
24	 May/June 2008	 Published by the IEEE Computer Society� 0272-1716/08/$25.00 © 2008 IEEE

Procedural Methods for Urban Modeling

Generating Semantic 3D Models
of Underground Infrastructure
Erick Mendez, Gerhard Schall, Sven Havemann,
Dieter Fellner, and Dieter Schmalstieg ■ Graz University of Technology

Sebastian Junghanns ■ Grintec GmbH

Large geospatial databases are populated with
the results of hundreds of person-years of
surveying effort. Utility workers access these

databases during fieldwork to help them deter-
mine asset location. Real-time rendering engines
are highly advanced and optimized software tool-
kits that interactively display 3D information to
users. Bringing these two technologies together
could give utility workers 3D information about a
location’s assets while they’re in the field.

To connect geospatial data-
bases and rendering engines, we
must transcode raw 2D geospa-
tial data into 3D models suitable
for standard rendering engines.
Thus, transcoding isn’t simply a
one-to-one conversion from one
format to another; we obtain 3D
models from 2D information
through procedural 3D model-
ing. Transcoding the geospatial
database information’s semantic
attributes into visual primitives
entails information loss. We

must therefore find the right point in the pipeline
to perform transcoding. If we discard semantic
information too early, we can’t use it to interact
with the user later in the pipeline. If we discard
it too late, we have to reinterpret the semantics at
runtime, which increases overhead and adversely
affects performance. We call this the transcoding
trade-off.

We’ve created a modeling framework that lets
developers optimize this transcoding tradeoff. The
framework transcodes geospatial data into 3D in-

teractive visualizations. It does this by combining
a conventional scene-graph with semantic markup
and on-the-fly generation of procedural models
enhanced with an embedded stack-based scripting
language. Because we tightly integrate these tech-
niques, we can dynamically choose transcoding
and representation methods for each object on the
basis of the available high-level semantic informa-
tion. Our approach also lets us define visualization
styles in relation to the semantic markup, inde-
pendent of actual object structures. To describe
our technique, we use an augmented reality (AR)
visualization of underground infrastructure, but
our approach is generally applicable.

Design considerations
A 3D model for geospatial data visualization aims
to provide comprehensible visualizations of the
target assets. Because there are numerous geospa-
tial objects and visualization styles, we need a sys-
tem architecture that lets users add content types
and visualization styles as plug-ins of the actual
client. Ideally, a compatible 3D browser should be
capable of loading and displaying self-contained
content. The browser should also display user in-
terfaces so that users can select and manipulate
key parameters for their target application.

The following specific requirements apply to
many visualization applications with complex data
sets, regardless of their intended domain.

Appealing shape. Creating appealing shapes re-
quires advanced modeling methods. For ex-
ample, branching pipe intersections must be
continuous; we can’t achieve this by simply

■

By combining semantic
scene-graph markups with
generative modeling, this
framework retains semantic
information late in the
rendering pipeline. It can thus
enhance visualization effects
and interactive behavior
without compromising
interactive frame rates.

	 IEEE Computer Graphics and Applications� 25

converting raw geospatial database vectors into
cylindrical tubes.
Level of detail (LOD). Strict control of geomet-
ric complexity is essential, especially for low-
performance mobile computers. The displayed
content’s geometric complexity should adapt
dynamically and continuously (rather than pop-
ping) when the view changes.
Information filtering. Displaying a large database’s
total content will likely produce screen clutter.1
Users must be able to filter data using spatial
and semantic information (such as object type).
To achieve this, we use magic-lens techniques.2

Flexible styling. Users might want to choose dif-
ferent styles for individually selected objects or
object groups or to suit a particular viewing situ-
ation. With AR displays, for example, users might
need to change the styling parameters to suit vid-
eo see-through and registration quality. To ensure
users can flexibly handle the styles, they should
be stored with the content rather than offered
as a feature of the specific 3D browser. Clearly,
separating styles and content ensures that styles
are reusable across content types.
Progressive information revealing. Offering a se-
mantic level of detail lets users efficiently manage
screen real estate using multiple representations
of the same object. These representations pro-
gressively reveal more visual and functional de-
tail. For example, users can arrange objects in

■

■

■

■

containment hierarchies. This technique is use-
ful in domains such as underground infrastruc-
ture, where cables are arranged inside encasings,
which are contained in tubes, and so forth.

As the “Related work in geospatial modeling”
sidebar describes, converting geospatial data di-
rectly into a static polygonal representation ad-
dresses only some of these requirements. And even
a dynamic multiresolution tessellation won’t help
address the needs for interactive manipulation and
control. Developers could customize 3D browsers to
include these interactive capabilities, but doing so
would make the content and browser highly inter-
dependent and would defeat easy extensibility. Giv-
en this, we opted for a combination of techniques
and implemented them as extensions to Coin3D,
a conventional scene-graph library (www.coin3d.
org), as part of our Studierstube framework. Our
approach handles new object types through built-
in interpretations of the scene-graph structure and
doesn’t require modifications of the scene-graph
browser itself. We control asset modeling in two
levels of the rendering pipeline:

Scene-graph level. Using scene-graph markup lets
us attach the geospatial database’s semantic at-
tributes. The markup also provides the hooks for
interactive, high-level user control, including fil-
tering, styling, and some semantic LOD control.

■

Related work in geospatial
modeling

A procedural-modeling system’s input parameters can be
either artificial or derived from real-world measurements,
such as survey or satellite images. Moreover, developers can
use input to tightly control their generated models, using
facades modeled from textures1 or tangible modeling,2 for
example. Alternately, they can loosely control the models,
using, for example, synthetic plants,3 buildings,4 or castles.5
Because our users expect a reliable real-world representation,
we must provide strict dependence on real-world measure-
ments and user-controlled parameters.

We generated our models using data exported from
geospatial databases in the standard Geography Markup
Language (GeographyML, www.opengeospatial.org).
CityGML, for example, is a GeographyML specialization
for 3D visualization of textured architectural models,6 but
it requires a special browser. Instead, our work aims to use
a standard scene-graph system. Geospatial data is typi-
cally exported via a Web Feature Service, which encodes
the information in vector format inside a GeographyML
instance. Other work exists on forwarding database
information to scene-graphs—X-VRML,7 for example—but

such approaches generally don’t involve on-the-fly proce-
dural modeling.

References
P. Müller et al., “Image-Based Procedural Modeling of

Facades,” ACM Trans. Graphics (Proc. Siggraph), 2007, ar-

ticle. 85; http://doi.acm.org/10.1145/1276377.1276484.

D. Anderson et al., “Tangible Interaction + Graphical

Interpretation: A New Approach to 3D Modeling,” ACM

Trans. Graphics (Proc. Siggraph), 2000, pp. 393–402.

P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty

of Plants, Springer, 1990.

P. Müller, “Procedural Modeling of Buildings,” ACM Trans.

Graphics (Proc. Siggraph), 2006, pp. 614–623.

R. Berndt et al., “3D Modeling for Non-Expert Users with

the Castle Construction Kit,” Proc. 6th Int’l Symp. Virtual

Reality, Archaeology and Cultural Heritage (VAST), ACM Press,

2005, pp. 49–57.

T. Kolbe et al., “CityGML—Interoperable Access to 3D

City Models,” Proc. Int’l Symp. Geoinformation for Disaster

Management, Springer, 2005, pp. 173–181.

K. Walczak and W. Cellary, “X-VRML for Advanced Virtual Reality

Applications,” Computer, vol. 36, no. 3, 2003, pp. 89–92.

1.

2.

3.

4.

5.

6.

7.

26	 May/June 2008

Procedural Methods for Urban Modeling

Object level. To provide high-quality tessellated
objects and give users geometric and semantic
LOD control, we added a new type of scene-
graph node. The node has a lightweight embed-
ded interpreter for the stack-based Generative
Modeling Language (GenerativeML, see www.
generative-modeling.org).3

During scene-graph traversal,4 Studierstube passes
semantic attributes as parameters from the scene-
graph to the GenerativeML nodes.

Transcoding
The first step in our information pipeline is a trans-
coding pass. That is, we change the data format
from Geography Modeling Language encoding to
a scene-graph enriched with GenerativeML nodes.
GeographyML is based on the notion of features,
including underground and above-surface infra-
structure. A feature consists of several semantic
attributes and many geometrical attributes that de-
scribe the actual 2D coordinates. Transcoding pro-
duces a scene-graph description that bundles each
feature’s shape objects and semantic attributes.
The shape objects refer both to embedded Genera-
tiveML scripts for dynamic parametric objects and
to Coin3D classes for static nonprocedural shapes.
The transcoding pipeline focuses on the under-
ground infrastructure’s common features.

The transcoding approach has an outstanding
advantage. Traditionally, to highlight all objects of
a certain type in a scene-graph—by changing their

■

color to red, for example—the system must some-
how change the respective material properties of
all affected nodes. It can do this by changing one
of the node’s material fields or by inserting mate-
rial nodes into the scene-graph. However, chang-
ing just one “style node” for all target nodes early
in the traversal order is a much better strategy. The
scene-graph browser automatically propagates the
changed parameters when traverses the graph for
rendering: each affected node updates its styling
because its attributes have been touched.5

We group objects in our scene-graph by not only
the graph’s hierarchy but also semantic-attribute
families. A family’s objects don’t have to belong to
the same part of the scene-graph hierarchy—as Fig-
ure 1 shows, they can be scattered throughout the
scene-graph and still be jointly affected.

Additionally, we don’t explicitly identify an ob-
ject’s family membership; rather, it results from
an aggregation of semantic attributes that the
scene-graph browser encounters while traversing
the path from the scene-graph’s root node to the
object itself. This mechanism works exactly like
other traversal states, such as transformation ma-
trix or material bindings. Semantic-attribute nodes
encountered during traversal add or overwrite ar-
bitrary key-value pairs in the current attribute set.
The scene-graph browser then propagates this set
downwards with traversal, and any node aiming to
be environmentally sensitive can query it.

More specifically, a styling node relies on a style
map to modify appearance parameters for vari-
ous shape nodes. Like XHTML’s Cascading Style
Sheets, our style maps are hierarchically organized.
Style map entries are style subgraphs consisting
of nodes that influence appearance; Studierstube
dynamically inserts these nodes before the target
object during scene-graph traversal. As a result,
object appearance changes dynamically with the
associated semantic attributes. This approach has
four advantages:

Preserving semantics. Our framework retains the
geospatial database’s semantic attributes un-
til the actual rendering traversal, when it uses
them to determine the object’s appearance. Us-
ers can apply existing styles to new object types,
assuming their attributes are compatible.
Referencing. Potentially complex semantic at-
tribute combinations can influence an object’s
appearance. When welding can’t occur near a
gas pipe, for example, the application may au-
tomatically select a style demarking “danger” if
the user applies “gas” and “welding” attributes
to an object group in spatial proximity.

■

■

Utility data

Company 2

Company 1

Town
hall

Town
hall

Congress

Museum Hospital

Gas

Water

Sewage

Gas

Electricity

Gas

Heating

Heating

Water
Gas

Electricity

Figure 1. A
scene-graph
with semantic
attribute
markups. The
town hall’s
reconstruction
requires
welding, which
must not occur
near gas. By
combining
the attributes
(town hall
+ gas), the
system
automatically
locates and
highlights
dangerous
objects during
a single scene-
graph traversal.

	 IEEE Computer Graphics and Applications� 27

Interactive styling. The system can display selected
semantic attributes in the user interface because
the attributes are simply key-value strings. Us-
ers can directly modify attribute values, thereby
influencing the visualization. For example, users
can filter distracting objects by setting the object
category’s style to “off.”
Parameter forwarding. As we describe in the next
section, Studierstube can forward semantic at-
tributes as parameters to the GenerativeML en-
gine to create the geometric primitives.

We encode geographical features as small sub-
graphs inside the scene-graph that contain both its
semantic and geometrical attributes (see Figure 2).
Semantic attributes add to, set, and modify key-
value pairs in the traversal state. This gives any
geometrical attribute—which is itself a subgraph
containing a styling node and a content node—the
ability to check for a mapping that matches its
semantics. If such a mapping exists, the attribute
modifies its styling node to affect the content
node’s appearance.

GenerativeML
To create parametric 3D models on the fly, we
use GenerativeML. Originally, developers created
GenerativeML to serve as a general exchange for-
mat for procedural models—for example, as a file
format for encoding complex objects’ construction
history. GenerativeML can generate large amounts
of geometric data from compact descriptions. Be-
cause its syntax is similar to PostScript, Genera-
tiveML is somewhat like a 3D PostScript.
Currently, GenerativeML’s main surface represen-
tation is the combined boundary representation
(cB-Rep)—polygonal meshes whose faces can be
nonconvex and of arbitrary degree. cB-Rep is suit-
able for free-form modeling because edges have a
crease attribute to distinguish sharp and smooth
edges. In cB-Rep, faces containing smooth edges
are rendered as Catmull/Clark subdivision sur-
faces, not as polygonal faces. GenerativeML’s em-
bedded OpenGL renderer is highly optimized and
provides on-the-fly tessellation and LOD.

Generative modeling replaces objects with opera-
tions. Consequently, we represent the cB-Rep meshes
not as lists of geometric primitives but as the product
of Euler operators. We issue said operators either di-
rectly as GenerativeML operators or through higher-
level modeling operations, such as extrusion.

The GenerativeML interpreter and its integrated
OpenGL renderer reside in a shared library; users
can link the library to any OpenGL application,
such as a scene-graph engine. For example, devel-

■

■

opers have embedded GenerativeML into Coin3D
as a new node that communicates with the Gen-
erativeML engine. We store and maintain script
code in the GenerativeML scene-graph node’s
string field, located in the .iv file. Users can execute
this code during traversal to produce 3D models
of pipes and tubes on the fly. This greatly reduces
scene-graph size and lets users vary construction
parameters to reflect semantic-level changes, such
as highlighting or database queries.

Generative modeling complements a scene-
graph with semantic attributes. A scene-graph’s
strength is in managing large scenes by providing
tools such as a scene hierarchy, spatial structur-
ing, and flexible scene traversal. In contrast, Gen-
erativeML operates on the object level. Its purpose
is to use the rules and parameters to create the ge-
ometry. The interface between the software com-
ponents is simply the set of semantic attributes
that Studierstube passes as model parameters to
GenerativeML.

Visualization with filtering and
annotations
To filter information, our system directly exploits
semantic markup during rendering. Users can use
information such as object categories, ownership,

Sets semantics to current state
 name = canal
 status_value = in_use
 id = 33454725 ...

Checks mappings against
current state
 if
 (group == heating)
 (name == canal)
 USE ShowInsides
and modi�es the geometry
styles accordingly

Sets state according to modi�ed
material or GenerativeML parameters
 openangle = 70
 material = green

Generates and renders mesh
according to materials and
parameters
 height = 10cm
 width = 70 cm
 openangle = 70 (from parameters)
 coordinates = [...]

Feature
Upon traversal

Semantic
attributes

Geometrical attribute

Geometry styles

GenerativeML
geometry

1

2

3

4

5

Figure 2. Traversing geographic features. Upon traversal, every
geographical feature aggregates its semantic attributes to the traversal
state, and checks whether the current total of the semantic values match
a style mapping. If so, it fetches predefined styles accordingly. So, the
shape node’s rendering style reflects its semantic attributes.

28	 May/June 2008

Procedural Methods for Urban Modeling

and topological relationships to hide or highlight
individual objects. Users often want to apply filter-
ing to spatially bounded areas. To address this, we
use magic lenses2 that change object presentation
styles depending on not only their containment
in the lens but also their semantic markup.5 Users
can color-code objects or make them transparent
inside the lens; alternately, they can change the
parameters passed to GenerativeML—such as to
open up the lens area’s pipes.

Figure 3 shows a magic lens designed to resem-
ble an excavation hole. To create this, we reduced
the object saturation and opacity outside the lens.
Inside the lens, we displayed only objects with cer-
tain semantic attributes. This approach lets users
localize the visual-disambiguation region, while
retaining the surrounding assets’ spatial context.

An underground infrastructure
application
To illustrate how our system works, we’ll use an
example task from the public-utility sector. To
avoid damaging existing infrastructure during dig-
ging, utility companies must provide private con-
tractors—such as construction companies—with
spatial information about their assets. To accom-
modate this need, utility company field-workers
spray paint spots on the ground where digging
should occur. Private contractors orient their con-
struction site on the basis of paper maps plotted
in advance using the utility company’s geographic
information systems (GISs).

The GIS information model
Utility infrastructure—such as underground water or
gas distribution systems—is arranged in canals, divid-
ed into multiple tunnels at different depths. Depth
is either given as an attribute value or estimated on
the basis of heuristics (telecommunications, for ex-
ample, are typically in the first layer at 0.5 m depth).
The depth that workers bury each utility system also
varies depending on terrain conditions.

The central object in the transcoding pipeline is
the pipe. All types of pipe-shaped infrastructure—
whether electricity, gas, water, sewer, or heating
pipes—are abstracted by the same common geomet-
ric attribute. However, supported by semantic attri-
butes, we can visually discriminate among them.

One pipe can consist of several segments. To
avoid creating excess polygons, transcoding auto-
matically deletes collinear and duplicate points. We
can also quantize coordinates for LOD generation,
because users typically don’t require millimeter-
level precision in their visualizations. We convert
nongeometric attributes, such as ID, purpose,
or ownership, to semantic nodes inserted on the
scene-graph and pass geometric attributes to the
GenerativeML nodes. We describe tunnels analo-
gously to pipes, but use rectangular rather than
circular cross-sections.

Pipes are in fact hierarchical: pipe objects are
typically enclosed by other pipe objects, such as
electricity lines or gas pipes arranged inside tun-
nels. Rather than simply deriving the containment
hierarchy geometrically, we describe it through
semantic attributes so that users avoid render-
ing subpipes when the containing pipe is set to
“opaque.” GenerativeML’s procedural logic lets us-
ers open tunnels to reveal the interiors; thereafter,
they can render the contained pipes as well.

In addition to pipes, the underground infrastruc-
ture also consists of special facilities such as gate
valves, water hydrants, and T-fittings. We blend
these facilities with the 3D environment on the ba-
sis of special rules, using a library of premodeled 3D
objects. To provide geographic context, we include
buildings, generating them procedurally from their
transcoding-step footprints through simple extru-
sion, using a semantic height attribute (or a default
value if this attribute is unavailable).

Adaptive asset modeling
As Figure 4 shows, we use a small set of parameters
to procedurally create all types of pipe-like objects.

(a) (b)

Figure 3.
Filtering
information
using a
magic lens.
Propagating
semantic
information
lets users
combine spatial
with semantic
filtering. To
reduce screen
clutter in (a)
a cluttered
image, we
(b) apply an
“excavation”
magic lens
that shows
only selected
assets. The
surrounding
area shows a
toned-down
version of all
assets. We
produced both
images using
a tabletop
augmented
reality (AR)
setup with real
architectural
scale models
(light blue).

	 IEEE Computer Graphics and Applications� 29

These include the polyline determining the pipe’s
overall shape, radius, thickness, and type; the ra-
dius of curved pipe segments, along with their col-
lar radius, thickness, and so on.

Our basic problem is to connect two straight pipe
segments with a curved pipe. The pipe’s curved por-
tion is a circle segment that starts at the dashed line
before the actual joint, located at a given normal
distance from the pipe axis. We compute the circle’s
midpoint as the intersection of the two dashed lines.
Then, we sample the circle segment and produce
radial line segments, along which we create a verti-
cal profile of choice to create a rotational sweep.
The result is a cB-Rep control mesh that we use to
produce polygonal facets and Catmull/Clark sub-
division surfaces. A pipe’s first and last faces have
sharp (red) edges that produce a crease, resulting
in flat faces with a B-spline boundary. Bad param-
eter sets—such as those caused by bad geospatial
data surveys—can lead to control mesh self-inter-
sections (that is, pipes that are too wide, a curve
radius that’s too small, or a segment angle that’s
too acute). GenerativeML has no automatic mecha-
nism to determine the parameters’ valid range.

GenerativeML’s power is that it efficiently sup-
ports processing chains. The stack lets the system
flexibly pass one function’s data as input param-
eters to the next function. We exploit this to cre-
ate different pipe types by simply passing different
profiles to a connecting function. Figures 5 and 6
show (next page) canals created from a rectangular
profile with a user-defined, interactively controlled
opening angle. For open pipes or canals, the pro-
file—and hence the vertex count—is variable, de-
pending on the opening angle.

A minor complication is that subpipes often run
next to each other. Although such “offset pipes”
seem to run in parallel, when they curve, they share
the same curve midpoint but have different radii de-
pending on whether they curve left or right. We can
elegantly solve this problem by reusing the pipe-cre-
ation procedure, inputting the main poly-line offset
as another control parameter. This lets us uniformly
deal with hierarchical groups of pipes and canals
that follow the same route. Specifically, to create the
geometry for a cut-open hierarchical grouping, we
need only propagate the opening angle.

As Figure 6 shows, collars around the pipe end-
ings are important cues that help users understand
spatial relationships, letting them join different
pipe types while preserving a consistent visual
appearance. Figure 7 shows how we dynamically
generate per-object geometric LOD per frame. We
do this by adjusting the tessellation’s subdivision
depth, depending on the covered pixel-area and

the surface orientation and curvature. The inter-
active LOD lets us generate more visually pleasing
images. For example, it produces pipe junction in-
tersections as sharp connections in the geospatial
data. GenerativeML models can soften these junc-
tions by further subdividing the resulting mesh.

Finally, Figure 8 shows an example that combines
modeling techniques. We modeled the pipes and
the T-junction using GenerativeML; the smooth
joint makes the connection clearly visible. The

Pipe junction
coordinates

Curvature
radius

Subdivision
segments

Pipe junction
coordinates

Figure 4. Modeling pipes using parameters. To achieve rounded edges,
we compute a circle segment to connect subsequent tubes. We offset
and sample circle segments on either side to obtain radial line segments
(inset). We then convert the circular profiles (n-gons) to double-sided
faces and connect them.

α

α

Figure 5. Creating open profiles. We can smoothly vary the opening
angle and even animate it. To open up any object, we connect two
sampled circle segments with different radii. In this case, we use
“canals” with a rectangular profile.

30	 May/June 2008

Procedural Methods for Urban Modeling

white objects are predefined shape library models
(used at low resolution to avoid impairing render-
ing performance). We then applied transcoding to
extract all models’ geometrical position—as well
as their orientation and semantic attributes—from
the geospatial database.

AR-style visualization
We now focus on a practical solution for our pub-
lic-utility scenario. Assuming a database can be
accessed by a Web Feature Service, our construc-

tion-site field-workers can perform online queries
using a wireless mobile computer that sends the
current GPS position. The server returns a set of
geographical features encoded in GeographyML.
Currently, field-workers use handheld computers
that can display 2D map information that’s more
or less equivalent to conventional paper maps.

Because we can’t acquire the position of pipes,
ducts, valves, alignments, and other underground
infrastructure from aerial or terrestrial photogra-
phy, we rely exclusively on data from the utility
company’s GIS. We get above-surface information
such as building footprints, roads, and property
lines directly from the geospatial database. Al-
though we focus on delivering the final visual-
ization as part of a video see-through AR display,
our visualization techniques are also applicable to
desktop virtual reality applications.

Researchers have used our outdoor AR System
as a tourist navigation aid.6 Here, we focus on our
newly developed modeling techniques to visualize
underground models. Figures 9 and 10 show geo-
spatial data superimposed in real time on a video
feed using the AR interface. Figure 10 also shows
a user with a robust handheld AR device used for
the outdoor work. We designed the AR interface
around a handheld tablet PC. The PC is equipped
with a sensor array consisting of GPS, an inertial
orientation tracker, and a camera to show a video
see-through augmentation of the environment.

Styling objects using their semantic markup is a
powerful tool when users can’t control the data’s
object arrangements. Take, for example, Figure 9’s
scenario. The visualized information represents
heating assets, organized in tunnels and canals that

Low Medium High

Figure 7. Interactive level of detail. Using interactive LOD lets us increase
visual fidelity while minimizing the performance impact. The system
automatically handles LOD selection when GenerativML code is called.

Figure 8. Combining modeling techniques. This
image is a composite model of a GenerativeML-
created T-junction with valve models from a stock
library. By using subdivision surfaces, GenerativeML
can create complex junction shapes such as the
inset’s five-way junction (lower middle).

Figure 6.
Illustrating
curved joints.
We add collars
to better
distinguish
curved joints
between
straight pipe
segments.
We can also
arrange
pipes, canals,
and tunnels
hierarchically.

	 IEEE Computer Graphics and Applications� 31

contain pipes. A simple task is to request that all
objects of type canal show their interiors. This ac-
tion sets the GenerativeML parameter opening angle
to 70 degrees only on those objects with matching
semantic attributes—that is, on canals. Not all the
objects have opening angles; those that do are set to
green (see Figure 9b). This action reveals the pipes
inside the green conduct, which is cut open. Alter-
natively, we could change the objects’ transparency
to show their interiors as illustrated (Figure 9c).
Typically, field-workers refine their search using ad-
ditional attributes, such as objects that are in use
or those that belong only to a certain category. In
Figure 9c, the user would like to open only those
tunnels in use for heating.

Our system also lets users assign different styles
to objects. The styles, created by an application de-
signer, can convey subjective meanings, such as
“dangerous” or “important.” In Figure 9d, the user
instructs the system to highlight an object with a
specific ID that’s targeted for repair.

AR-style visualizations have two key benefits.

(a) (b)

(c) (d)

Figure 9. Visualizing the superimposed geospatial underground model. (a) In this photo of a construction site,
the district heating-pipe infrastructure’s supply and return pipes are clearly visible. The technician’s task is
to repair some of these pipes. (b) The technician requests that all objects of type canal (in green) show their
interiors. (c) The technician tells the system to show the insides of the canal and the tunnel used for heating.
(d) The technician asks the system to highlight the object with a specific ID.

Figure 10. The AR display on a handheld device. The view shows a
second AR user with a handheld AR display. The left side of the frame
shows wireframed building models that help retain spatial context.

32	 May/June 2008

Procedural Methods for Urban Modeling

First, users can locate and visualize underground
infrastructure before excavation (here, for the
sake of illustration, it was done after). Essentially,
our approach gives users “X-ray vision” of the bur-
ied assets, which can help them locate damage or
plan construction, for example.

Second, our approach offers users visual guid-
ance, both during excavation activities and in
examining technical infrastructure. Users can
retrieve on-demand information about pipe prop-
erties—such as purpose, specification, length, and
material, as well as the construction date, main-
tenance companies, and so on. Technicians no
longer need to contact the company’s back office
or consult printed documentation when they need
information related to the pipes or the construc-
tion site. Our data-transcoding technique lets
us store all pipe properties in the corresponding
source geospatial database, and all are available
for information visualization. Consequently, our
system offers intuitive on-site assistance.

Discussion
To study the transcoding trade-off effects, we per-
formed a series of tests involving different pipe
networks and mesh sizes for three separate trans-
coding stages:

S0: Static. The transcoding ignored semantic attri-
butes; a single mesh held all generated 3D objects.
S1: Adaptive on transcoding. The transcoding
evaluated semantic attributes, generating ma-
terial values for each geospatial feature before
deploying it to the 3D browser.
S2: Adaptive on traversal. The transcoding pre-
served and evaluated semantic attributes during
scene-graph traversal, where template mapping
and material bindings occur.

On average, the S1 condition performed at 64
percent compared to S0 (σ = 1.052931), while S2
performed at 57.5 percent compared to S0 (σ =
1.55204). The tests indicate that the overall S1 and
S2 performance will remain consistent regardless
of the mesh’s size and will depend mainly on the
object separation in subgraphs. As expected, S1
and S2 performed at similar rates. (The 6.5 percent
performance difference is because, while the num-
ber of traversals is the same, S2 has more overhead
owing to template mapping during traversal.)

Our system has a few limitations. Its information
flow is strictly one-way, from the scene-graph to the
GenerativeML nodes that generate the geometry pro-
cedurally. The scene-graph itself is static: at runtime,
no nodes are added or deleted; only the connections

■

■

■

between these nodes (or subgraphs) can be changed.
We could obtain more flexibility if it was possible to
create parts of the scene-graph procedurally.

For large networks, the scene-graph should be
able to load progressively. Then the system could
refine nodes by inserting a subgraph or by collaps-
ing subgraphs into a single node on the basis of
proximity, visibility, and semantic queries.

A technical limitation is that Coin immediately
renders each object that it encounters during tra-
versal. Because a pipe has several different materi-
als, many material state changes would occur. This
prevents rendering optimizations, such as collect-
ing from different objects all faces made of the
same material.

Finally, the semantic markup lets users style
objects during the traversal itself without prior
knowledge of their graph position. This can cause
caching problems, because every subgraph must be
reformatted to reflect its semantic style mappings
upon traversal.

Although our system is still in development,
preliminary feedback from utility-sector users

is encouraging. We believe that the approach—re-
taining semantic information and using it both
for textual annotation and for influencing 3D
shapes and visualization styles— has wide applica-
bility in modeling human-made structures from
existing legacy data.

As our tests show, deciding how much informa-
tion to reformat during transcoding implies a trade-
off between performance and flexibility. Preserving
semantic information down to the traversal stage
dramatically increases flexibility, letting users apply
visual and modeling changes to the scene’s objects.
But it also decreases performance: the number of
traversals increases because every node adapts to
reflect its semantic mapping by traversing a styl-
ing node before the geometrical content. A better
strategy is to consider particular user tasks—as in
our infrastructure maintenance example—thereby
reducing the number of semantic attributes for the
transcoding pipeline to preserve.

Our future research will involve hardening the
system for field use and establishing full edit-
ing capabilities so that AR system field users can
feed-back changes they observe into the geospa-
tial database. �

Acknowledgments
Our work was sponsored by Österreichische Forsc-
hungsförderungsgesellschaft contract Bridge 811000

	 IEEE Computer Graphics and Applications� 33

and Austrian Science Fund FWF contracts Y193 and
W1209-N15. We also thank Grintec GmbH for pro-
viding geospatial data.

References
T. Höllerer et al., “User Interface Management
Techniques for Collaborative Mobile Augmented
Reality,” Computers and Graphics, vol. 25, no. 5,
2001, pp. 799–810.
E. Bier et al., “Toolglass and Magic Lenses: The See-
Through Interface,” ACM Trans. Graphics (Proc.
Siggraph), 1993, pp. 73–80.
S. Havemann, Generative Mesh Modeling, PhD the-
sis, Department of Computer Science, Braunschweig
Tech. Univ., 2005.
P. Strauss and R. Carey. “An Object-Oriented
3D Graphics Toolkit,” Proc. Int’l Conf. Computer
Graphics and Interactive Techniques (Siggraph), ACM
Press, 1992, pp. 341–349.
E. Mendez et al., “Interactive Context-Driven
Visualization Tools for Augmented Reality,” Int’l
Symp. Mixed and Augmented Reality (ISMAR), IEEE
CS Press, 2006, pp. 209–218.
D. Schmalstieg et al., “Managing Complex
Augmented Reality Models,” IEEE Computer Graphics
and Applications, vol. 27, no. 4, 2007, pp. 48–57.

Erick Mendez is a research engi-
neer and PhD student at the Graz
University of Technology. His re-
search interests include context
information and visualization
techniques for augmented reality
systems. Mendez has an MSc in

computer science from The George Washington Uni-
versity. Contact him at mendez@icg.tugraz.at.

Gerhard Schall is a research engi-
neer and PhD student at the Graz
University of Technology. His re-
search interests include mobile
augmented reality and ubiquitous
and pervasive computing. Schall
received a Dipl.-Ing. in telematics

from the Graz University of Technology. Contact him
at schall@icg.tugraz.at.

Sven Havemann is an assistant
professor at the Graz University of
Technology. His research interest is
in developing novel shape represen-
tations for describing 3D objects
using generative modeling. Have-
mann received a PhD in computer

1.

2.

3.

4.

5.

6.

science from Braunschweig Technical University. Con-
tact him at s.havemann@cgv.tugraz.at.

Sebastian Junghanns is a soft-
ware engineer at Grintec GmbH
and a PhD student/external re-
searcher at the Graz University of
Technology. His research interests
are in mobile and Web-based geo-
spatial systems in the utility asset

management domain. Junghanns received an MS in
geoinformatics from Salzburg University. Contact him
at sebastian.junghanns@grintec.com.

Dieter Fellner is a professor of
computer science at the Darmstadt
Technical University and the Graz
University of Technology. He also
leads Fraunhofer IGD in Darm-
stadt. His research interests in-
clude formal languages, telematics

services, user interface design, software engineering,
computer graphics, and digital libraries. Fellner re-
ceived a Doctorate and Habilitation in technical math-
ematics from the Graz University of Technology.
Contact him at d.fellner@cgv.tugraz.at.

Dieter Schmalstieg is a professor
of virtual reality and computer
graphics at the Graz University of
Technology, where he directs the
Studierstube research project. His
research interests include aug-
mented reality, virtual reality, dis-

tributed graphics, 3D user interfaces, and ubiquitous
computing. Schmalstieg received a Doctorate of Tech-
nology in computer science from the Vienna Univer-
sity of Technology. He’s an editorial advisory board
member on Computers & Graphics, a member of IEEE
ISMAR’s steering committee, chair of the Eurograph-
ics Working Group on Virtual Environments, and
advisor of the K-Plus Competence Center for Virtual
Reality and Visualization in Vienna. Contact him at
schmalstieg@icg.tugraz.at.

For further information on this or any other comput-
ing topic, please visit our Digital Library at http://
www.computer.org/csdl.

