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Large geospatial databases are populated with 
the results of hundreds of person-years of 
surveying effort. Utility workers access these 

databases during fieldwork to help them deter-
mine asset location. Real-time rendering engines 
are highly advanced and optimized software tool-
kits that interactively display 3D information to 
users. Bringing these two technologies together 
could give utility workers 3D information about a 
location’s assets while they’re in the field.

To connect geospatial data-
bases and rendering engines, we 
must transcode raw 2D geospa-
tial data into 3D models suitable 
for standard rendering engines. 
Thus, transcoding isn’t simply a 
one-to-one conversion from one 
format to another; we obtain 3D 
models from 2D information 
through procedural 3D model-
ing. Transcoding the geospatial 
database information’s semantic 
attributes into visual primitives 
entails information loss. We 

must therefore find the right point in the pipeline 
to perform transcoding. If we discard semantic 
information too early, we can’t use it to interact 
with the user later in the pipeline. If we discard 
it too late, we have to reinterpret the semantics at 
runtime, which increases overhead and adversely 
affects performance. We call this the transcoding 
trade-off.

We’ve created a modeling framework that lets 
developers optimize this transcoding tradeoff. The 
framework transcodes geospatial data into 3D in-

teractive visualizations. It does this by combining 
a conventional scene-graph with semantic markup 
and on-the-fly generation of procedural models 
enhanced with an embedded stack-based scripting 
language. Because we tightly integrate these tech-
niques, we can dynamically choose transcoding 
and representation methods for each object on the 
basis of the available high-level semantic informa-
tion. Our approach also lets us define visualization 
styles in relation to the semantic markup, inde-
pendent of actual object structures. To describe 
our technique, we use an augmented reality (AR) 
visualization of underground infrastructure, but 
our approach is generally applicable.

Design considerations
A 3D model for geospatial data visualization aims 
to provide comprehensible visualizations of the 
target assets. Because there are numerous geospa-
tial objects and visualization styles, we need a sys-
tem architecture that lets users add content types 
and visualization styles as plug-ins of the actual 
client. Ideally, a compatible 3D browser should be 
capable of loading and displaying self-contained 
content. The browser should also display user in-
terfaces so that users can select and manipulate 
key parameters for their target application. 

The following specific requirements apply to 
many visualization applications with complex data 
sets, regardless of their intended domain.

Appealing shape. Creating appealing shapes re-
quires advanced modeling methods. For ex-
ample, branching pipe intersections must be 
continuous; we can’t achieve this by simply 

■

By combining semantic 
scene-graph markups with 
generative modeling, this 
framework retains semantic 
information late in the 
rendering pipeline. It can thus 
enhance visualization effects 
and interactive behavior 
without compromising 
interactive frame rates.
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converting raw geospatial database vectors into 
cylindrical tubes.
Level of detail (LOD). Strict control of geomet-
ric complexity is essential, especially for low-
performance mobile computers. The displayed 
content’s geometric complexity should adapt 
dynamically and continuously (rather than pop-
ping) when the view changes.
Information filtering. Displaying a large database’s 
total content will likely produce screen clutter.1 
Users must be able to filter data using spatial 
and semantic information (such as object type). 
To achieve this, we use magic-lens techniques.2

Flexible styling. Users might want to choose dif-
ferent styles for individually selected objects or 
object groups or to suit a particular viewing situ-
ation. With AR displays, for example, users might 
need to change the styling parameters to suit vid-
eo see-through and registration quality. To ensure 
users can flexibly handle the styles, they should 
be stored with the content rather than offered 
as a feature of the specific 3D browser. Clearly, 
separating styles and content ensures that styles 
are reusable across content types.
Progressive information revealing. Offering a se-
mantic level of detail lets users efficiently manage 
screen real estate using multiple representations 
of the same object. These representations pro-
gressively reveal more visual and functional de-
tail. For example, users can arrange objects in 

■
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containment hierarchies. This technique is use-
ful in domains such as underground infrastruc-
ture, where cables are arranged inside encasings, 
which are contained in tubes, and so forth.

As the “Related work in geospatial modeling” 
sidebar describes, converting geospatial data di-
rectly into a static polygonal representation ad-
dresses only some of these requirements. And even 
a dynamic multiresolution tessellation won’t help 
address the needs for interactive manipulation and 
control. Developers could customize 3D browsers to 
include these interactive capabilities, but doing so 
would make the content and browser highly inter-
dependent and would defeat easy extensibility. Giv-
en this, we opted for a combination of techniques 
and implemented them as extensions to Coin3D, 
a conventional scene-graph library (www.coin3d.
org), as part of our Studierstube framework. Our 
approach handles new object types through built-
in interpretations of the scene-graph structure and 
doesn’t require modifications of the scene-graph 
browser itself. We control asset modeling in two 
levels of the rendering pipeline:

Scene-graph level. Using scene-graph markup lets 
us attach the geospatial database’s semantic at-
tributes. The markup also provides the hooks for 
interactive, high-level user control, including fil-
tering, styling, and some semantic LOD control. 

■

Related work in geospatial 
modeling 

A procedural-modeling system’s input parameters can be 
either artificial or derived from real-world measurements, 
such as survey or satellite images. Moreover, developers can 
use input to tightly control their generated models, using 
facades modeled from textures1 or tangible modeling,2 for 
example. Alternately, they can loosely control the models, 
using, for example, synthetic plants,3 buildings,4 or castles.5 
Because our users expect a reliable real-world representation, 
we must provide strict dependence on real-world measure-
ments and user-controlled parameters.

We generated our models using data exported from 
geospatial databases in the standard Geography Markup 
Language (GeographyML, www.opengeospatial.org). 
CityGML, for example, is a GeographyML specialization 
for 3D visualization of textured architectural models,6 but 
it requires a special browser. Instead, our work aims to use 
a standard scene-graph system. Geospatial data is typi-
cally exported via a Web Feature Service, which encodes 
the information in vector format inside a GeographyML 
instance. Other work exists on forwarding database 
information to scene-graphs—X-VRML,7 for example—but 

such approaches generally don’t involve on-the-fly proce-
dural modeling.
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Object level. To provide high-quality tessellated 
objects and give users geometric and semantic 
LOD control, we added a new type of scene-
graph node. The node has a lightweight embed-
ded interpreter for the stack-based Generative 
Modeling Language (GenerativeML, see www.
generative-modeling.org).3

During scene-graph traversal,4 Studierstube passes 
semantic attributes as parameters from the scene-
graph to the GenerativeML nodes.

Transcoding
The first step in our information pipeline is a trans-
coding pass. That is, we change the data format 
from Geography Modeling Language encoding to 
a scene-graph enriched with GenerativeML nodes. 
GeographyML is based on the notion of features, 
including underground and above-surface infra-
structure. A feature consists of several semantic 
attributes and many geometrical attributes that de-
scribe the actual 2D coordinates. Transcoding pro-
duces a scene-graph description that bundles each 
feature’s shape objects and semantic attributes. 
The shape objects refer both to embedded Genera-
tiveML scripts for dynamic parametric objects and 
to Coin3D classes for static nonprocedural shapes. 
The transcoding pipeline focuses on the under-
ground infrastructure’s common features.

The transcoding approach has an outstanding 
advantage. Traditionally, to highlight all objects of 
a certain type in a scene-graph—by changing their 

■

color to red, for example—the system must some-
how change the respective material properties of 
all affected nodes. It can do this by changing one 
of the node’s material fields or by inserting mate-
rial nodes into the scene-graph. However, chang-
ing just one “style node” for all target nodes early 
in the traversal order is a much better strategy. The 
scene-graph browser automatically propagates the 
changed parameters when traverses the graph for 
rendering: each affected node updates its styling 
because its attributes have been touched.5

We group objects in our scene-graph by not only 
the graph’s hierarchy but also semantic-attribute 
families. A family’s objects don’t have to belong to 
the same part of the scene-graph hierarchy—as Fig-
ure 1 shows, they can be scattered throughout the 
scene-graph and still be jointly affected.

Additionally, we don’t explicitly identify an ob-
ject’s family membership; rather, it results from 
an aggregation of semantic attributes that the 
scene-graph browser encounters while traversing 
the path from the scene-graph’s root node to the 
object itself. This mechanism works exactly like 
other traversal states, such as transformation ma-
trix or material bindings. Semantic-attribute nodes 
encountered during traversal add or overwrite ar-
bitrary key-value pairs in the current attribute set. 
The scene-graph browser then propagates this set 
downwards with traversal, and any node aiming to 
be environmentally sensitive can query it.

More specifically, a styling node relies on a style 
map to modify appearance parameters for vari-
ous shape nodes. Like XHTML’s Cascading Style 
Sheets, our style maps are hierarchically organized. 
Style map entries are style subgraphs consisting 
of nodes that influence appearance; Studierstube 
dynamically inserts these nodes before the target 
object during scene-graph traversal. As a result, 
object appearance changes dynamically with the 
associated semantic attributes. This approach has 
four advantages:

Preserving semantics. Our framework retains the 
geospatial database’s semantic attributes un-
til the actual rendering traversal, when it uses 
them to determine the object’s appearance. Us-
ers can apply existing styles to new object types, 
assuming their attributes are compatible.
Referencing. Potentially complex semantic at-
tribute combinations can influence an object’s 
appearance. When welding can’t occur near a 
gas pipe, for example, the application may au-
tomatically select a style demarking “danger” if 
the user applies “gas” and “welding” attributes 
to an object group in spatial proximity.

■

■

Utility data
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Figure 1. A 
scene-graph 
with semantic 
attribute 
markups. The 
town hall’s 
reconstruction 
requires 
welding, which 
must not occur 
near gas. By 
combining 
the attributes 
(town hall 
+ gas), the 
system 
automatically 
locates and 
highlights 
dangerous 
objects during 
a single scene-
graph traversal.
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Interactive styling. The system can display selected 
semantic attributes in the user interface because 
the attributes are simply key-value strings. Us-
ers can directly modify attribute values, thereby 
influencing the visualization. For example, users 
can filter distracting objects by setting the object 
category’s style to “off.”
Parameter forwarding. As we describe in the next 
section, Studierstube can forward semantic at-
tributes as parameters to the GenerativeML en-
gine to create the geometric primitives.

We encode geographical features as small sub-
graphs inside the scene-graph that contain both its 
semantic and geometrical attributes (see Figure 2). 
Semantic attributes add to, set, and modify key-
value pairs in the traversal state. This gives any 
geometrical attribute—which is itself a subgraph 
containing a styling node and a content node—the 
ability to check for a mapping that matches its 
semantics. If such a mapping exists, the attribute 
modifies its styling node to affect the content 
node’s appearance.

GenerativeML
To create parametric 3D models on the fly, we 
use GenerativeML. Originally, developers created 
GenerativeML to serve as a general exchange for-
mat for procedural models—for example, as a file 
format for encoding complex objects’ construction 
history. GenerativeML can generate large amounts 
of geometric data from compact descriptions. Be-
cause its syntax is similar to PostScript, Genera-
tiveML is somewhat like a 3D PostScript.
Currently, GenerativeML’s main surface represen-
tation is the combined boundary representation 
(cB-Rep)—polygonal meshes whose faces can be 
nonconvex and of arbitrary degree. cB-Rep is suit-
able for free-form modeling because edges have a 
crease attribute to distinguish sharp and smooth 
edges. In cB-Rep, faces containing smooth edges 
are rendered as Catmull/Clark subdivision sur-
faces, not as polygonal faces. GenerativeML’s em-
bedded OpenGL renderer is highly optimized and 
provides on-the-fly tessellation and LOD.

Generative modeling replaces objects with opera-
tions. Consequently, we represent the cB-Rep meshes 
not as lists of geometric primitives but as the product 
of Euler operators. We issue said operators either di-
rectly as GenerativeML operators or through higher-
level modeling operations, such as extrusion.

The GenerativeML interpreter and its integrated 
OpenGL renderer reside in a shared library; users 
can link the library to any OpenGL application, 
such as a scene-graph engine. For example, devel-

■
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opers have embedded GenerativeML into Coin3D 
as a new node that communicates with the Gen-
erativeML engine. We store and maintain script 
code in the GenerativeML scene-graph node’s 
string field, located in the .iv file. Users can execute 
this code during traversal to produce 3D models 
of pipes and tubes on the fly. This greatly reduces 
scene-graph size and lets users vary construction 
parameters to reflect semantic-level changes, such 
as highlighting or database queries.

Generative modeling complements a scene-
graph with semantic attributes. A scene-graph’s 
strength is in managing large scenes by providing 
tools such as a scene hierarchy, spatial structur-
ing, and flexible scene traversal. In contrast, Gen-
erativeML operates on the object level. Its purpose 
is to use the rules and parameters to create the ge-
ometry. The interface between the software com-
ponents is simply the set of semantic attributes 
that Studierstube passes as model parameters to 
GenerativeML.

Visualization with filtering and 
annotations
To filter information, our system directly exploits 
semantic markup during rendering. Users can use 
information such as object categories, ownership, 

Sets semantics to current state
 name = canal
 status_value = in_use
 id = 33454725   ...

Checks mappings against
current state
 if
  (group == heating)
  (name == canal)
   USE ShowInsides
and modi�es the geometry
styles accordingly

Sets state according to modi�ed
material or GenerativeML parameters
 openangle = 70
 material = green

Generates and renders mesh
according to materials and
parameters
 height = 10cm
 width = 70 cm
 openangle = 70 (from parameters)
 coordinates = [ ... ]

Feature
Upon traversal

Semantic
attributes

Geometrical attribute

Geometry styles

GenerativeML
geometry

1

2

3

4

5

Figure 2. Traversing geographic features. Upon traversal, every 
geographical feature aggregates its semantic attributes to the traversal 
state, and checks whether the current total of the semantic values match 
a style mapping. If so, it fetches predefined styles accordingly. So, the 
shape node’s rendering style reflects its semantic attributes.
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and topological relationships to hide or highlight 
individual objects. Users often want to apply filter-
ing to spatially bounded areas. To address this, we 
use magic lenses2 that change object presentation 
styles depending on not only their containment 
in the lens but also their semantic markup.5 Users 
can color-code objects or make them transparent 
inside the lens; alternately, they can change the 
parameters passed to GenerativeML—such as to 
open up the lens area’s pipes.

Figure 3 shows a magic lens designed to resem-
ble an excavation hole. To create this, we reduced 
the object saturation and opacity outside the lens. 
Inside the lens, we displayed only objects with cer-
tain semantic attributes. This approach lets users 
localize the visual-disambiguation region, while 
retaining the surrounding assets’ spatial context.

An underground infrastructure 
application
To illustrate how our system works, we’ll use an 
example task from the public-utility sector. To 
avoid damaging existing infrastructure during dig-
ging, utility companies must provide private con-
tractors—such as construction companies—with 
spatial information about their assets. To accom-
modate this need, utility company field-workers 
spray paint spots on the ground where digging 
should occur. Private contractors orient their con-
struction site on the basis of paper maps plotted 
in advance using the utility company’s geographic 
information systems (GISs).

The GIS information model
Utility infrastructure—such as underground water or 
gas distribution systems—is arranged in canals, divid-
ed into multiple tunnels at different depths. Depth 
is either given as an attribute value or estimated on 
the basis of heuristics (telecommunications, for ex-
ample, are typically in the first layer at 0.5 m depth). 
The depth that workers bury each utility system also 
varies depending on terrain conditions.

The central object in the transcoding pipeline is 
the pipe. All types of pipe-shaped infrastructure—
whether electricity, gas, water, sewer, or heating 
pipes—are abstracted by the same common geomet-
ric attribute. However, supported by semantic attri-
butes, we can visually discriminate among them. 

One pipe can consist of several segments. To 
avoid creating excess polygons, transcoding auto-
matically deletes collinear and duplicate points. We 
can also quantize coordinates for LOD generation, 
because users typically don’t require millimeter-
level precision in their visualizations. We convert 
nongeometric attributes, such as ID, purpose, 
or ownership, to semantic nodes inserted on the 
scene-graph and pass geometric attributes to the 
GenerativeML nodes. We describe tunnels analo-
gously to pipes, but use rectangular rather than 
circular cross-sections.

Pipes are in fact hierarchical: pipe objects are 
typically enclosed by other pipe objects, such as 
electricity lines or gas pipes arranged inside tun-
nels. Rather than simply deriving the containment 
hierarchy geometrically, we describe it through 
semantic attributes so that users avoid render-
ing subpipes when the containing pipe is set to 
“opaque.” GenerativeML’s procedural logic lets us-
ers open tunnels to reveal the interiors; thereafter, 
they can render the contained pipes as well.

In addition to pipes, the underground infrastruc-
ture also consists of special facilities such as gate 
valves, water hydrants, and T-fittings. We blend 
these facilities with the 3D environment on the ba-
sis of special rules, using a library of premodeled 3D 
objects. To provide geographic context, we include 
buildings, generating them procedurally from their 
transcoding-step footprints through simple extru-
sion, using a semantic height attribute (or a default 
value if this attribute is unavailable). 

Adaptive asset modeling
As Figure 4 shows, we use a small set of parameters 
to procedurally create all types of pipe-like objects. 

(a) (b)

Figure 3. 
Filtering 
information 
using a 
magic lens. 
Propagating 
semantic 
information 
lets users 
combine spatial 
with semantic 
filtering. To 
reduce screen 
clutter in (a) 
a cluttered 
image, we 
(b) apply an 
“excavation” 
magic lens 
that shows 
only selected 
assets. The 
surrounding 
area shows a 
toned-down 
version of all 
assets. We 
produced both 
images using 
a tabletop 
augmented 
reality (AR) 
setup with real 
architectural 
scale models 
(light blue).
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These include the polyline determining the pipe’s 
overall shape, radius, thickness, and type; the ra-
dius of curved pipe segments, along with their col-
lar radius, thickness, and so on. 

Our basic problem is to connect two straight pipe 
segments with a curved pipe. The pipe’s curved por-
tion is a circle segment that starts at the dashed line 
before the actual joint, located at a given normal 
distance from the pipe axis. We compute the circle’s 
midpoint as the intersection of the two dashed lines. 
Then, we sample the circle segment and produce 
radial line segments, along which we create a verti-
cal profile of choice to create a rotational sweep. 
The result is a cB-Rep control mesh that we use to 
produce polygonal facets and Catmull/Clark sub-
division surfaces. A pipe’s first and last faces have 
sharp (red) edges that produce a crease, resulting 
in flat faces with a B-spline boundary. Bad param-
eter sets—such as those caused by bad geospatial 
data surveys—can lead to control mesh self-inter-
sections (that is, pipes that are too wide, a curve 
radius that’s too small, or a segment angle that’s 
too acute). GenerativeML has no automatic mecha-
nism to determine the parameters’ valid range.

GenerativeML’s power is that it efficiently sup-
ports processing chains. The stack lets the system 
flexibly pass one function’s data as input param-
eters to the next function. We exploit this to cre-
ate different pipe types by simply passing different 
profiles to a connecting function. Figures 5 and 6 
show (next page) canals created from a rectangular 
profile with a user-defined, interactively controlled 
opening angle. For open pipes or canals, the pro-
file—and hence the vertex count—is variable, de-
pending on the opening angle. 

A minor complication is that subpipes often run 
next to each other. Although such “offset pipes” 
seem to run in parallel, when they curve, they share 
the same curve midpoint but have different radii de-
pending on whether they curve left or right. We can 
elegantly solve this problem by reusing the pipe-cre-
ation procedure, inputting the main poly-line offset 
as another control parameter. This lets us uniformly 
deal with hierarchical groups of pipes and canals 
that follow the same route. Specifically, to create the 
geometry for a cut-open hierarchical grouping, we 
need only propagate the opening angle.

As Figure 6 shows, collars around the pipe end-
ings are important cues that help users understand 
spatial relationships, letting them join different 
pipe types while preserving a consistent visual 
appearance. Figure 7 shows how we dynamically 
generate per-object geometric LOD per frame. We 
do this by adjusting the tessellation’s subdivision 
depth, depending on the covered pixel-area and 

the surface orientation and curvature. The inter-
active LOD lets us generate more visually pleasing 
images. For example, it produces pipe junction in-
tersections as sharp connections in the geospatial 
data. GenerativeML models can soften these junc-
tions by further subdividing the resulting mesh.

Finally, Figure 8 shows an example that combines 
modeling techniques. We modeled the pipes and 
the T-junction using GenerativeML; the smooth 
joint makes the connection clearly visible. The 

Pipe junction
coordinates

Curvature
radius

Subdivision
segments

Pipe junction
coordinates

Figure 4. Modeling pipes using parameters. To achieve rounded edges, 
we compute a circle segment to connect subsequent tubes. We offset 
and sample circle segments on either side to obtain radial line segments 
(inset). We then convert the circular profiles (n-gons) to double-sided 
faces and connect them.

α

α

Figure 5. Creating open profiles. We can smoothly vary the opening 
angle and even animate it. To open up any object, we connect two 
sampled circle segments with different radii. In this case, we use 
“canals” with a rectangular profile.
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white objects are predefined shape library models 
(used at low resolution to avoid impairing render-
ing performance). We then applied transcoding to 
extract all models’ geometrical position—as well 
as their orientation and semantic attributes—from 
the geospatial database.

AR-style visualization
We now focus on a practical solution for our pub-
lic-utility scenario. Assuming a database can be 
accessed by a Web Feature Service, our construc-

tion-site field-workers can perform online queries 
using a wireless mobile computer that sends the 
current GPS position. The server returns a set of 
geographical features encoded in GeographyML. 
Currently, field-workers use handheld computers 
that can display 2D map information that’s more 
or less equivalent to conventional paper maps.

Because we can’t acquire the position of pipes, 
ducts, valves, alignments, and other underground 
infrastructure from aerial or terrestrial photogra-
phy, we rely exclusively on data from the utility 
company’s GIS. We get above-surface information 
such as building footprints, roads, and property 
lines directly from the geospatial database. Al-
though we focus on delivering the final visual-
ization as part of a video see-through AR display, 
our visualization techniques are also applicable to 
desktop virtual reality applications.

Researchers have used our outdoor AR System 
as a tourist navigation aid.6 Here, we focus on our 
newly developed modeling techniques to visualize 
underground models. Figures 9 and 10 show geo-
spatial data superimposed in real time on a video 
feed using the AR interface. Figure 10 also shows 
a user with a robust handheld AR device used for 
the outdoor work. We designed the AR interface 
around a handheld tablet PC. The PC is equipped 
with a sensor array consisting of GPS, an inertial 
orientation tracker, and a camera to show a video 
see-through augmentation of the environment.

Styling objects using their semantic markup is a 
powerful tool when users can’t control the data’s 
object arrangements. Take, for example, Figure 9’s 
scenario. The visualized information represents 
heating assets, organized in tunnels and canals that 

Low Medium High

Figure 7. Interactive level of detail. Using interactive LOD lets us increase 
visual fidelity while minimizing the performance impact. The system 
automatically handles LOD selection when GenerativML code is called.

Figure 8. Combining modeling techniques. This 
image is a composite model of a GenerativeML-
created T-junction with valve models from a stock 
library. By using subdivision surfaces, GenerativeML 
can create complex junction shapes such as the 
inset’s five-way junction (lower middle).

Figure 6. 
Illustrating 
curved joints. 
We add collars 
to better 
distinguish 
curved joints 
between 
straight pipe 
segments. 
We can also 
arrange 
pipes, canals, 
and tunnels 
hierarchically.
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contain pipes. A simple task is to request that all 
objects of type canal show their interiors. This ac-
tion sets the GenerativeML parameter opening angle 
to 70 degrees only on those objects with matching 
semantic attributes—that is, on canals. Not all the 
objects have opening angles; those that do are set to 
green (see Figure 9b). This action reveals the pipes 
inside the green conduct, which is cut open. Alter-
natively, we could change the objects’ transparency 
to show their interiors as illustrated (Figure 9c). 
Typically, field-workers refine their search using ad-
ditional attributes, such as objects that are in use 
or those that belong only to a certain category. In 
Figure 9c, the user would like to open only those 
tunnels in use for heating.

Our system also lets users assign different styles 
to objects. The styles, created by an application de-
signer, can convey subjective meanings, such as 
“dangerous” or “important.” In Figure 9d, the user 
instructs the system to highlight an object with a 
specific ID that’s targeted for repair.

AR-style visualizations have two key benefits. 

(a) (b)

(c) (d)

Figure 9. Visualizing the superimposed geospatial underground model. (a) In this photo of a construction site, 
the district heating-pipe infrastructure’s supply and return pipes are clearly visible. The technician’s task is 
to repair some of these pipes. (b) The technician requests that all objects of type canal (in green) show their 
interiors. (c) The technician tells the system to show the insides of the canal and the tunnel used for heating. 
(d) The technician asks the system to highlight the object with a specific ID.

Figure 10. The AR display on a handheld device. The view shows a 
second AR user with a handheld AR display. The left side of the frame 
shows wireframed building models that help retain spatial context.
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First, users can locate and visualize underground 
infrastructure before excavation (here, for the 
sake of illustration, it was done after). Essentially, 
our approach gives users “X-ray vision” of the bur-
ied assets, which can help them locate damage or 
plan construction, for example.

Second, our approach offers users visual guid-
ance, both during excavation activities and in 
examining technical infrastructure. Users can 
retrieve on-demand information about pipe prop-
erties—such as purpose, specification, length, and 
material, as well as the construction date, main-
tenance companies, and so on. Technicians no 
longer need to contact the company’s back office 
or consult printed documentation when they need 
information related to the pipes or the construc-
tion site. Our data-transcoding technique lets 
us store all pipe properties in the corresponding 
source geospatial database, and all are available 
for information visualization. Consequently, our 
system offers intuitive on-site assistance.

Discussion
To study the transcoding trade-off effects, we per-
formed a series of tests involving different pipe 
networks and mesh sizes for three separate trans-
coding stages:

S0: Static. The transcoding ignored semantic attri-
butes; a single mesh held all generated 3D objects.
S1: Adaptive on transcoding. The transcoding 
evaluated semantic attributes, generating ma-
terial values for each geospatial feature before 
deploying it to the 3D browser. 
S2: Adaptive on traversal. The transcoding pre-
served and evaluated semantic attributes during 
scene-graph traversal, where template mapping 
and material bindings occur.

On average, the S1 condition performed at 64 
percent compared to S0 (σ = 1.052931), while S2 
performed at 57.5 percent compared to S0 (σ = 
1.55204). The tests indicate that the overall S1 and 
S2 performance will remain consistent regardless 
of the mesh’s size and will depend mainly on the 
object separation in subgraphs. As expected, S1 
and S2 performed at similar rates. (The 6.5 percent 
performance difference is because, while the num-
ber of traversals is the same, S2 has more overhead 
owing to template mapping during traversal.) 

Our system has a few limitations. Its information 
flow is strictly one-way, from the scene-graph to the 
GenerativeML nodes that generate the geometry pro-
cedurally. The scene-graph itself is static: at runtime, 
no nodes are added or deleted; only the connections 

■

■

■

between these nodes (or subgraphs) can be changed. 
We could obtain more flexibility if it was possible to 
create parts of the scene-graph procedurally.

For large networks, the scene-graph should be 
able to load progressively. Then the system could 
refine nodes by inserting a subgraph or by collaps-
ing subgraphs into a single node on the basis of 
proximity, visibility, and semantic queries. 

A technical limitation is that Coin immediately 
renders each object that it encounters during tra-
versal. Because a pipe has several different materi-
als, many material state changes would occur. This 
prevents rendering optimizations, such as collect-
ing from different objects all faces made of the 
same material.

Finally, the semantic markup lets users style 
objects during the traversal itself without prior 
knowledge of their graph position. This can cause 
caching problems, because every subgraph must be 
reformatted to reflect its semantic style mappings 
upon traversal.

Although our system is still in development, 
preliminary feedback from utility-sector users 

is encouraging. We believe that the approach—re-
taining semantic information and using it both 
for textual annotation and for influencing 3D 
shapes and visualization styles— has wide applica-
bility in modeling human-made structures from 
existing legacy data.

As our tests show, deciding how much informa-
tion to reformat during transcoding implies a trade-
off between performance and flexibility. Preserving 
semantic information down to the traversal stage 
dramatically increases flexibility, letting users apply 
visual and modeling changes to the scene’s objects. 
But it also decreases performance: the number of 
traversals increases because every node adapts to 
reflect its semantic mapping by traversing a styl-
ing node before the geometrical content. A better 
strategy is to consider particular user tasks—as in 
our infrastructure maintenance example—thereby 
reducing the number of semantic attributes for the 
transcoding pipeline to preserve.

Our future research will involve hardening the 
system for field use and establishing full edit-
ing capabilities so that AR system field users can 
feed-back changes they observe into the geospa-
tial database. �
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For further information on this or any other comput-
ing topic, please visit our Digital Library at http://
www.computer.org/csdl.


