Pose Tracking from Natural Features on Mobile Phones

Daniel Wagner1, Gerhard Reitmayrz, Alessandro Mullonis, Tom Drummond4, Dieter Schmalstieg5

135

ABSTRACT

In this paper we present two techniques for natural feature
tracking in real-time on mobile phones. We achieve interactive
frame rates of up to 20Hz for natural feature tracking from
textured planar targets on current-generation phones. We use an
approach based on heavily modified state-of-the-art feature
descriptors, namely SIFT and Ferns. While SIFT is known to be a
strong, but computationally expensive feature descriptor, Ferns
classification is fast, but requires large amounts of memory. This
renders both original designs unsuitable for mobile phones. We
give detailed descriptions on how we modified both approaches to
make them suitable for mobile phones. We present evaluations on
robustness and performance on various devices and finally discuss
their appropriateness for Augmented Reality applications.

KEYWORDS: pose tracking, natural features, mobile phones

INDEX TERMS: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems — Artificial, augmented, and
virtual realities; 1.4.8 [Image Processing and Computer Vision]:
Scene Analysis — Tracking

1 INTRODUCTION

Tracking from natural features is a complex problem and usually
demands high computational power. It is therefore difficult to use
natural feature tracking in mobile applications of Augmented
Reality (AR), which must run with limited computational
resources, such as on Tablet PCs.

Mobile phones are very inexpensive, attractive targets for AR,
but have even more limited performance than the aforementioned
Tablet PCs. Phones are embedded systems with severe limitations
in both the computational facilities (low throughput, no floating
point support) and memory bandwidth (limited storage, slow
memory, tiny caches). Therefore, natural feature tracking on
phones has largely been considered prohibitive and has not been
successfully demonstrated to date.

In this paper, we present the first fully self-contained natural
feature tracking system capable of tracking full six degrees of
freedom (6DOF) at real-time frame rates (20Hz) from natural
features using solely the built-in camera of the phone.

To exploit the nature of typical AR applications, our tracking
techniques use only textured planar targets, which are known
beforehand and can be used to create a training data set.
Otherwise the system is completely general and can perform
initialization as well as incremental tracking fully automatically.

We have achieved this by examining two leading approaches in
feature descriptors, namely SIFT and Ferns. In their original

e-mail: wagner@icg.tugraz.at
e-mail: gr281 @cam.ac.uk

“e-mail: mulloni@icg.tugraz.at
*e-mail: twd20@cam.ac.uk
Se-mail: schmalstieg@icg.tugraz.at

1
2
3

Graz University of Technology

24 University of Cambridge

published form, both approaches are unsuitable for low-end
embedded platforms such as phones. Some aspects of these
techniques are computationally infeasible on current generation
phones and must be replaced by different approaches, while other
aspects can be simplified to run at the desired level of speed,
quality and resource consumption.

The resulting tracking techniques show interesting aspects of
convergence, where aspects of SIFT, Ferns and other approaches
are combined into a very efficient tracking system. The resulting
tracker is 1-2 orders of magnitude faster than naive approaches
towards natural feature tracking and therefore also very suitable
for more capable computer platforms such as PCs. We back up
our claims by a detailed evaluation of the trackers’ properties and
limitations that should be instructive for developers of computer
vision based tracking systems, irrespective of the target platform.

2 RELATED WORK

To our best knowledge, there have been no reports so far
describing a real-time 6DOF natural feature tracking system on
mobile phones. Instead, previous work can be categorized into
three main areas: General natural feature tracking on PCs, natural
feature tracking on phone outsourcing the actual tracking task to a
PC, and marker tracking on phones.

Natural feature tracking approaches differ mostly by the image
features that are associated between the video image and a model
of the object or environment to be tracked. The dominant trade-off
is between the reliability of relocating the features and the
computational work required to do so.

Point-based approaches use interest point detectors and
matching schemes to associate 2D locations in the video image
with 3D locations. The location invariance afforded by interest
point detectors is attractive for localization without prior
knowledge and wide-base line matching. However, computation
of descriptors that are invariant across large view changes is
usually expensive. Skrypnyk and Lowe [23] describe a classic
system based on the SIFT descriptor [15] for object localization in
the context of AR. Features can also be selected online from a
model [2] or mapped from the environment at runtime [5][12].
Lepetit et. al [13] recast matching as a classification problem
using a decision tree and trade increased memory usage with
avoiding expensive computation of descriptors at runtime. A later
improvement described by Ozuysal et. al [18] improves the
classification rates while further reducing necessary
computational work. Our work investigates the applicability of
descriptor-based approaches like SIFT and classification like
Ferns for use on mobile devices which are typically limited in
both computation and memory. Other, potentially more efficient,
descriptors such as SURF [1] have been evaluated in the context
of mobile devices [4], but also have not attained real-time
performance yet. One good survey of local feature descriptors can
be found in [16].

To reduce the computational load of searching the whole image
for point correspondences, edge-based approaches use prior
information about the pose and conduct a local search around the
estimated location. To detect an edge, 1-D searches from sample

points along the line are sufficient to establish measurements for
pose updates [6]. Various improvements to this scheme were
proposed to improve the matching of lines, including statistical
appearance models [26] or model-based appearances [19]. Other
work combines edge tracking with other sensors in hybrid systems
[10][11]. However, edge-based systems cannot stand alone,
because the indistinct appearance of edges makes initialization
infeasible.

One approach to overcome the resource constraints of mobile
devices is to outsource tracking to PCs connected via a wireless
connection. All of these approaches suffer from low performance
due to restricted bandwidth as well as the imposed infrastructure
dependency, which limits scalability in the number of client
devices. The AR-PDA project [7] used digital image streaming
from and to an application server, outsourcing all processing tasks
of the AR application reducing the client device to a pure display
plus camera. Shibata's work [22] could adapt how much work it
outsourced. The project aimed at load balancing between client
and server - the weaker the client, the more tasks are outsourced
to a server. Hile reports a SIFT based indoor navigation system
[9], which relies on a server to do all computer vision work. The
server-based approaches are not real-time; typical response times
are reported to be ~10 seconds for processing a single frame.

Naturally, first inroads in tracking on mobile devices
themselves focused into fiducial marker tracking. Nevertheless,
only few solutions for mobile phones have been reported in
literature. In 2003 Wagner et. al ported ARToolKit to Windows
CE and thus created the first self-contained AR application [28]
on an off-the-shelf embedded device. This port later evolved into
the ARToolKitPlus tracking library [27]. In 2005 Henrysson [8]
created a Symbian port of ARToolKit, partially based on the
ARToolKitPlus source code. In 2004 Mohring [17] created a
tracking solution for mobile phones that tracks color-coded 3D
marker shapes. Around the same time Rohs created the
VisualCodes system for smartphones [20]. Both techniques
provide only simple tracking of 2D position on the screen, 1D
rotation and a very coarse distance measure. Similarly,
TinyMotion [29] tracks in real-time using optical flow, but does
not deliver any kind of pose estimation. Takacs et al. recently
implemented the SURF algorithm for mobile phones [24]. They
do not target real-time 6DOF pose estimation, but maximum
detection quality. Hence, their approach is two orders of
magnitude slower than the work presented here.

3 NATURAL FEATURE MATCHING

3.1 Scale invariant feature tracking

The SIFT approach is composed of three main steps: keypoint
localization, feature description and feature matching. Although
SIFT is often associated only with the second step, Lowe’s
approach specifically combines all three.

1 T i
] | [PN

A=
e

[I |

AT AN

Figure 1. SIFT descriptor layout for 3x3 sub-regions.

The SIFT descriptor itself is actually neither rotation nor scale
invariant. To overcome this both parameters are provided by the
keypoint detector. In the first step, keypoint localization, Lowe

suggests smoothing the input image with Gaussian filters at
various scales and then calculating the Difference of Gaussians
(DoG), which presents a fast approximation of the Laplacian
operator. Keypoints are finally located by searching for scale-
space extrema (minima and maxima in the DoG pyramid).
Naturally the creation of the Gauss convolved image scales plus
the min/max search is computationally very expensive.

While the keypoint localization step already provides a scale
estimate for making the descriptor scale invariant (by increasing
the kernel correspondingly), the feature’s rotation has to be
estimated separately. Lowe suggests calculating gradient
orientations and magnitudes around the keypoint, which then form
a histogram of orientations. Searching for peaks in the histogram
finally assigns one or more orientations to the keypoint.

The actual descriptor is again based on gradients. The region
around the keypoint is split into sub-regions that define parts of
the describing feature vector (see Figure 1). The gradients are
weighted by distance from the center of the patch (indicated by
the large circle in Figure 1) as well as by the distance from the
center of the corresponding sub-region (indicated by the 9 small
circles in Figure 1). The length of the descriptor depends on the
quantization of orientations (usually 4 or 8) as well as the number
of sub-regions (usually 3x3 or 4x4). Although Lowe describes and
analyzes several combinations of these parameters, most SIFT
implementations use 8 orientations and 4x4 sub-regions, which
provide best results, but create a rather large feature vector of a
size of 128 dimensions.

3.2 Ferns: Tracking by classification

Contrary to descriptor-based matching as described in the last
section, feature classification for tracking [18] works by learning
the distribution of some features F of a set of classes C
corresponding to model points m in a model image. At runtime,
interest points are detected using some interest point detector, the
value of feature F for an interest point is computed and the point
is classified by maximizing the probability of observing the
feature value F'

C =argmax P(C;| F) over C,.

The model point m corresponding to the class C of an interest
point is then used as the 3D correspondence for subsequent pose
estimation. Different to feature matching approaches, the
classification scheme is not based on a distance measure, but
trained to optimize recognition of the feature points in the original
model image. The classification scheme can be less
computationally intensive, depending on the basic features used.

The Ferns [18] classification uses binary features that compare
image intensities /(p) in the neighborhood of interest points p. A
binary feature F is a function F(p) parameterized by a pair of
offsets (/,r) such that

Fp)=1 iflp+D<Ip+r)

0 otherwise.

For a set of N features F, the probability of observing class C
can be computed using Bayes theorem as

P(CI{F;}) =P{F}IC) P(C)/ PHF}).

The denominator is only a scaling constant, and the prior P(C)
is assumed to be uniform. The probability P({F;}|C) is learned in a
training phase by counting the occurrence of {F;} for many
different examples of the same model point and thus
corresponding class C.

Example views are created by applying changes in scale,
rotation and affine warps and added pixel noise. These

modifications provide a local approximation to the appearance
changes that are created by different view points of the model
feature. The different results of computing F,F,,...,F) are counted
in a 2" sized histogram describing an empirical distribution of
P({F}IC) (see Figure 2).

To classify an interest point p as a class C corresponding to
model feature m., we evaluate the probability of observing the
features {F,F,,....Fy} given class C by computing the result string
of 0 and 1s, combining it into an index number and using the
index to lookup the probabilities in the empirical distribution. The
class C yielding the highest probability is then the resulting
classification. Both training and classification operate on images
smoothed with a Gaussian filter.

110

Probability

Combination
110

Figure 2. Learning distribution of features F from several
examples and storing the occurrence of outcomes.

For practical numbers of N, the size of the full joint distribution
is too large to be fully represented. Instead it is approximated by
subsets of features, so called Ferns, for which the full distribution
is stored. For a fixed Ferns size S, M = N/S such Ferns F are
created. The probability P({F;}IC) is then approximated as

PH{F}IC) =TI P(F1C).
In practice, probability values are computed as log probabilities

and the product in the last equation is replaced with a sum.

4 MAKING NATURAL FEATURE TRACKING FEASIBLE ON
PHONES

In the following we describe our modified approaches of the SIFT
and Ferns techniques. Since the previous section already gave an
overview on the original design, we concentrate on changes that
made them suitable for mobile phones.

Keypoint detection
411 4241

SIFT FERNS

Keypoint tracking Image blur
412 (optional) d
Descriptor creation
and matching
4138414

Classification
422

Adtive search
424
Outlier removal
425

Outlier Removal
4.1.5

Pose 1
43 and refinement

Figure 3. Overview of the SIFT and Ferns pipelines.

Four major steps make up the pipeline of a feature based pose
tracking system (see Figure 3): (1) Feature detection (and
tracking), (2) Feature description and matching, (3) Outlier
removal and (4) Pose estimation.

Our implementations of the SIFT and Ferns techniques share
the first and last steps: Both use the FAST [21] corner detector to
detect feature points in the camera image, as well as Gauss-
Newton iteration to refine the pose originally estimated from a
homography.

41 Modified SIFT for phones

In the following we describe in detail how we modified the SIFT
algorithm to achieve real-time performance on mobile phones. We
begin with describing all steps of the run-time pipeline and finish
with the offline target data acquisition, since it relies on the same
techniques as used at runtime.

411 Feature detection

The original SIFT algorithm uses Difference-of-Gaussians (DoG)
to perform a scale-space search that not only detects features but
also estimates their scale. Although several faster implementations
of Lowe’s approach have been proposed, the approach is
inherently resource intensive and therefore not suitable for real-
time execution on mobile phones. We therefore replaced the DoG
with the FAST corner detector with non-maximum suppression
that is known to be one of the fastest corner detectors, but still
provides a high repeatability.

Since our approach does not estimate a feature’s scale anymore,
the resulting descriptor is not scale invariant in the sense of the
original SIFT implementation. To reintroduce scale estimation,
the descriptor database contains features from all meaningful
scales (see more details in section 4.1.6). Consequently, we trade
memory for speed: at the cost of potentially describing the same
feature multiple times over various scales we can avoid the CPU
intensive scale-space search. Due to the low memory
requirements per SIFT descriptor, this approach turns out to be
reasonable.

By varying the threshold of the FAST corner detector we can
dynamically adjust the number of corners found. Optimizing for
~150 features per frame turns out to be good balance between
finding enough features for matching and processing speed.

4.1.2 Feature tracking

After new features have been detected, they can optionally be
tracked by cross correlation. While feature tracking is not
mandatory since the match step is independent of frame-to-frame
coherence, it provides two benefits: Most obviously, tracking of
features gives a speed up, since features that were tracked reliably
don’t have to be described and matched against the SIFT
database. At the same time feature tracking also improves the
overall robustness since features that passed all outlier tests are
forwarded with highest confidence values into the next frame,
which improves outlier removal.

Our feature tracker follows both “good” and “bad” features
from frame to frame. Good features passed all tests and finally
contributed to the pose estimation in the previous frame. Hence,
they provide a good basis for the next camera frame. Bad features
could either not be matched or were filtered out by the outlier
removal step. Since a bad feature is likely to be re-detected in the
next frame, much processing time can be saved by forwarding this
information to the next frame. Forwarding both good and bad
features removes the need to describe and match them, resulting
in a considerable speedup.

To track features we extract patches of a size of 8x8 pixels that
are blurred using a 3x3 Gaussian kernel. The blurring step makes
the features more robust against any kind of affine transformation
and slightly incorrect feature coordinates. A Sum of Absolute
Difference (SAD) measure is used to estimate patch similarity.

We allow an average difference of up to 8% (empirically
determined) per pixel to treat a feature as correctly matched.

Features are only tracked in a search radius of 25 pixels. To
speed-up the search for neighboring features, all new coordinates
are entered into a 2D grid that provides almost constant search
time per feature.

4.1.3 Descriptor creation

Although Lowe describes several versions of his SIFT descriptor
[15], most people associate SIFT only with its most complex
variant, which is built from 4x4 sub-regions with 8 gradient bins
each, resulting in a 128 dimensional vector. For performance and
memory reasons we decided to use a variant using only 3x3 sub-
regions with 4 bins each (resulting in a 36 dimensional vector). As
Lowe outlines, this variant performs only ~10 percent worse than
the best variant.

Figure 4. Extraction of SIFT features.

Since our approach is not based on interest points providing
scale information, the SIFT kernel is always 15 pixels wide (3
sub-regions with a size of 5 pixels each, see Figure 1). To gain
more robustness, we again blur the patch with a 3x3 Gaussian
kernel (see Figure 4). Like in the original implementation we first
estimate the main orientations from the patch’s gradients: for all
pixels of the kernel, we calculate the gradient direction and
magnitude. The gradient direction is quantized to [0..35] to select
the corresponding target bin. The gradient magnitude is weighted
using a distance measure and is added to the respective bin. The
resulting histogram is then searched for peaks. If more than 3
peaks are found, the feature is discarded.

For each detected orientation, the patch is rotated using sub-
pixel accuracy to compensate that orientation. Based on the
rotated patches, descriptor vectors are created: Gradient
magnitudes and orientations are estimated again and weighted by
their distance to the patch center as well as to the sub-region
center. The weighted magnitudes are then written into the 4 bins
corresponding to the sub-region.

Using gradients makes the approach invariant to constant
brightness changes. Furthermore the vector is normalized to
compensate for linear brightness changes. Finally any entries that
are longer than 25% of the overall length are cropped to reduce
too strong influence of single values.

4.1.4 Descriptor matching

After the descriptors for all features detected in the new camera
image (except for those tracked from the previous frame) have
been created, they are matched against the descriptors in the
database. Brute force matching is not an option, since for each
frame ~50-100 features have to be matched against ~5000 features
in the database. Since each feature is described by a 36
dimensional vector this would result in multiplying and summing
up 18 million vector entries, which is infeasible to perform in real-
time due to computational constraints as well as memory

throughput limits. The original SIFT implementation uses a k-d
Tree together with a Best-Bin-First strategy. Yet, our tests showed
that even with this approach far too many vectors have to be
compared for real-time performance on mobile phones.

Looking in more detail into why the k-d tree is ineffective for
our purposes, we discovered that some (usually 1-3) entries of the
36 dimensional vectors vary strongly from their respective vectors
in the database. These errors increase the required tolerance for
searching in the tree tremendously. Hence, we decided to use a
different approach. A Spill Tree [14] is a variant of a k-d Tree that
uses an overlapping splitting area. Values that are within a certain
threshold are dropped into both branches. With an increasing
threshold, a Spill Tree is capable of tolerating more and more
error at the cost of growing larger. Unfortunately errors of
arbitrary amount can show up in our SIFT vectors, which renders
even a Spill Tree unsuitable.

6000KB
5000KB |
Overlap
& 4000KB =
3 ms%
g 3000KB m12%
£
2 2000kB 14%
16%
1000KB — =
oce Ml :
2 3 4 6 8

Number of Trees

Figure 5. Spill forest memory requirements as function of number
of trees and spill tree overlap percentage.

While a single Spill Tree turns out to be insufficient, we
discovered that multiple trees with randomized dimensions for
pivoting allow for a highly robust voting process, similar to the
idea of randomized trees [13]: instead of using a single tree, we
combine a number of Spill Trees into a Spill Forest. Each Spill
Tree is built up to such a size, that it holds ~50-80 entries in each
leaf. While trees with more levels reduce search time, more levels
also increase the chance of testing a faulty dimension. Since only
a few values of a vector are expected to be wrong, a vector has a
high probability of showing up in the “best” leaf of each tree. We
therefore only visit a single leaf in each tree and merge the
resulting candidates. Descriptors that show up in only one leaf are
discarded. All others are matched using Sum of Squared
Difference (SSD).

Naturally, using multiple trees increases the memory
requirements. Figure 5 shows the memory footprint of various
Spill Forest sizes for a typical dataset, ranging from 2-8 trees and
8%-20% threshold (overlap). Our tests (see section 5.4.1) have
shown that this approach finds the correct descriptor in more than
95% with reasonable memory usage while the processing time is
reduced such that descriptor matching is not a bottleneck.

4.1.5 Outlier removal

Although SIFT is known to be a very strong descriptor, it still
produces outliers that have to be removed before doing pose
estimation. Our version of SIFT does not estimate the scale of
features, so we experimented with verifying features on two
successive scale levels. This approach removes nearly all outliers,
but also many inliers, and it is very computationally intensive.

The outlier removal that was finally adopted therefore operates
on a single-scale and works in three steps. The first step uses the
orientations that have already been estimated for the descriptor

creation (see section 4.1.3). The relative orientations of all
matched features are corrected to absolute rotation using the
feature orientations stored in the database. Since the tracker is
limited to planar targets, all features should have a similar
orientation. Entering all orientations into a histogram and
searching for a peak, a main orientation is quickly estimated and
used to filter out those features which do not support this
hypothesis. Since the feature orientations are already available,
this step is very fast; at the same time it is very efficient in
removing most of the outliers.

The second outlier removal step uses simple geometric tests.
All features are sorted in linear time by their matching confidence
using distribution sort. Then, starting with the most confident
candidates, lines are estimated from two features. All other
features are then tested to lie on the same side of the line in
camera as well as object space. If too many features (>50%) fail
the test for a single line, the test is canceled, since one of the two
reference features is probably faulty. Up to 30 lines are tested.
Features which fail line tests are removed.

The third outlier removal step creates homographies to remove
final outliers. Features that passed the previous two tests
obviously have a correct orientation and coarsely lie at the right
spot in the camera image. Hence, only few outliers remain. Since
a homography must be computed for the initial pose anyway, it
can be used for strong final test without introducing overhead. A
main problem with creating homographies is that features must
not only be correct but also well-placed to be suitable: Features
must not be co-linear, and their convex hull should cover a large
region of the camera image.

To find good candidates, we first estimate the main direction of
the point cloud using perpendicular regression. We then select
features that lie at extremal positions in both directions of the line,
as well as furthest perpendicular to the line. For higher robustness,
we select two candidates for each direction. These 8 features are
then combined into sets of 4 (one from each direction) and used to
calculate 2*=16 candidate homographies from object into camera
space. All homographies are then used to test the projection of the
features. The homography with the smallest number of outliers
and all respective inliers are finally selected for pose refinement.

4.1.6 Target data acquisition

The SIFT tracker uses a model-based approach and hence requires
a feature database that has to be prepared beforehand. Since the
tracker is currently limited to planar targets, a single orthographic
image of the tracking target is sufficient. Data acquisition starts by
building an image pyramid. Successive pyramid levels are created
by scaling down with a factor of 1/sqrt(2) from the previous level.
Features will later be detected at similar scales as available in the
image pyramid. Hence the range from largest to smallest pyramid
level defines the range of scales that can be detected at runtime. In
practice we usually create 7-8 scale levels sized from ~1MPixel
down to 80KPixel. This approach varies from the one described
by Lowe in that we have clearly quantized steps rather than
estimating an exact scale per keypoint.

After the image pyramid has been created, we run the FAST
corner detector to search for features at all scales. To restrict the
creation of feature descriptors to the most stable features, we
require corners to show up at two successive scales. For features
passing this test, descriptors are created. Again, features with
more than three main orientations are discarded. All feature
coordinates plus descriptors are then stored in a feature set file.

The discretization of scale-space in this way leads to a multi-
scale feature description similar to that described by Chekhlov et
al. [3]. However, we compute descriptors only from scales where

an interest point was found to avoid descriptors that cannot be
detected.

4.2 Modified Ferns for phones

This section describes the modifications to the original Ferns [18]
tracking work to operate on mobile phone devices.

4.21 Feature detection

The original Ferns implementation uses an extrema of Laplacian
operator to detect interest points in the input image. This was
replaced by the FAST detector [21] as described in section 4.
Interest points are computed on 2 octaves of the image and
subjected to non maximum suppression. These interest points are
then classified using the Ferns classifier to yield matches with the
points from the model.

4.2.2 Feature classification

The implementation of the runtime classification is
straightforward and the original authors provide a simple code
template to highlight this fact. Given an interest point p, the
features F, for each Fern F are computed and used as indexes into
the histograms. The histograms store the log of the probabilities
and a summation over all Ferns yields the final log of probability
for each class.

The original work used Fern sizes S = 10-14 and M = 20-30
Ferns, requiring storage of more than 3-10° entries per model
feature. Even if a single log probability is stored as a byte,
realistic databases of at least 100 model features grow to 32Mb,
exceeding by far available application memory on mobile phones.

The selection of M and S for fixed N provides a convenient
way of trading off memory use and classification performance.

The overall memory usage is given by M2%, so that reducing S
yields more significant memory savings. For a fixed number of
questions N = SM, Figure 6 shows the memory usage as a function
of S. We experimented with S between 6 - 12 and a total N of 200
which yielded elements numbers of around between 2000 and
64000. In total, the number of entries of all histograms for 100
features then varies between 2:10° and 6.4-10°.

70000
60000
50000
40000
30000
20000
10000

0

Number of elements

6 7 8 9 10 M 12

Fernblock size S
Figure 6. Memory requirements per model point.

The original work stored log probabilities as floating point
values using 4 bytes per element. We found that representing the
log probabilities as 8-bit bytes yields enough numerical precision
to avoid any degradation in performance. A linear transformation
between the range of the original log probabilities and the range
[0..255] for unsigned 8-bit numbers is used, because it preserves
the order of the resulting scores.

However, reducing the block size S of the FERNs empirical
distribution severely impacts the classification and matching
performance. Therefore we found it necessary to improve the
distinctiveness of the classifier by actively making it rotation
invariant. Thus, for every interest point p, we compute a dominant
orientation by evaluating the gradient of the blurred image
centered on the interest point. The orientation is then quantized

into [0..15] and a set of pre-rotated questions associated with each
bin is used to calculate the answer sets. The same procedure is
also applied in the training phase, for training the empirical
distributions to compensate inaccuracy in the rotation estimation,
quantization noise from the rotation quantization, and the
alignment of rotated questions to pixels.

Figure 7 compares the classification performance of the
different schemes using a fixed number of 200 questions. We
compared using different block sizes with a fixed block size and
different number of rotation bins. The graph shows both
classification rate, defined as correct classification of a model
point given its location, and match rate, defined as the rate at
which the top log probability interest point is within a fixed small
neighborhood of the true model point. Both rates were computed
for artificially warped and transformed images to have ground
truth. The block size was varied as S = 6, 8, 10, 12 and the
rotation bins as 1,4, 8, 16 with a fixed size S = 8.

100 :
30 - B
80 - ====Match-no
70 rotation
60 - -\ === = Classification -
[} - no rotation
E >0 Y e =
40 . - Match - with
P > rotation
30 >
20 4 i (lassification -
with rotation
10
0

6/rotl 8/rot4 10/rot8 12/rotl6

Block size and rotation bins

Figure 7. Classification rate (top two lines