
Comprehensible Visualization for
Augmented Reality

Denis Kalkofen, Student Member, IEEE, Erick Mendez, Student Member, IEEE, and

Dieter Schmalstieg, Member, IEEE

Abstract—This article presents interactive visualizations to support the comprehension of spatial relationships between virtual and

real-world objects for Augmented Reality (AR) applications. To enhance the clarity of such relationships, we discuss visualization

techniques and their suitability for AR. We apply them on different AR applications with different goals, e.g., in x-ray vision or in

applications that draw a user’s attention to an object of interest. We demonstrate how Focus and Context (FþC) visualizations are

used to affect the user’s perception of hidden or nearby objects by presenting contextual information in the area of augmentation. The

organization and possible sources of data for visualizations in AR are presented, as well as cascaded multilevel FþC visualizations to

address complex cluttered scenes that are inevitable in real environments. This article furthermore shows filter operations and tools to

interactively control the amount of augmentation. It compares the impact of real-world context preservations to a pure virtual and

uniform enhancement of occluding structures for augmentations of real-world imagery. Finally, this paper discusses the stylization of

sparse object representations to improve the comprehension of x-ray visualizations in AR.

Index Terms—Data structures, graphs and networks, methodology and techniques, interaction techniques, graphics data structures

and data types, multimedia information systems, artificial, augmented, and virtual realities, user interfaces, style guides.
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1 INTRODUCTION

AUGMENTED Reality (AR) displays extend the user’s
perception with additional computer-generated infor-

mation. This information is usually registered in 3D space
and related to objects and places in the real world. If we
consider AR as a visualization technique, the relationship of
real and virtual objects is one of focus and context: Either we
want to provide additional virtual context to an important
object in the real world or we want the user to focus on a
virtual object embedded in a real context.

In both cases, AR generates the final image by overriding

parts of the real-world imagery with synthetic images.

However, heedless replacement of portions of the real

world can easily cause a number of cognitive problems.

For example, “x-ray” visualizations render hidden struc-

tures over visible objects, but careless augmentation with

synthetic imagery may obscure important real-world in-

formation, as illustrated in the simulated surgery depicted in

Fig. 2. The computer-generated augmentation occludes

highly relevant information present in the real-world

imagery. In this case, the objective is to insert a needle into

a patient’s abdomen using a predefined entry point (black

crossing). While visualizing the internal anatomy using AR,

the user is unable to see the entry marks for the needle

placed on the skin of the patient. The visual augmentation

furthermore leads to problems of depth perception, caused
by the heedless removal of depth cues (Fig. 2a). Fig. 3b shows
a better augmentation that considers edges extracted from
the real video stream with our framework. The extracted
features provide additional depth cues, and since they come
from the real imagery, they are also able to preserve
important landmarks (such as the entry points), in addition
to being perfectly registered.

The problem of correct depth perception has been a
common subject of research in the past and has been
addressed by a number of strategies, mainly based on adding
monocular depth cues to the scene [3]. For example, [9] adds a
window-shaped restriction to the rendering area in order to
enhance depth perception through partial occlusion. How-
ever, none of the existing approaches take into account what
is actually removed from the real-world imagery.

Another class of problems is caused by the amount of
information added to reality. For example, if too much
information is added in areas that were unimportant in the
original image, the impression of a cluttered display may be
caused. Furthermore, if important information from both real
and virtual is present in the same area, the visualization
algorithm should aim for an optimal combination of all
features, rather than always giving preference to the virtual
features over the real ones. Otherwise, this can cause grave
problems as, for example, the one illustrated in Fig. 1, where
the system tries to draw the attention of the user to the middle
part of the robot by overlaying a red box on top of it. However,
it completely occludes the object it wants to draw attention to.

In this paper, we address the task of sensibly blending
virtual and real-world imagery. We take into account the
information that is about to be occluded by our augmenta-
tions, as well as the visual complexity of the computer-
generated augmentations added to the view. Our work is

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH/APRIL 2009 193

. The authors are with the Institute for Computer Graphics and Vision, Graz
University of Technology, Inffeldgasse 16a, A-8042 Graz, Austria.
E-mail: {kalkofen, mendez, schmalstieg}@icg.tugraz.at.

Manuscript received 4 Mar. 2008; revised 29 May 2008; accepted 30 June
2008; published online 10 July 2008.
Recommended for acceptance by T. Ertl and M.A. Livingston.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number
TVCGSI-2008-03-0034.
Digital Object Identifier no. 10.1109/TVCG.2008.96.

1077-2626/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society



inspired by research on focus and context (FþC) visualiza-
tion techniques and specifically by importance-driven
rendering [22]. Rather than using a single scalar importance
value, we distinguish scene objects by a vector of attributes
describing the object’s importance at different levels,
evaluated per pixel in a programmable shader. This process
can incorporate multiple levels of importance through
the use of a user-scripted shader tree. Our AR visualization
framework allows the controlled removal of real-world
information. Moreover, rather than merely removing infor-
mation, objects can be styled according to their importance
relative to other objects in its vicinity. This process can be
manipulated interactively, for example, with Magic Lens
tools for a selective clutter removal.

In our previous work [12], we have applied basic FþC
techniques to AR, especially to x-ray vision. This paper
extends it to a generalized framework and discusses the
advantages and disadvantages of various filter operations
(Section 4). In particular, it introduces cascaded and
multilevel FþC visualizations, which are better suited to
address complex cluttered scenes that are inevitable in real
environments.

We further extended our previous paper with a discussion
about stylizations of sparse representations to improve
context-preserved x-ray visualizations. Finally, this paper
discusses possible virtual and real preservations in AR
(Section 4.4). We compare sparse virtual overlays with sparse
preservations of real-world imagery, coming from the AR
system’s video feed.

2 RELATED WORK

FþC techniques build the core of our framework. They are
important topics across several disciplines such as human-
computer interaction, volume visualization, and rendering.
Following the overview of FþC techniques in [13], the
creation of FþC visualizations can be roughly divided into
two major steps: data classification and data visualization.

The objective of the first step, data classification, is to
identify the roles in the data, i.e., what information should
be focus and what should be context. The relationship
between focus and context data may be either spatially
driven or knowledge driven. Spatially driven techniques
retain or enhance information in close proximity to the
focus object. Knowledge-driven techniques do not depend
on spatial proximities; instead, they use semantic inter-
pretations of a given set of objects or scene parameters to
distinguish between focus and context objects. Such
interpretation can be directly controlled by the user, based
on task knowledge [11] or inferred from the contextual
information associated with the scene [17].

Interactive data separation is usually performed based
on user input. There are a number of approaches on how
the user can be involved in the definition of focus and
context, for example, through direct pointing, widget
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Fig. 1. Occluding augmentations. A typical AR visualization to draw the
user’s attention with overlaid semitransparent geometry, occluding the
object of interest.

Fig. 2. Naı̈ve augmentations. Careless augmentations of hidden
structures suffer two key problems: they override useful information
(such as landmarks) and they lack depth cues. (a) Augmentation of the
liver with its portal and hepatic vessel trees (red and blue) and a tumor
(green). (b) Original photo before augmentation, the black cross
indicates the entry port for the rfa-needle.

Fig. 3. Variable compositions and styles. (a) Interactively applying different compositing strategies to reduce the number of context information inside
a Magic Lens. (b) Emphasized edges extracted from the video stream not only provide depth cues but also preserve important landmarks, in this
example, the needle’s entry point. (c) X-ray visualization by preserving real-world information.



manipulation, or tangible interfaces. A classical example is
the Magic Lens metaphor [2], which interprets a particular
application state and spatial region to infer the FþC roles.

The selection of FþC roles is an important topic when
confronted with visualization problems that require making
hidden information visible. This problem has sometimes
been called x-ray visualization. Examples of such ap-
proaches in volume rendering include the use of applica-
tion-dependent importance values [22] or isovalues [15].

Once having discerned focus and context, the second
step is to render the objects in visually distinctive styles
in order to draw the user’s attention to the focus. Most
techniques for FþC rendering of 3D scenes rely on opacity
modification [15], [22], [8], [4], [1]. Other styling techniques
use color [19], depth of field [14], or hybrid rendering
techniques [10] to catch the observer’s attention. We draw
inspiration from these works since our framework allows

very general effects to be applied to AR scenes.

3 FOCUS AND CONTEXT RENDERING FRAMEWORK

The core of our approach for expressive visualizations in AR

is a general GPU-based rendering framework similar to [15].

In this section, we will first describe the basic algorithm,

followed by an explanation how to use this method in

combination with cascaded FþC separation, controlled by

an FþC graph.

3.1 Rendering Technique

FþC visualizations demand that we visually discriminate

objects depending on whether they are marked as focus or

context. Recent work on volume visualization such as that

of Krüger et al. [15] and Hauser et al. [10] share the idea of

a two-pass rendering technique to achieve the desired

visualization. The first pass renders the individual objects

of the scene into a set of buffers, while the second pass

composes the final result from the individual buffers by

sweeping over the buffers in depth order. This is a very

general and simple approach, which is not just applicable to

volume data. Our rendering algorithm renders polygonal

models in three steps as follows (implementation details are

given in Section 5):

1. Buffer rendering. Rather than just making a binary
decision between focus and context, we classify
the objects in the scene by its context into multiple
families, using a scene graph markup mechanism
[18]. For every context family, a separate buffer is
allocated, which is used to render all object families
into distinct buffers. This enables us to apply
different treatments such as image manipulation in
the next step.

2. Buffer processing. Once the buffers have been ren-
dered, we process each of them to visually discrimi-
nate focus from context. We apply the desired visual
styling during this step, which may include edge
enhancement and color or transparency manipula-
tion. The actual modification is highly application
dependent and can be scripted through a mechanism
similar to shade trees [6].

3. Scene compositing. This step combines the informa-
tion contained in the processed buffers. They are
composed in front to back order, which are evalu-
ated by sorting depth values associated with every
fragment. The compositing is not fixed but may also
be scripted, which can vary on a per-pixel basis,
enabling different compositing strategies for differ-
ent areas of the image.

3.1.1 Buffer Rendering

From the algorithm, it is clear that a single frame buffer does
not fulfill our requirements. We need not only colorþalpha
but also depth for the scene compositing and, potentially,
several additional buffers resulting from the Buffer Proces-
sing. To store this information, Geometric Buffers (G-Buffers)
[20] are used. G-Buffers are a collection of image buffers
storing color, transparency, depth values, object IDs, texture
coordinates, normals, or other per-pixel information. A
G-Buffer encodes data about objects, such as view-dependent
information, and can be seen as a 2.5D scene approximation.

As many G-Buffer implementations do, we extend the
information held in the G-Buffer to include inferred informa-
tion from the processing step. This inferred information
can later be used to change the visual appearance of objects
belonging to a particular family. Fig. 4 provides an illustra-
tion of a G-Buffer containing four different bitmaps: color,
depth, ID, and inferred edge information.

A single G-Buffer contains an approximation of those
objects in the scene belonging to a particular context family.
We can thereby isolate the styling applied to different
families, while the collection of all G-Buffers approximates
the whole scene. The objects in Fig. 5 have been bound to
different buffers based on their family membership; in this
case, the family membership is exemplified by shape.

During buffer rendering, we use the regular rendering
pipeline to extract all the necessary information that will
be used during the processing of the buffers. The scene
is traversed in a single pass with multiple render targets.
Every object is rendered to exactly one G-Buffer, which is
determined by its family membership given as semantic
markup.

3.1.2 Buffer Processing

For every buffer, image processing techniques can be
applied to compute additional information, for example,
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Fig. 4. A single G-Buffer. Conceptual representation of the image buffers

contained by a single G-Buffer.



to detect edges or regions with high curvature, to extract
regions with particular color or depth values, or to mark
a particular region supplied interactively by the user.
Some techniques consider more than just the fragment’s
value, for example, its neighborhood, fragment values of
other buffers in the same G-Buffer, or fragment values
from different G-Buffers. In this way, multiple additional
image components containing auxiliary information can
be added to the G-Buffer.

3.1.3 Scene Compositing

In the final compositing step, the information from the set
of G-Buffers is merged into a final image using a GPU
raycasting algorithm with a nonuniform step length. Notice
that simple blending of the G-Buffers is not enough since
per-pixel occlusions are essential for the desired effects (as
illustrated in Fig. 5). The ray traverses the scene approxima-
tion given by the G-Buffers in front to back order (Fig. 6).
Since the G-Buffers are already available in view coordi-
nates and in screen resolution, the problem of casting a ray
is reduced to sorting the depth components of the G-Buffers.

Once this sorting has taken place, we proceed to compose
all the fragments into one single output. Such composition,
however, is based on compositing rules that can arbitrarily
alter the contribution of a particular pixel from one of
the G-Buffers. For example, the color or transparency of a
particular pixel may be modified based on the importance
of the pixel that was visited along the ray before the current
one. Our system allows us to apply different compositing
rules on different regions in the image (Fig. 3a). This is a
particularly useful operation for complex AR scenes to
interactively suppress pixels that are unimportant or
confusing.

3.2 Cascaded Focus and Context Separation

Conventionally, FþC visualizations consider a single level
of discrimination into focus and context. Some applica-

tions add weights [7] or importance values [14] to the
object classification so that membership to focus or context
is no longer binary but continuous. However, 3D AR
demands a more complex differentiation to keep informa-
tion about spatial relationships of objects. Moreover, in
classical FþC illustrations such as for textbook figures, no
disturbing background is present. While in a real-life AR
scenario, we do not have the luxury of limiting the range
of objects to the desired focus or context objects.

Fig. 7 shows a single level of FþC discrimination in AR
similar to [14], used to direct the user’s attention to an object
of interest. It can be seen that the focus clearly stands out,
but the remainder of the object cannot be discriminated
from the background.

Rather than relying on the user to directly provide object
classification and styling, our approach aims to preserve
spatial relationships through heuristic rules. This approach
can be described as an implicit multilevel FþC separation,
where FþC separators are applied consecutively on the
results of previous separation steps.

We control the authoring of complex FþC scenarios by
cascading simple FþC separators, using a directed acyclic
graph structure, the FþC graph. Such a graph is easy to
create and to understand, and it allows the explicit modeling
of the control flow and data flow of the rendering process.
The graph separates focus and context discrimination in
interior nodes, while the leaf nodes execute rendering
operations. Graph nodes use G-Buffer content or image
masks, created on the fly, for direct rendering or to control
subsequent image processing.

Fig. 9 gives an example of an FþC graph, which was used
to render the image in Fig. 8. In the given example, the scene
is grouped into three families. One is presenting the robot’s
battery pack (the actual focus), one provides the information
about the robot’s extremities and its head (the focus’
proximity), and one family contains the video background.

To outline the relationship between the focus and the
objects in its close proximity, we first visually underline
their affiliation to the same group, the foreground objects.
Thus, we first divide all scene content into two groups,
background and foreground objects, followed by adding a
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Fig. 6. Scene compositing. Nonuniform raycasting through the G-Buffer

volume.

Fig. 7. Single-level FþC discrimination. Object and scene relations are

lost. The object of interest seems to “fly” in the real world.

Fig. 5. Multiple G-Buffers. (a) An illustration of a scene. (b) One possible
G-Buffer volume. Notice that a G-Buffer does not represent a depth
layer.



strong visual discriminator between them, a 2D halo in
image space, similar to [5]. The halo is derived from all
objects that belong to the same group as the focus object (all
parts of the robot).

To be able to direct the user’s attention to the actual object

of interest, a second separation splits the focus from its

proximity. If we now heedlessly reduce the conspicuity of

the focus’ surroundings, we may easily produce an incom-

prehensible presentation that renders them useless as

contextual information of the focus. We therefore apply

another FþC separator (an edge detector) to identify distinct

features inside the focus’ surroundings, which we emphasize

instead. To moreover reduce the conspicuity with increasing

distance to the focus, we simply connect a previously derived

distance transform to the node, which shades the data, which

was classified as less important in the surroundings of the

focus object.

4 X-RAY VISUALIZATION

The FþC graph is a powerful tool, but it is independent of

the current viewing direction and therefore does not take

occlusions into account. However, a major goal of AR is

displaying x-ray visualization to reveal hidden structures.

To accomplish such augmentations, we face two main

challenges:

1. The final image needs to have enough depth cues
available to correctly communicate spatial relation-
ships between hidden and occluding structures.

2. Significant information of occluding structures has
to be preserved in order to retain the occluder’s
shape and to keep important landmarks visible in
the real-world imagery (Figs. 2 and 3b).

Notice that partially occluding structures provide a

strong monocular depth cue, which means that these two

challenges are interdependent and can therefore be jointly

addressed. In this section, we show how our framework

can be used to create comprehensible augmentations of

hidden structures. We will furthermore show how the same

techniques can also be used to keep important landmarks
visible in the real-world imagery.

In case of x-ray visualization, hidden structures are the
focus of attention, while occluding objects represent the
context. Fig. 10a shows a naı̈ve augmentation of hidden
objects (the engine and the back wheels). Since this image
contains only monocular depth cues [3], it is impossible to
correctly perceive spatial arrangements of the hidden and
occluding objects.

Conventional object occlusions provide better depth cues
but may render focus objects completely hidden, thus
defeating the goal of x-ray visualization. As a remedy, we
render only the important structures of the context objects on
top of the focus objects (Fig. 10b). In our case, the important
structures are those that hint at the shape and the location of
the context relative to its focus. By using only the important
contextual information, care is taken that only a limited
amount of context is used to occlude the focus. This approach
combines the visibility of hidden structures with a sufficient
amount of monocular depth cues to correctly interpret
spatial object relations.

In order to identify important context information, we
need filter operations to separate focus from context,
followed by an identification of the important information
in the previously identified context area. Notice once more
that the problem of finding important information in a
context area is again an FþC separation problem.
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Fig. 9. FþC graph. The FþC graph used to create the visualization in

Fig. 8.

Fig. 8. Multilevel FþC visualization. This conveys the spatial relation-

ships between the focus and objects in its close proximity.



Fig. 10b shows the augmentation of important context
information of a single occluding object, the car’s chassis.
Unfortunately, real-world scenarios generally do not consist
of just a single occluder; instead, we usually face a complex
depth arrangement. Directly applying the aforementioned
strategy of global FþC separation can easily lead to excessive
context information and a cluttered image (Fig. 11a).

Our framework is able to not only extract key features from
context but also control the amount of information visible in
the final image. In this case, we are interested in filtering the
amount of distracting information either in front of the focus
or in uninteresting areas of the imagery. Such filter operations
constitute one of the most important components in our FþC
rendering pipeline. We therefore allow filtering in all three
stages of our rendering pipeline.

While filtering during G-Buffer rendering and during
scene compositing applies to all fragments per pixel, filtering
during G-Buffer processing by using the FþC graph applies
to groups of fragments depending on the G-Buffer affilia-
tion, as well as on previously applied filter operations. In
the next section, we discuss how filtering per pixel can be
achieved, followed by a description of interactive filtering
using Magic Lenses.

4.1 Controlling Complexity with Per-Pixel Filter

Depth complexity may increase if multiple objects, located
at different depths in the scene, overlap in screen space.
To control this problem, we filter fragments covering the

same location on the screen, with the goal of a controlled
reduction of the number of contributing fragments. This
kind of filtering happens either during G-Buffer rendering
or during scene compositing. We will start with filter
operations during G-Buffer rendering.

If more than one fragment falls onto the same pixel, a test
such as the depth buffer test is required to choose one
remaining fragment. The way we group objects into families
defines which fragments are tested against one another. The
grouping, in combination with the choice of the G-Buffer’s
fragment tests, defines the result of per-pixel filtering.
Fig. 11a shows a setup of four different G-Buffers, while
Fig. 11d uses a different simplified grouping into only two
G-Buffers. Filtering by first selecting a set of fragments
depending on their G-Buffer affiliation, followed by regular
OpenGL fragment tests, is a versatile tool to control the
amount of visible information.

The amount of augmented information in the final
image strongly depends on the number of G-Buffers—fewer
G-Buffers are usually faster to process and create less clutter.
However, in order to define appropriate filtering strategies
to sensibly reduce the number of G-Buffers, we need detailed
knowledge of the scene and its object structure, which
may not always be available, in particular in dynamically
changing scenes. Therefore, we have implemented another
technique, filtering during scene compositing, which reduces
the amount of visible information per pixel regardless of
the number of G-Buffers. Any filter strategy that can be
formulated using pixel values and sorted depth values can be
applied to filtering during scene compositing.

We developed some simple heuristics that can success-
fully limit clutter in typical situations. Figs. 3a and 11c
show one such strategy, where we use inside a Magic
Lens only the first fragments (after sorting the depth
values in front to back order) and those belonging to the
focus objects (called first hit þ focus strategy). While four
different G-Buffers are used to visually discriminate the
scene elements, such heuristic successfully reduces the
amount of visible fragments inside the lens. Notice that a
disadvantage of filtering during scene compositing is that
it is generally more expensive since fragments discarded
in this stage have already gone through the entire pipeline
before they are finally eliminated.

4.2 Interactive G-Buffer Filtering

We control which parts of which G-Buffers get affected by a
certain set of operations with our FþC graph structure
during G-Buffer Processing, the second stage of our
rendering pipeline. Recall that FþC separation is ap-
proached through a hierarchy of filter operations, similar
to a shade tree (Section 3.2). Nodes in the graph represent
filter or shade operations on G-Buffers. The data flow defines
on which part a subsequent filter or shader is applied to. To
be able to spatially control the operations, we integrated flat
Magic Lenses into our FþC graph.

Magic Lenses implement filter operations that can be
interactively applied on a user-controlled spatial area. They
were first introduced as a user interface tool in 2D [2] and
later extended to flat (2.5D) and 3D [21]. We use the Magic
Lenses as interactive spatial filters to control the appearance
of only distinctive G-Buffers. Fig. 11b shows how only the
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Fig. 10. Comparison of methods. (a) A naı̈ve overlay of hidden
information. Correct shading and registration of the engine and the
wheels of the car does not provide sufficient depth cues. Occluded
objects seem to be in front of the car rather than inside. (b) Enhancement
of only important context information helps in communicating spatial
relationships while the object of interest is still clearly visible.



chassis of the car gets affected by our G-Buffer-sensitive
Magic Lens, while the other objects remain unchanged. The
difference between conventional Magic Lenses and our
implementation is illustrated in Fig. 11e. The top image
shows a traditional Magic Lens, affecting everything in its
frustum, regardless of whether the effect is desired for a
particular object. The bottom shows our implementation and
how it affects only a certain set of G-Buffers (only the red
square is stylized by the lens). Such a G-Buffer-sensitive
Magic Lens is implemented as a mask in the FþC graph,
by simply rendering it into a G-Buffer, which is later used
in the graph traversal to distinguish focus (inside its
footprint) from context (outside its footprint) information
of other G-Buffers.

4.3 Stylization

If we reduce the amount of context to prevent clutter, we must
be careful to choose the most valuable fragments to preserve.
Thereafter, we have investigated a number of feature
extraction techniques, mostly based on edge detection, which
leads to a sparse 3D object representation. However, such
sparse representations can exhibit depth ambiguities, which
have been addressed in nonphotorealistic rendering. Some of
these techniques are also used in our framework.

For example, edge halos provide the user with occlusion
cues among edges (Fig. 12b). While edges at the front appear
as straight lines, edges at the back become less dominant near
foreground edges. Unfortunately, image-based edge detec-
tors may compute many disconnected lines. By adding even
more discontinuity with an edge halo, the impression of
image clutter is worsened in such cases. We therefore have
implemented faded edge halos, which avoid hard disconti-
nuities, while still hinting at the arrangements between
foreground and background edges (Fig. 12c).

Another technique to communicate spatial arrangements
of sparse representations is edge stippling, which creates

discontinuities directly on an edge, rather than on intersec-
tions among edges. Stippling is a widely known convention
in illustration that conveys the spatial relationship among
objects. Edges from back or inner faces are indicated by dotted
edges, while front facing or occluding edges are continuous.
Given a representation with reasonable straight lines,
stippling provides additional depth cues without consuming
additional image space. However, the use of stylized edges
requires a limited amount of image clutter, as well as a limited
amount of depth levels, to be effective.
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Fig. 12. Depth ambiguity of edges. (a) Sparse representations of
foreground and background objects may lead to disambiguation in image
space. (b) Edge halos have been used to prevent background edges from
direct intersections with foreground edges. (c) Faded edge halos
smoothly prevent intersection, which helps to reduce image clutter.

Fig. 11. Context filtering. (a) The cluttered display is caused by too many different G-Buffers. (b) Interactively reducing visible fragments by using our
G-Buffer-sensitive Magic Lens. (c) Interactively applying different composting strategies to different regions in the same image. Inside the Magic
Lens, we use a “First Hit þ Focus” strategy to compose the fragments. (d) A grouping into fewer G-Buffer filters fragments by using regular OpenGL
fragment tests. (e) Conceptual comparison of traditional and G-Buffer-sensitive Magic Lenses. Notice that the lens above affects the rendering of all
objects in its lens’ frustum, while our approach restricts styling to only certain G-Buffers. The inner color is removed only for those objects that are
affected by the Magic Lens. (f) Conceptual comparison between two strategies during raycasting. The top ray uses all fragments, while the bottom
ray only uses the first and the focus’ fragments during compositing.



4.4 Virtual versus Real Context Preserving

The rendering algorithm described in this paper is only
dependent on the fact that all input data is available in a
G-Buffer, while the sources of such data can vary. The
most obvious source, which has been mentioned before, is
the rendering of scene objects. Anther important source for
AR scenes is the video stream used for video see-through
augmentation. A video stream delivered into a G-Buffer
can be subjected to all image-based operations described in
this paper. The choice of which data source to use depends
on the desired visualization and the conditions of the
augmentation. For example, in the case of edge detection,
better results may be obtained from G-Buffers generated
from rendered objects. This is because rendered objects are
not affected by image noise and are therefore easier
processed. However, this implies that the resulting edges
are also subject to tracking errors and poor registration.
Then again, images from the video stream do not suffer
from the registration problem, but they are subject to noise,
which can cause artifacts in the computed visualization.

Fig. 13 shows an enhancement of edges of a modeled
car. The edges are clearly distinguishable in thin lines.
However, since they are model based, they are subject to
tracking errors. Notice how the registration of the edges

and the real model car is offset through intentionally
sloppy registration. This can lead to confusing rather than
helpful depth cueing.

This problem may be overcome if we rely on edge
detection of the video stream. Fig. 3b shows an example
of such augmentation. Notice that the edges are perfectly
registered but rather thick and less detailed. The quality
of the edges depends not only on the edge extraction
technique itself but also on the input video image. Edges
extracted from a rendered model will most of the time
have superior quality than those extracted from video.
Even more concerning is that edges extracted from video
may clutter the whole view.

A hybrid approach using features from video and
tracked objects as stencil masks is able to reduce the image
clutter. Fig. 3b has been enhanced with edges from the
video stream, which were stenciled by the region covered
by a flat magic lens. This technique enables us to use the
registration quality of edges from video without cluttering
over the whole screen. While the hybrid approach inherits
the disadvantages of its components (quality of the edges
and occasional registration error of the mask), these are
much less disturbing even in harsh conditions.

Adding extra artificial information to the image may
nevertheless be distracting. A more subtle way to depict
context is by using the original video information as context
overlay. However, the limits of human perception impose a
trade-off between the amount of preserved features and the
clarity of revealed hidden structures. Therefore, if the
visualization demands a high clarity of hidden structures,
a very sparse representation has to be used for occluding
objects. However, such very sparse representations necessa-
rily provide only a small amount of features, making it
difficult to mentally reconstruct the object’s shape, especially
if its appearance is similar to its surroundings, which is the
case in most of the nonartificial scenarios. Fig. 14b shows such
a very sparse preservation of real-world imagery. Notice the
difficulty to perceive the preservations of the real-world
imagery.

The visualization should aim to contribute features of
optimal clarity. In case of very sparse preservations, such
features are more comprehensive if they have a consis-
tent tone or color and stand in strong contrast to their
surroundings. Unfortunately, video-based AR does not
guarantee that such features exist in the original video
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Fig. 13. Synthetic edges. An augmentation of edges extracted from a 3D

model. The edges are thin and clear, but they suffer from poor

registration.

Fig. 14. Virtual emphasizing versus real-world preservation for sparse object representations. (a) A uniformly colored accentuation of sparse object

preservation is able to provide a good impression of the occluding object. (b) In contrast, sparse real-world preservations may be hard to perceive.



image, as they are subject to noise, varying illumination,
etc. We therefore emphasize very sparse representations,
by using an artificial coloring (Fig. 14a). However, if the
visualization’s goal demands video preserving instead of
artificial coloring, a certain amount of preserved features
has to be guaranteed.

Fig. 15 shows an example of how we achieve this in image
space. The example uses the features extracted from the
video feed. To ensure a certain amount of context preserva-
tion, we distribute the detected features in its close proximity,
by computing a 2D halo around them. The halo operator
additionally weights the distributed features depending on
their distance to the original features (Figs. 15a, 15b, and 15c).
We use the derived halo as a mask to retrieve those fragments
from the video feed, which are used for context augmenta-
tion (Fig. 15d). The halo values are finally used to gradually
modify the opacity of the originally detected, as well as the
distributed, features, which ensures a smooth composition of
virtual and real objects (Figs. 15e and 15f).

Figs. 3c and 16 show other examples of soft opacity
modifications along detected features. The usage of smooth
opacity changes guarantees that hidden objects will not be
completely covered by the video information, even though
a high amount of information is preserved.

4.5 Focus on Focus Visualization

Our rendering framework is based on a hierarchical approach
of FþC separation. This causes a natural problem: some
situations might have more than one focus object. In some
scenarios, the relative importance between objects from
different branches of the hierarchy cannot be clearly resolved.
If such objects overlap in screen space, a strategy to select the
contributing fragments has to be defined.

A naı̈ve approach is to simply blend between such objects
to keep both foreground and background object visible.
However, blending fails to convey the spatial arrangement
and is therefore mostly inappropriate for our purposes.
A better solution is to use a sparse representation of the
hidden focus object but only where it is occluded. Non-
occluded fragments of the focus object are treated using a
dense representation (Fig. 17). We generate such combina-
tions of sparse and dense visualizations of one object by
simply using the partially occluding object as a runtime
mask in our FþC graph.

5 IMPLEMENTATION

To visually discriminate focus from context, we need to
render both using different styles. Assuming a scene graph,
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Fig. 15. Soft context preserving. Given the (a) input video, we (b) compute

its features and (c) apply a haloing operation. We use this as (d) a mask

for video fragments, which is finally composed with (e) virtual objects and

(f) the original video.

Fig. 16. Smooth composition of real and virtual objects.

Fig. 17. Two objects with equal importance assignment. We render the

partially hidden object by using a sparse representation for occluded

fragments and a dense representation for nonoccluded fragments.



as it is commonly used in VR and AR applications, a simple
approach places focus objects and context objects in separate
branches of the scene graph. This, however, would limit the
possible data sources to those with a specific separation of
these two elements. Moreover, it would make interactive
changes of FþC separation possible only if the application is
tightly coupled with the scene graph data structure.

Instead of depending on a hierarchy that fulfills our
requirements, objects are marked with contextual informa-
tion and scattered throughout the scene graph in any
naturally occurring order without any enforced grouping.
Sorting objects by context family happens implicitly during
the scene graph traversal, using the parameterized scene
graph described in [18]. Fig. 18 shows such a conceptual
grouping of objects in the scene graph (highlighted in red and
blue), regardless of their occurrence in the graph. In our
implementation, objects are marked up with the context
family they belong to, and this property is inherited by the

subgraph. The family in turn determines which G-Buffer to
target in the subsequent rendering. The implementation of
this marked-up scene graph is based on Coin3D (www.
coin3d.org), but the mechanism itself is independent of any
specific platform and is easy to duplicate on other systems.

The scene graph is also used as the software infrastruc-
ture for the FþC graph, which directly makes use of
important scene graph capabilities: In-order traversal is
used to visit the nodes of the FþC graph, while field
connections enable out-of-order data flow dependencies.
All elements of our visualization framework are implemen-
ted as node extensions and can be mixed freely with any
kind of content available in Coin3D. This makes the system
easily extensible, and furthermore, the file format of Coin3D
allows convenient user scripting of all content, facilitating
the development of authoring tools for end users.

Our implementation is based on the GPU programming
language GLSL, the OpenGL Frame Buffer Object (FBO)
extension, and multiple render targets. We have imple-
mented a G-Buffer as a collection of 2D textures. Each of the
texture’s components is used to represent a specific value
such as a color component or depth value. For example, a
G-Buffer with RGBA color, depth, and object-ID informa-
tion needs to have six scalar components. While a single 2D
texture can only hold up to four components, we use up to
eight textures for a maximum of 32 components, addressed
simultaneously in a single rendering pass, resulting from a
single scene graph traversal. While we have found this to be
sufficient for our experimental implementation, the use of
render target arrays can reduce this limitation even further.

We use a simple texture tiling technique, where each tile
represents a G-Buffer. Switching G-Buffers from a different
context family merely means looking up corresponding
viewport parameters of a single large target texture. We
use a Nvidia GeForce 8800 GPU graphics card, on which
our examples typically exceed 30 fps without significant
optimization. Notice that the images in this paper are
bound to the quality achieved by the camera. In this case,
we use a uEye camera with a 1/2’’ CCD and an exchange-
able Fujinon lens.

Edge halos used to discriminate sparse foreground and
background representations can be efficiently computed
from edges as Gaussian blur. However, this approach tends
to remove contributions from small features. Bruckner and
Gröller [5] describe a GPU implementation of halos, which
preserves the contribution of small isolated features. We
have added both techniques to our system to optimally
handle video and rendered objects.

Another problem with halos is that their depth value is
ill-defined. The three options that we have conceived are
the following: 1) assign the depth value of the video feed
(usually the value of the far plane), 2) assign the depth
value of the near plane, and 3) assign the depth value of
the closest contributing fragment. The choice of which
strategy to use depends on the application.

6 CONCLUSION

FþC techniques are highly successful in scientific visualiza-
tion and have the potential to become an essential tool for AR.
They enable applications to draw the attention of users to
objects in the focus while still perceiving contextual informa-
tion. We make use of these ideas to correctly communicate
spatial arrangements of hidden structures.
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Fig. 18. Data handling before compositing. (a) Conceptual illustration of
a context-sensitive scene graph. Context families of objects with the
same contextual information (in blue and red) can be jointly referenced
regardless of their position in the scene graph. (b) Result of the first step
of our algorithm (G-Buffer rendering). (c) A computed sparse repre-
sentation and the shaded focus objects. This is the result of the second
stage of our rendering pipeline. The final composition is shown in
Fig. 10b.



We have presented a framework for computing high-
quality AR visualizations using multilevel FþC visualiza-
tion. The input to the system is a standard scene graph
containing the relevant objects, marked up with classifica-
tion information, together with a live video stream. From a
set of style descriptions given as an FþC graph, the system
can automatically compute view-dependent augmented
images. All rendering runs on the GPU at real-time frame
rates and can directly benefit from enhancements in
graphics hardware. Since styles are defined independent
of content, existing applications can be visually improved at
a later point in time.

The core algorithm of the framework is a two-pass
technique consisting of rendering and compositing of
G-Buffers. This approach only requires the capability to
sort objects into families of similar context. It therefore fits
into a standard rendering pipeline and can be easily
integrated into almost any system.

Many techniques for stylized rendering can potentially
be integrated into such a framework, leading to richer
expressions. MacIntyre et al. [16] argue that every new
medium needs time to establish a visual language and a
set of conventions. Bichlmeier et al. [1] have tested the
effectiveness of context information preservation on AR
scenarios with very encouraging results. We believe that
expressive visualization will be a key ingredient of such a
language. A main goal for future work is therefore not just
to implement new techniques for styling but also to
establish visual conventions and possibly infer appropriate
visualization styles automatically from metainformation of
the rendered objects.
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