contains
a set of clustered meta-features that represent the most repeatable
and stable features of the scene. Geometric consistent meta-features
are created. However, in contrast to our approach no 3D model is
reconstructed and thus true geometric consistency is not enforced
and no full 6DOF pose is computed.

2.4 Potentially visible sets
In computer graphics and virtual reality applications, visibility is
a fundamental problem, since it is necessary for occlusion culling,
shadow generation and image based rendering. One of the earliest
methods addressing the problem of visibility culling is the poten-
tially visible set (PVS) approach [2]. The basic idea is to discretize
the environment into view cells and precompute the cell-to-cell vis-
ibility. In densely occluded environments, such as hilly regions,
urban areas or building interiors, the potentially visible sets signifi-
cantly reduces the amount of data that has to be processed for ren-
dering. Indoors, the natural structure of cells (rooms) and portals
(doorways) can be easily exploited [32]. In our localization system,
we take advantage of the PVS data management by splitting the
3D model into chunks of 3D points that are organized by visibility
constraints. Thus, the potentially visible set determines the number
of 3D points and descriptors that have to be considered according
to the current view cell. This is in contrast to the 2D grid method
of Takacs et al. [31], which uses a regular subdivision on a map to
partition the data and does not exploit visibility.

3 OFFLINE DATA ACQUISITION

This section explains the steps involved in creating the 3D track-
ing data in more detail and motivates some design decisions. Tri-
angulated natural image features, obtained with a structure from
motion (SfM) system, are used as a basis. These 3D points are reg-
istered into a global coordinate system and partitioned into a rep-
resentation suitable for efficient localization on mobile phones. We
use an offline data acquisition step instead of building the track-
ing data on-the-fly like Simultaneous Localization and Mapping
(SLAM). Recent work on SLAM such [12] can efficiently map
small workspaces, but has considerable computational cost and
does not consider global registration or sharing of reconstructions,
which is implicitly addressed in our work.

3.1 Structure from motion
Current SfM methods may be classified based on the image data
they use. Two major types of image sources are still images and
video sequences. Recent trends in photo community websites and
the ubiquitous availability of digital cameras have shifted the re-
search interest towards reconstruction from unordered image data
sets [30]. This choice of input data usually has strong implications
on the selection of algorithms used to solve the SfM problem. Un-
ordered sets of still images rely on wide baseline image matching
techniques to establish correspondence information, and the SfM
problem may be solved for all input images simultaneously or in an
incremental way [9, 17, 29].

Video stream based image capturing allows for simpler feature
point tracking, but cannot be used effectively in narrow and clut-

tered indoor environments. The movement of the observer is usu-
ally constrained. We use sets of unordered still images obtained
from suitable points in the environment, and a well behaved tra-
jectory between these points is therefore not necessary. The dis-
advantage of this approach is that the feature matching process is
more challenging than feature tracking in a video. However, in
our experience a still image based method is more flexible for 3D
reconstruction. Furthermore, our generic approach allows to incre-
mentally extend the 3D models with new images over time.

Image acquisition
We divide the problem of collecting source images for the sparse
natural feature reconstruction into suitable blocks. We do not try to
reconstruct a complete building in one step. The reason for this
strategy is that texture is necessary for image based reconstruc-
tion and of course later for the natural feature based localization.
Real world buildings usually contain untextured areas, which are
not suitable for image based reconstruction or localization. How-
ever, floor plans of buildings are usually available and allow for fast
manual global registration of smaller reconstructions. It turned out
that a room sized granularity of individual reconstructions works
well in practice and also allows the replacement of a reconstruction
with a newer one if the appearance of a room changes significantly.

We use a digital SLR camera with a large field of view (α = 90◦)
and high resolution (8 megapixel) for indoor image data acquisi-
tion. This combination reduces the number of images that are nec-
essary to cover a room and makes the image to image correspon-
dence computations needed for SfM more robust, because weakly
textured areas are less likely to cover large portions of an image.
Radial lens distortion is usually larger for short focal length optics
and has to be removed from the images. We use a pre-calibrated
camera with known distortion for SfM.

Reconstruction
The SfM problem is solved for each reconstruction segment sepa-
rately. Given a set of unordered input images, SIFT features [16]
are extracted from every image. A vocabulary tree [23] is used for
coarse matching of similar images. This greatly reduces the compu-
tational effort of pair-wise image matching, by only matching the
most relevant images as reported by the vocabulary scoring. The
vocabulary tree is trained in an unsupervised manner with a sub-
set of 2,000,000 SIFT feature vectors randomly taken from 2500
images. Thus the vocabulary is generic and can be generalized to
handle different data sets. The descriptor vectors are hierarchically
quantized into clusters using a k-means algorithm.

The tentative sparse image correspondences retrieved from the
vocabulary tree are then matched using an approximated nearest
neighbor technique. The epipolar geometry is computed using a
five-point [22] minimal solution to the calibrated relative pose prob-
lem inside a RANSAC [4] loop. The scale between the differ-
ent epipolar geometries is estimated and the local geometries are
merged into one coordinate system in a robust way. We rely on
previous work to carry out this step [9, 13, 37].

The number of images in a reconstruction segment is typically
between 50 and 300. Figure 2 shows an example of a room that
was reconstructed using our approach.

Feature extraction and triangulation
While the reconstruction pipeline uses a standard SIFT key point
detector and descriptor, the detection on the mobile phone must be
optimized for speed and therefore uses a proprietary method (Sec-
tion 4.1). Consequently, we must extract these proprietary features
from the original images and triangulate them using the camera
poses reconstructed in the SfM step.

This adds no significant overhead to the reconstruction process.
because the computational effort of pair-wise image matching has



(a)

(b)

Figure 2: 3D segment. Figure (a) shows some of the input images used to create an initial sparse 3D reconstruction. Figure (b) shows two views
of this reconstruction, triangulated natural feature points are shown as dark points, the camera positions and orientations of the input images are
visualized by the coloured cones.

Figure 3: Global registration of individual reconstruction into a com-
mon coordinate system.

already been solved during reconstruction and well matching im-
age pairs are already known. Unfortunately, the extracted features
are not free of outliers originating from wrong image matches. To
remove most wrong features, we filter them by enforcing additional
criteria: A feature visible in two views must also be visible in a
third view, and the reprojection error must be smaller than a pre-
defined threshold. This method yields an almost outlier-free set of
new features.

3.2 Global registration

Our goal is to compute the full 6DOF pose, therefore each 3D re-
construction has to be registered relative to a global coordinate sys-
tem. We find this similarity transform by aligning each of our newly
created reconstructions manually to a 2D floor plan of the building.
All 3D points used for localization are transformed into a single
global coordinate system. Another option would be to compute the
6DOF pose relative to a reconstruction segment and transform the
result into the global coordinate system. The advantage of trans-
forming all 3D points into one coordinate system is that 3D points

from multiple reconstruction segments can be used simultaneously
during the localization pose computation. This may happen if fea-
ture points from multiple reconstruction segments are visible in the
same image. Figure 3 shows an example of eight globally registered
reconstruction segments.

3.3 Potentially visible sets

Since the overall feature database does not fit into memory, it is
necessary to split the dataset into chunks that can be loaded inde-
pendently. Takacs et al. [31] suggested to partition the database
into cells using a 2D regular grid. In their approach, the computer
always holds the feature sets of the closest 3x3 cells in memory. In
contrast, we split the dataset by visibility, using a PVS structure.

We follow a common practice that PVS are often built at the
same granularity as the cells that they index: For every cell there
exists one PVS that refers to all other cells that are visible from in-
side this cell (see Figure 4). Each cell stores a list of all features
that are located inside its area. The associated data is stored in a
separate file and loaded on demand. Figure 5 shows such a parti-
tioning of a larger 3D reconstruction into individual cells. While
automated techniques to compute the PVS exist [32], for simplicity
the PVS structure used in our evaluations was created by hand.

For each feature, we also store the indices of all images contain-
ing the feature. This additional information can be used to vote for
areas that are likely to be seen in a camera image. For each PVS,
we build a k-means tree for fast searching and voting, using Lloyd’s
algorithm [15]. Additionally, we built an inverse file structure in the
form of additional k-means trees for all original camera images that
where used to reconstruct the PVS. The inverse file structure allows
matching against only those features that come from a specific im-
age. This approach greatly improves the matching rates, but comes
at the price of increased memory usage for the search structures and
probably a reduced matching accuracy.

We experimented with various branching factors to build the k-
means trees and found a branching factor of 10 to deliver good re-
sults at reasonable speed. In our tests, a larger branching factor did
not deliver significantly better results. We grow the trees until a
given maximum number of descriptors fits into the leaf nodes. In
our current implementation we target an average of 45 descriptors



Feature Block for Cell 1 Feature Block for Cell 2 Feature Block for Cell 3 Feature Block for Cell 4

PVS for Room A

k-means tree

PVS for Room B

k-means tree

Figure 4: Two PVS with three cells each, sharing two of the cells.

Figure 5: Representation of the reconstruction as separate PVS
cells. The assignment of features to cells is color coded. The first
9 cells are indicated by the numbers inside red circles. Because
we use cell based visibility, a PVS is created for each of these color
coded cells and consists of an enumeration of all cells that are visible
from one cell. For example, the PVS of cell 2 consists of cells (2,1,4).

per leaf node. When searching for a match, we traverse the tree un-
til encountering a leaf node and then compare against all descriptors
in that node. Hence, we do not require back tracking.

4 ONLINE LOCALIZATION

In the following we describe the online workflow on the mobile
phone to estimate a valid 6DOF pose on a mobile phone.

4.1 Fast and robust descriptors

In previous work [33], we developed an extremely fast descrip-
tor called PhonySIFT. It is loosely based on SIFT, but designed
to operate in real time on a mobile phone. One restriction is that
tracked objects must be planar, which allows highly effective outlier
removal, yielding enough robustness for typical AR applications.
However, for the use case targeted in this paper, the PhonySIFT de-
scriptor is not sufficient. The outlier removal techniques used in
[33] do not work for 3D objects, and more importantly its robust-
ness does not scale well enough to match against tens of thousands
of key points.

On this account, we developed a new proprietary detec-
tor/descriptor combination which was inspired by SURF [3]. Key
points are identified in scale space and a histogram of gradients is
built. Tests done with the framework of Mikolajczyk et al. [18, 19]
show that it performs as well as SIFT and SURF and sometimes
outperforms both. However, we noticed that SIFT performs better
in some real-world scenarios, which is why we continue to use it
for the 3D reconstruction. Our detector/descriptor is several times

faster than the publicly available implementation of SURF1 and
faster than a GPU-SIFT implementation (comparing our method
on a single-core of a 2.5GHz Intel Core 2 Quad against GPU-SIFT
on an NVIDIA GeForce GTX 280). For localizing and describing
keypoints in a 640x480 image, our descriptor requires about 20ms
on that 2.5GHz CPU and about 120ms on a mobile phone2.

4.2 Run-time memory management
Feature and PVS data is stored in a format that is optimized for
fast loading, which includes storing items in large chunks and min-
imizing the number of memory allocations required. The feature
datasets of the cells are stored in feature blocks. A custom mem-
ory manager loads and discards feature blocks by counting refer-
ences from the PVS structures to the cells. When a cell is no longer
required by any PVS, the memory manager can discard it to free
memory for other cells. Feature blocks are loaded on demand when
a PVS requests them. In our tests, a feature block typically has a
memory footprint of ∼1-2MB and a PVS is built from 2-4 cells.
The memory footprint of the PVS is dominated by the search struc-
tures and range between ∼1-2MB. The overall memory footprint is
∼5MB, which is small enough to fit into a mobile phone’s applica-
tion memory.

4.3 PVS selection
Since only a part of the whole dataset is in memory at a given time,
no global localization can be performed. Consequently, it is neces-
sary to initialize the localization process by giving the system a hint
about where to search. In the following, we outline several variants
for providing an initial location for the PVS.

The most user friendly approach relies on additional sensors and
therefore does not require any user interaction. Outdoors, GPS can
give a sufficiently accurate position for searching a single PVS only.
Indoors, WiFi triangulation, Bluetooth or infrared beacons are able
to deliver a coarse location, which requires searching the closest
few cells. If no sensor data for automatic coarse localization is
available, the user can select the current position on a map or from
a list (rooms, streets, etc). If the tracked object or environment
does not have a unique location (for example, a consumer product
for advertising), the dataset can be manually selected or determined
using a barcode on the object. Once the mobile device is localized,
the system can switch into an incremental tracking mode.

Compared to first initialization, a re-initialization step can then
benefit from the fact that a previous position is known. If the time
between losing tracking and re-initialization is short, it makes sense
to restrict the search area to the PVS of the last known position.
However, in many practical scenarios tracking interruptions will
last longer (e.g., many users may put a handheld device down while
walking). Depending on the assumed speed of a user, the search
area must therefore be widened over time until it reaches a level
that can not be searched in a meaningful time anymore.

4.4 Localization
Localizing a mobile users position involves the following steps:
feature extraction and description, feature matching, optional vot-
ing, outlier removal, and finally pose estimation and refinement.
Feature extraction uses a scale space search to find keypoints in the
2D image, including a size estimation. For each keypoint, we esti-
mate a single dominant orientation and create one descriptor. The
scale space search step dominates the resource requirements, tak-
ing about 80% of the computation time and requires roughly 12
bytes per camera image pixel. The memory overhead for creating
descriptors is relatively low with about 0.3 bytes per camera image
pixel and ∼80 bytes per feature.

1http://code.google.com/p/opensurf1
2calculated on an ASUS P565 mobile phone with an Intel XScale pro-

cessor running at 800MHz for about 240 features.



We implemented two alternative methods for feature matching:
in matching-friendly scenarios, we directly match all camera im-
age features against all features in the current PVS. Alternatively,
we use a vocabulary tree voting scheme: We first define subsets
by finding those images from the reconstruction step that contain
enough features that match the current camera image. We then
match against the top ranked subsets separately. For each subset
we then try to estimate a pose. The advantage of this two step ap-
proach is that we largely reduce the number of features to match
against, which makes the matching itself more robust. However, it
has higher computational requirements.

In both cases, matching the camera image against the dataset
gives a set of 2D-3D correspondences that still includes outliers.
A robust pose estimation procedure is therefore required to deal
with these outliers. We therefore apply a RANSAC scheme with a
3-point pose [7] as hypothesis and use a subset of up to 50 corre-
spondences for validation. The 3-point pose estimation is based on
a fixed-point implementation of the method in [4].

The hypothesis with the largest number of inliers is selected as
a starting point for a non-linear refinement. Based on the inlier
set of the best hypothesis, we apply an M-estimator in a Gauss-
Newton iteration to refine the pose and find more inliers. This step
is repeated until the inlier set does not grow anymore. In theory,
four points are enough to calculate a 6DOF pose from known 2D-
3D correspondences. However, given a large enough number of
outliers, it is likely to find an invalid pose from a small number of
correspondences only. We therefore treat a pose only as valid if at
least 20 inliers were found.

4.5 Detection vs. tracking
Tracking by detection at every frame is common, because detection
is always required and tracking is then solved at the same time. Our
wide-area detection system runs in about 1/3 of a second on a fast
mobile phone and about 10 times faster on an average PC. It would
therefore, at least on the PC, qualify for tracking by detection.

However, tracking by detection has several disadvantages com-
pared to an approach with separate detection and tracking stages
as in [34]. A pure detection system does not take advantage of
frame-to-frame coherence and therefore always searches without a
strong prior. This requires more computational effort and reduces
the chances of finding a correct solution. A tracker pre-selects the
features to look for using a motion model and therefore reduces the
search space. It is therefore typically more robust and efficient than
a detector. However, tracking usually requires a different kind of
dataset compared to the detector, which means that two separate
datasets have to be created, maintained, stored and held in memory.

5 EXPERIMENTS

This section presents evaluation results for the wide-area localiza-
tion. For simplicity, the test cases are based on indoor reconstruc-
tions taken at the university campus. Note that although we do
not explicitly provide results on outdoor scenarios, our methods are
also fully applicable outdoors.

5.1 Test data acquisition
For testing our approach we generated a fully registered 3D recon-
struction of several adjacent rooms in an office building on the uni-
versity campus, using a digital SLR camera and the methods de-
scribed in Section 3. For the localization experiments, two smart-
phones were used, a Meizu M83 and an Asus P565. One of them,
the M8, was used to take a set of 94 high resolution pictures while
walking along a specified path through three rooms of this recon-
struction. For every position, two images were taken, one with the
built-in lens of the M8 and one with a special adhesive wide-angle

3http://www.meizu.com

Figure 6: Sample images from the test set collected along a path
through three rooms of our department. On the left side, images
taken with the normal lens are shown, on the right side pictures taken
from the same position with the wide-angle lens are depicted.

Figure 7: Meizu M8 mobile phone front view, back view with mag-
netic mounting ring, wide angle camera lens from AmacroX, mounted
camera lens (from upper left to lower right).



Database PVS 1 PVS 2 PVS 3 Grid
(cells 1,2,4) (cells 2-4,6) (cells 4-6) (whole area in Fig. 3)

Size 5,378 kB 5,159 kB 2,348 kB 16,789 kB

Table 1: Amount of memory needed for storing the individual working
sets, the PVS as marked in Figure 5 and the entire reconstruction as
shown in Figure 3.

lens from AmacroX4, which can be mounted on a phone. A col-
lection of images for both lens types is shown in Figure 6. The
phone was mounted on a tripod to ensure that the image pairs with
and without the AmacroX lens were taken from the exact same po-
sition. The mobile phone and the setup are depicted in Figure 7.
For simplicity, we calibrated the camera once with and without the
AmacroX lens, but did not recalibrate the camera each time after
reattaching the wide angle lens.

Using two different lenses makes the optimal choice of param-
eter settings for the various algorithms more difficult. Moreover,
effects resulting from the radial distortion of the AmacroX are diffi-
cult to analyze. Nevertheless, we included the image sets obtained
with both lenses to better understand the effect of field of view in
complex localization problems.

5.2 Memory consumption
We investigated the effect of using a PVS structure on the size of
working set selected from the overall database. The memory con-
sumption of the PVS structure is compared to a regular subdivision
as used by by Takacs et al. [31]. Results for the working set con-
sisting of descriptors k-means tree, using 8-bit quantized values for
every histogram entry, are listed in Table 1.

Note that the amount of memory for the databases in the indi-
vidual PVS is considerably smaller than the amount needed for an
entire area. Also note that due to our management of sharing cells
among PVS structures (see Section 4.2), the amount of memory is
even smaller. This means that the values in Table 1 refer to the
maximum amount of memory needed and include shared cells.

5.3 Matching strategies
In the preparation of our performance tests, we evaluated differ-
ent strategies for generating correspondences between features de-
tected in a given 768x576 pixel image and the features contained in
a database (refer to Table 2 for averaged results). We tested exhaus-
tive matching (1) and k-means tree based matching with subsequent
histogram filtering, where the best 3 candidates were evaluated. For
matching with the features of the best candidates we tested two con-
figurations, one using exhaustive matching (2) and one using a k-
means tree (3). For all three strategies we matched five test images
against a database containing 40,670 features.

In the query images, on average 784 features were detected. The
runtimes for the second and the third approach also include the time
needed for histogram voting. Note that the second and the third
method only approximate the result, while only the first method
delivers the exact matching. Nevertheless it is easy to see that in
terms of the computation time, the third strategy outperforms both
other methods by far. Consequently is was adopted as our preferred
method for our online localization For a comparison of the accu-
racy, the reader is referred to the next experiment.

5.4 Image resolution
The aim of this experiment is to evaluate the influence of im-
age resolution on robustness. Starting with an initial resolution of
1920x1440 pixels (the maximum still image resolution of the Meizu
M8 camera), we iteratively reduced the image resolution down to

4http://www.amacrox.com

0

10

20

30

40

50

60

70

80

90

100

Image Resolution [pixel]

M
at

ch
in

g
 P

er
ce

n
ta

g
e 

[%
]

 

 

32
0x

24
0

38
4x

28
8

44
8x

33
6

51
2x

38
4

57
6x

43
2

64
0x

48
0

70
4x

52
8

76
8x

57
6

83
2x

62
4

89
6x

67
2

96
0x

72
0

10
24

x7
68

12
80

x9
60

16
00

x1
20

0

19
20

x1
44

0

Exhaustive (Normal Lens)
KMeans + Histogram Filtering (Normal Lens)
Exhaustive (Wide Angle Lens)
KMeans + Histogram Filtering (Wide Angle Lens)

Figure 8: Image resolution vs. matching percentage for both lens
types and both matching methods. The results for the wide-angle
lens are drawn with dashed lines.

Strategy Exhaustive Tree-based Matching Tree-based Matching
Matching (1) (best 3 candidates (best 3 candidates

exhaustively) (2) tree-based) (3)

Time 17.95 s 1.660 s 150.78 ms

Table 2: Runtime performance for different matching strategies on
the ASUS P565.

320x240 pixels. For all image resolutions, we allowed a reprojec-
tion error of 1.5 % of the corresponding focal length, which is equal
to about 20 pixels in the largest resolution. In the lowest image res-
olution, this is equivalent to about 3.3 pixels. To keep the rate of
features detected in the images at a reasonable level, we lowered
the threshold for detecting features with decreasing image resolu-
tion, starting with a relatively high threshold. This was mainly done
to remove the large amount of noise due to very small features de-
tected in larger image resolutions.

To prove the performance of our matching approach based on in-
dividual k-means trees and histogram-based filtering of candidates
(with consecutive k-means tree based matching), we compared it
with an exhaustive search over the whole database, i.e., all feature
points contained in the reconstruction. The results of this evalua-
tion are shown in Figure 8. Note that for convenience, this test was
performed on a standard desktop computer.

It is easy to see that the matching performance for the image
sequence acquired with the wide-angle lens is generally better than
for the sequence acquired with the normal camera lens, except for
very low resolution. The advantage of using the wide-angle lens
clearly stands out and highlights the importance of a wide field of
view for localization.

Note that the matching performance does not increase for resolu-
tions above 640x480 pixels, and may even slightly drop for higher
resolutions. Using a 3D reconstruction procedure, such as the one
described previously in Section 3, the resulting database contains
image features which constitute a coarse to moderately detailed rep-
resentation of the environment. Image features which represent fine
details of objects (e.g., text on a wall poster) are usually not repre-
sented in the reconstruction. If high image resolutions are used for
comparison, fine details may be extracted and can lead to increased



Image
Resolution 512x384 640x480 768x576 1024x768

Avg. Num. of
Features 372 557 784 1253

M
ei

zu
M

8

Feature
Extraction 278.30 ms 387.58 ms 593.11 ms 2,155.1 ms

Histogram
Voting 32.48 ms 48.18 ms 67.25 ms 109.96 ms

Matching
best (max.) 3
cand. + RP

129.15 ms 178.95 ms 214.24 ms 302.77 ms

Total Time 439.94 ms 614.71 ms 874.60 ms 2,567.83 ms

A
SU

S
P5

65

Feature
Extraction 125.72 ms 193.19 ms 306.11 ms 481.85 ms

Histogram
Voting 26.69 ms 39.5 ms 54.59 ms 90.57 ms

Matching
best (max.) 3
cand. + RP

96.18 ms 120.20 ms 141.77 ms 237.79 ms

Total Time 248.59 ms 352.89 ms 502.43 ms 810.21 ms

Table 3: Runtime performance for different image resolutions and the
individual algorithms contained in our approach.

Individual Percentage Percentage Percentage Percentage
Algorithm [512x384] [640x480] [768x576] [1024x768]

Feature Extraction 50.57 % 54.75 % 60.93 % 59.47 %
Histogram Voting 10.74 % 11.19 % 10.86 % 11.18 %
Matching best 3 cands. 21.61% 20.18 % 19.15 % 20.62 %
Robust Pose Estim. 17.08 % 13.88 % 9.06 % 8.73 %

Table 4: Average percentage of computational time spent in the indi-
vidual parts of our algorithm on the P565.

mismatches. We partially overcome this by choosing a correspond-
ing threshold for higher resolutions, but the effect is still noticeable.
Another observable fact is that our preferred method of tree-based
matching has only a ∼5-10 percent lower performance rate due to
the errors in the matching stage.

Although we chose our limit for feature correspondences ini-
tially accepted by the robust pose estimator quite high, Figure 9
shows that almost 80 % of all inliers used for calculating the final
pose for a 768x576 pixel image have a reprojection error smaller
than 4 pixels. Thus we assume the resulting pose to be quite ac-
curate, despite alignment errors introduced during manual global
registration of individual reconstructions, and despite errors result-
ing from the triangulation step in a typical small-baseline indoor
environment.

5.5 Full system mobile phone evaluation
Finally we performed an evaluation of our localization method with
the two smartphones, the Meizu M8 (800MHz ARM11 CPU with
FPU) and the ASUS P565 (800MHz Intel XScale without FPU).
On the M8 we ran a version of our software using hardware float-
ing point, whereas on the P565 we ran a version using fixed-point
math. We tested several different image resolutions for five test
images, averaging the results. The database used is PVS 1 from
our reconstruction, containing 40,670 features (equaling the same
number of reconstructed 3D points). The results of our evaluation
are listed in Table 3. A breakdown of the amount of computation
time spent in the individual algorithms contained in our approach is
given in Table 4.

As can be seen from row 2 of Table 3, the number of features
increases almost linearly with the number of pixels of the query
images and corresponds to the time spent in feature extraction. In-
terestingly, the CPU of the M8 runs at the same rate as the CPU of
the P565, but the performance of the P565 is far better, which may

0

5

10

15

20

25

30

Reprojection Error [Pixels]

P
er

ce
n

ta
g

e 
[%

]

[0..1) [1..2) [2..3) [3..4) [4..5) [5..6) [6..7) [7..8) [8..9) [9..10)

Figure 9: Reprojection error for inliers found during robust pose esti-
mation. A reprojection error of ∼ 10 pixels was allowed for an image
size of 768x576 pixels.

be caused by caching or memory bandwidth limitations of the M8.
Thus, for the rest of the discussion we focus on the results from the
P565.

The amount of time spent in the histogram voting and the robust
pose estimation stage only slightly increases, compared to the time
spent in the feature extraction stage. The total amount of time for
the whole process from feature extraction to robust pose estimation
is about 248.59ms for a 512x384 pixel image, up to about 810.21ms
for a 1024x768 pixel image. Comparing this result with the results
from Figure 8, one can see that for a 768x576 pixel image a correct
6DOF pose (which is correct in about 82% of all cases) us com-
puted at approximately 2 f ps. Note that in this case the use of the
wide-angle lens is assumed.

As can be seen in Table 4, the major amount of time is spent
in the feature extraction stage. This is due to the computationally
intensive task of scale-space search for extremal points and the sub-
sequent generation of descriptors. The percentage of time spent on
histogram voting for finding the best candidates and matching the
descriptors stays almost constant across different image resolution.
The time spent in the robust pose estimation stage drops due to the
increased percentage of time spent in the feature detection stage.
Moreover, our robust pose estimation method is able to discard a
large number of outliers in a very early stage of the algorithm, thus
keeping the overall amount of time needed relatively low (compare
rows 5 and 9 in Table 3).

6 CONCLUSION AND OUTLOOK

In this paper we presented an approach for wide-area 6DOF pose
estimation. It relies on a previously acquired 3D feature model,
which can be generated from image collections, and can therefore
tap into the rapidly increasing amount of real world imagery ac-
quired for digital globe projects and similar ventures. To make the
approach scalable, a representation inspired by potentially visible
set techniques was adopted together with a feature representation
that is suitable to work in real time on a mobile phone. Our evalua-
tions show that robust recovery of full 6DOF pose can be obtained
on a current smartphone at about 2-3Hz, which is sufficient to ini-
tialize incremental tracking methods.

Due to the complexity of the localization task and the large num-
ber of different algorithms involved, we cannot discuss all aspects
of our system in detail. In this work, we focus on the general fea-
sibility of computing a localization efficiently with the proposed
methods. An evaluation of the behavior of localization performance



Figure 10: Three reconstructed rooms in which the set of test pictures was acquired. The camera poses estimated by our algorithm are
represented as small, color-coded cubes from red via magenta and cyan to green. The path started in the right room (red), walking around in
the middle room (magenta), going into the left room (cyan) and back into the right room (green).

over large time periods would be an interesting research topic and
will be addressed in future work. From our experience, large parts
of the individual reconstructions do not change much over time, and
localization worked well when reconstruction data acquisition was
carried out several weeks earlier. Nevertheless there are also parts
of the reconstructions which are likely to change, and thus more
advanced methods are needed to overcome the resulting problems.
For example, a bookshelf seems to be a good tracking target, but
the ordering of books on the shelf changes frequently, as users take
books and put them back at different positions. Note that this also
happened during our evaluations and caused some localizations to
fail. This will be subject of further investigations concerning the
frequent updating of existing reconstructions or invalidating out-
dated parts of reconstructions.

In the future, we plan to combine the localization with an incre-
mental tracker, working from the pose calculated with the approach
proposed here. However, probably different types of datasets are
necessary to make this feasible [34]. In our current work, we did not
include any investigations about special properties of cellular net-
works or wireless communication protocols necessary for online-
sharing of 3D reconstructions from a centralized server. Neverthe-
less, this will be – together with a more in-depth investigation of
PVS for efficient database management – subject to more closer re-
search in the future as we plan to enlarge the reconstructed area at
our department and think about deploying a test system for demon-
stration purposes.

ACKNOWLEDGEMENTS

This work was partially sponsored by the Christian Doppler Labo-
ratory for Handheld Augmented Reality and the Austrian Science
Foundation FWF under contract Y193 and W1209-N15.

REFERENCES

[1] M. Addlesee, R. W. Curwen, S. Hodges, J. Newman, P. Steggles,
A. Ward, and A. Hopper. Implementing a sentient computing system.
IEEE Computer, 34(8):50–56, 2001.

[2] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism
with interactive update rates in complex virtual building environments.
In Proc. Symposium on Interactive 3D Graphics, pages 41–50, New
York, NY, USA, 1990. ACM.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust
features (surf). Computer Vision and Image Understanding (CVIU),
110(3):346–359, June 2008.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[5] G. Fritz, C. Seifert, and L. Paletta. A mobile vision system for urban
detection with informative local descriptors. page 30, 2006.

[6] J. Gausemeier, J. Fründ, C. Matysczok, B. Bruederlin, and D. Beier.
Development of a real time image based object recognition method
for mobile AR-devices. In Afrigraph, pages 133–139. ACM, 2003.

[7] R. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle. Analysis and so-
lutions of the three point perspective pose estimation problem. In Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
592–598, 1991.

[8] H. Hile and G. Borriello. Information overlay for camera phones in
indoor environments. In Location- and Context-Awareness, Third In-
ternational Symposium, LoCA, volume 4718, pages 68–84. Springer,
2007.

[9] A. Irschara, C. Zach, and H. Bischof. Towards wiki-based dense city
modeling. In Workshop on Virtual Representations and Modeling of
Large-scale environments (VRML), 2007.

[10] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From structure-
from-motion point clouds to fast location recognition. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2009.

[11] M. Kalkusch, T. Lidy, G. Reitmayr, H. Kaufmann, and D. Schmal-



stieg. Structured visual markers for indoor pathfinding, 2002.
[12] G. Klein and D. Murray. Parallel tracking and mapping for small AR

workspaces. In International Symposium on Mixed and Augmented
Reality (ISMAR), November 2007.

[13] M. Klopschitz and D. Schmalstieg. Automatic reconstruction of wide-
area fiducial marker models. In ISMAR, pages 1–4, Washington, DC,
USA, 2007. IEEE Computer Society.

[14] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time
keypoint recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages II: 775–781, 2005.

[15] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

[16] D. G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. International Journal on Computer Vision (IJCV), 60(2):91–
110, 2004.

[17] D. Martinec and T. Pajdla. Robust rotation and translation estimation
in multiview reconstruction. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2007.

[18] K. Mikolajczyk and C. Schmid. A performance evaluation of lo-
cal descriptors. Pattern Analysis and Machine Intelligence (PAMI),
27(10):1615–1630, Oct. 2005.

[19] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. V. Gool. A comparison of affine
region detectors. International Journal on Computer Vision (IJCV),
65(1/2):43–72, 2005.

[20] L. Naimark and E. Foxlin. Circular data matrix fiducial system and
robust image processing for a wearable vision-inertial self-tracker. In
International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE Computer Society, 2002.

[21] H. Najafi, Y. Genc, and N. Navab. Fusion of 3d and appearance models
for fast object detection and pose estimation. In Asian Conference on
Computer Vision (ACCV), pages 415–426, 2006.

[22] D. Nistér. An efficient solution to the five-point relative pose prob-
lem. Pattern Analysis and Machine Intelligence (PAMI), 26(6):756–
770, 2004.

[23] D. Nistér and H. Stewenius. Scalable recognition with a vocabu-
lary tree. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2161–2168, 2006.

[24] V. Otsason, A. Varshavsky, A. LaMarca, and E. de Lara. Accurate
GSM indoor localization. In Ubicomp, pages 141–158, 2005.

[25] G. Reitmayr and T. W. Drummond. Initialisation for visual tracking
in urban environments. In ISMAR, pages 1–9, Washington, DC, USA,
2007. IEEE Computer Society.

[26] D. Robertson and R. Cipolla. An image-based system for urban nav-
igation. In British Machine Vision Conference (BMVC), pages 819–
828, 2004.

[27] G. Schindler, M. Brown, and R. Szeliski. City-scale location recog-
nition. In Conference on Computer Vision and Pattern Recognition
(CVPR), volume 0, pages 1–7, Los Alamitos, CA, USA, 2007. IEEE
Computer Society.

[28] I. Skrypnyk and D. G. Lowe. Scene modelling, recognition and track-
ing with invariant image features. In International Symposium on
Mixed and Augmented Reality (ISMAR), pages 110–119, 2004.

[29] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: Exploring photo
collections in 3D. In Proceedings of SIGGRAPH 2006, pages 835–
846, 2006.

[30] N. Snavely, S. M. Seitz, and R. S. Szeliski. Skeletal graphs for efficient
structure from motion. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–8, 2008.

[31] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen,
T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod. Outdoors
augmented reality on mobile phone using loxel-based visual feature
organization. In Multimedia Information Retrieval, pages 427–434,
2008.

[32] S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive
walkthroughs. SIGGRAPH Comput. Graph., 25(4):61–70, 1991.

[33] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose tracking from natural features on mobile phones. In In-
ternational Symposium on Mixed and Augmented Reality (ISMAR),
Cambridge, UK, Sept. 15–18 2008.

[34] D. Wagner, D. Schmalstieg, and H. Bischof. Multiple target detec-
tion and tracking with guaranteed framerates on mobile phones. In
International Symposium on Mixed and Augmented Reality (ISMAR),
Orlando, FL, USA, 2009. IEEE Computer Society.

[35] J. Wang, S. Zhai, and J. F. Canny. Camera phone based motion sens-
ing: interaction techniques, applications and performance study. In
UIST, pages 101–110. ACM, 2006.

[36] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge lo-
cation system. ACM Transactions on Information Systems, 10(1):91–
102, Jan. 1992.

[37] C. Zach, A. Irschara, and H. Bischof. What can missing correspon-
dences tell us about 3D structure and motion? In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1–8, 2008.

[38] W. Zhang and J. Kosecka. Image based localization in urban environ-
ments. In International Symposium on 3D Data Processing, Visual-
ization and Transmission, pages 33–40, Washington, DC, USA, 2006.
IEEE Computer Society.

[39] Z. Zhu, T. Oskiper, S. Samarasekera, R. Kumar, and H. Sawh-
ney. Real-time global localization with a pre-built visual landmark
database. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–8, 2008.


