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Figure 1 An example of an enhanced augmentation. Focus objects (in red) are not only overlaid on top of the video image, but they are 

partially occluded by key features from context objects. This provides object occlusion with key features of occluding objects. A second level 
context (yellow seats) further helps an understanding of the scene. Edges in this image are enhanced considering occlusions with other 

objects. This helps us to better control the depth complexity of the scene 
 
ABSTRACT 

In this article we present interactive Focus and Context (F+C) 
visualizations for Augmented Reality (AR) applications. We 
demonstrate how F+C visualizations are used to affect the user's 
perception of hidden objects by presenting contextual 
information in the area of augmentation. We carefully overlay 
synthetic data on top of the real world imagery by taking into 
account the information that is about to be occluded. 
Furthermore, we present operations to control the amount of 
augmented information. Additionally, we developed an 
interaction tool, based on the Magic Lens technique, which 
allows for interactive separation of focus from context. We 
integrated our work into a rendering framework developed on 
top of the Studierstube Augmented Reality system. We finally 
show examples to demonstrate how our work benefits AR. 

 
Categories 

H.5.1 [Multimedia Information Systems]: Artificial, 
augmented, and virtual realities; H.5.2 [User Interfaces]: Style 
guides; E.1.3 [Data Structures]: Graphs and Networks; I.3.6 
[Methodology and Techniques]: Interaction techniques, 
Graphics data structures and data types. 
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Object overlay and spatial layout techniques, real-time 
rendering, interaction techniques for MR/AR, mediated and 
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1 INTRODUCTION 
Augmented Reality (AR) displays provide extra information 

to a user’s perception by overriding parts of the real world with 
synthetic, computer generated images. However, heedless 
replacement of portions of the real world image can easily cause 
a number of cognitive problems. For example, if too much 
information is added in areas that were unimportant in the 
original image, the impression of a cluttered display is caused. 
Another example of problematic augmentations can be found in 
X-Ray visualizations, where hidden structures are rendered on 
top of visible objects. Careless augmentation with synthetic 
imagery may obscure important real-world information. This 
problem is illustrated in the simulated surgery depicted in Figure 
2, it shows an attempt to insert a needle into a patient’s abdomen 
while visualizing internal anatomy using AR. The computer-
generated augmentations occlude extremely relevant 
information presented in the real world imagery. In this case the 
user is unable to see the entry marks for the needle placed on the 
skin of the patient. 

Augmenting information on top of real imagery may also lead 
to problems of depth perception. This has been a common 
subject of research in the past and has been addressed by a 
number of strategies, mainly based on adding monocular depth 
cues to the scene [10]. For example [24][3] add a window-
shaped restriction of the rendering area to enhance depth 
perception through partial occlusion, while [9] uses a box-
shaped restriction that additionally provides linear perspective 
cues. However, none of the existing approaches take into 
account the removed information or try to use cues present in 
the real image as an aid for depth perception.*†‡ 
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In this paper, we address the task of carefully overlaying 
synthetic data on top of the real world imagery (Figure 1). We 
take into account the information that is about to be occluded by 
our augmentations as well as the visual complexity of the 
computer-generated augmentations added to the view. Our work 
is inspired by Focus and Context (F+C) visualization techniques, 
a powerful instrument for visually communicating relevant 
structures. To address the problem of augmentations occluding 
useful real imagery, we introduce the notion of context 
preserving X-Ray vision which controls the removal of real 
world information based on an importance measure of this 
information. Moreover, we address the problem of cluttered 
displays by providing solutions for controlling depth complexity 
with an interactive, user controlled filter which combines spatial 
and contextual information. 

The techniques presented in this paper are embedded in a 
novel AR visualization framework which operates on an 
intermediate representation extracted from conventional 3D 
models. This representation is image based and can be described 
as a sparse, non-uniformly sampled, view-dependent volumetric 
model. We use recent GPU programming techniques for 
efficient rendering of this representation inspired by the G2 
buffer framework [7]. 

 

 
Figure 2 Careless augmentations of hidden structures suffer two 

key problems: they override useful information (such as 
landmarks) and they lack depth cues. (Right) Original photo 

before augmentation (Left) Augmentation of the liver with portal & 
hepatic vessel trees as well as a tumor (in green). 

 

2 RELATED WORK 
Using Focus+Context (F+C) visualizations allows the 

application to draw the attention of the user to a portion of the 
data (Focus), while at the same time the overall spatial 
relationship of the neighboring information (Context) is 
presented in an abstracted way. Following the overview of F+C 
techniques in [14], the creation of F+C visualizations can be 
roughly divided into two major steps: data classification and 
rendering. 

The objective of the first step, data classification, is to identify 
the F+C roles in the data, i.e. what information should be focus 
and what should be context. Data classification may be statically 
given for a particular application, or it may be determined 
procedurally by some kind of interpretation procedure. 

Data separation is usually performed based on user input, so 
the choice of focus can be controlled by the user. A classical 
example of this is the Magic Lens metaphor [2]. There are a 
number of approaches how the user can be involved in the 
definition of context, for example through direct pointing, 
widget manipulation or tangible interfaces. 

More indirect approaches interpret a particular application 
state and aim to infer the user’s needs and intentions. There are 
several examples of this approach with applications in AR. The 
interpretation can be based on task knowledge [13] or contextual 
information associated with the spatial data [18] [20]. Another 
application of data separation is found in X-Ray visualization, 
which is relevant both in AR and medical visualization. 
Examples of the latter are techniques that use application-
dependent importance values [26] [27] [22] or iso values [4] 
[12] for X-Ray vision in volume rendering. 

Once having discerned these two categories, the second step is 
to render the categories in visually distinctive styles in order to 
separate and to draw the user’s attention to the focus. This may 
be done by modifying geometry – e.g., visually distorting the 
data through a magnifying lens, or by modifying appearance, 
e.g., by manipulating saturation or opacity.  

Most of the techniques for applying F+C rendering to 3D 
scenes rely on opacity modification [1] [17] [8] [6]. Few other 
works use interesting rendering changes to draw the attention of 
the user such as color or depth of field discrimination [15] or 
modifying shading parameters [22]. We draw inspiration from 
these works since our framework allows very general non-
photorealistic effects to be applied to AR scenes. 

Interaction usually works hand in hand with visual 
discrimination. It facilitates a localized region where the F+C 
effect should take place [2] [22] [18] [20] [1]. However, it 
should be emphasized that while the focus should always be 
locally bound, this does not mean that this boundary must be a 
particular display region. The focus can also be defined non-
spatially, for example as a particular category of object the user 
is interested in. In particular, some projects have successfully 
applied it to the entirety of the image with very encouraging 
results [6] [17]. In the work in this paper, we also take a similar 
approach where the definition of focus and context is globally 
available and can be used to achieve a variety of effects in 
combination. 

3 FOCUS+CONTEXT RENDERING 
Focus+Context visualizations demand that we visually 

discriminate objects depending on whether they are marked as 
focus or context. Recent work on volume visualization, such as 
that of Krüger et al. [17] and Hauser et al. [15], share the idea of 
a two-pass rendering technique to achieve the desired 
visualization. The first pass renders the individual objects of the 
scene into a set of buffers, while the second pass composes the 
final result from the individual buffers by sweeping over the 
buffers in depth order. This is a very general and simple 
approach, which we found suitable for our aims. Our rendering 
algorithm consists of the following steps: 

 
 Buffer Rendering: We classify the objects in the scene into 

multiple context families using a simple markup mechanism, 
rather than just making a binary decision of focus or context. For 
every context family, a separate buffer is allocated. During this 
step we render all object families into the corresponding buffers. 
This enables us to apply different treatments, such as image 
manipulation, in the next step. 

 
For every object(i) { 
  a) Determine context family F of object (i) 
  b) Render object(i) into a Buffer (F) 
} 

 
Buffer processing: Once the buffers have been rendered, we 

process each of them in turn to visually discriminate focus from 



context. We apply the desired visual styling during this step. 
This may include, for example, edge enhancement, color or 
transparency manipulation. The actual modification is highly 
application dependent and can be scripted through a mechanism 
similar to shader trees [5]. 

 
For every buffer(i) { 
  Modify buffer(i) according to rule(i)  
} 

 
Scene Compositing: This step combines the information 

contained in the processed buffers. The compositing is not fixed, 
but may also be scripted. The buffers are composed in front to 
back order, evaluated by sorting the buffers based on the depth 
buffer values associated with every pixel. This allows us to 
maximize the control of compositing parameters. 

 
For every pixel(x,y) { 
  Sort all buffers by depth d(x,y) 
  For all buffers(j) in order given by d 
    r = compose(fragment(j,x,y),strategy(j),r) 
  return r 
} 

3.1 BUFFER RENDERING 
From the algorithm, it is clear that a single frame buffer does 

not fulfill our requirements. We need color+alpha, but also 
depth for the scene compositing, and potentially several 
additional buffers resulting from the Buffer Processing. To store 
this information, Geometric Buffers (G-Buffers) [23] are used. 
G-Buffers are a collection of image buffers storing color, 
transparency, depth values, object ids, texture coordinates, 
normals or other per-pixel information. A G-Buffer encodes data 
about objects, such as view-dependent information, and can be 
seen as a 2.5D scene approximation. 

 

 
Figure 3 Conceptual representation of the image buffers 

contained by a single G-Buffer. 
 

          
Figure 4 (Left) An illustration of a scene. (Right): One possible 

G-Buffer volume. 
 

A key concept of our work is to extend the information held in 
the G-Buffer to include inferred information from the processing 
step.  This inferred information can later be used to change the 
visual appearance of objects belonging to a particular family. 
Figure 3 provides an illustration of a G-Buffer containing four 
different bitmaps: color, depth, normals and inferred edge 
information. 

A single G-Buffer contains an approximation of those objects 
in the scene belonging to a particular context family. We can 
thereby isolate the styling applied to different families, while all 
G-Buffers combined approximate the whole scene. This is 
illustrated conceptually in Figure 4. Notice that objects from 
different families have been bound to different buffers, in this 
case the family membership is examplified by shape. 

During buffer rendering we use the regular rendering pipeline 
to extract all the necessary information that will be used during 
the processing of the buffers. The scene is traversed in a single 
pass with multiple render targets, namely all G-Buffers. Every 
object is rendered to exactly one G-Buffer, which is determined 
by its family membership given as semantic markup. 

3.2 BUFFER PROCESSING 
For every buffer, a number of image processing techniques 

can be applied to compute additional information, for example 
to detect edges or regions with high curvature, to extract regions 
with particular color or depth values or to mark a particular 
region supplied interactively by the user. Many such operations 
will consider a pixel together with its neighborhood, and use 
information from multiple components of the G-Buffer, such as 
both depth and normal information. In this way multiple 
additional image components containing auxiliary information 
can be added to the G-Buffer. 

3.3 SCENE COMPOSITION 
In the final compositing step, the information from the set of 

G-Buffers is merged into a final image using a non-uniform 
GPU raycasting algorithm. Simple blending of the G-Buffers is 
not enough since occlusions are given on a per pixel instead of a 
per G-Buffer basis. The ray traverses the scene approximation 
given by the G-Buffers in front to back order. Since the G-
Buffers are already available in view coordinates and in screen 
resolution, the problem of casting a ray is reduced to sorting the 
depth components of the G-Buffers. 

Once this sorting has taken place we proceed to compose all 
the fragments into one single output. Such composition, 
however, is based on compositing rules which can arbitrarily 
alter the contribution of a particular pixel from one of the G-
Buffers. For example, color or transparency of a particular pixel 
may be modified based on the importance of the pixel that was 
visited along the ray before the current one. A particularly useful 
operation for complex AR scenes is to suppress pixels that are 
unimportant or confusing. 

4 CONTEXT PRESERVING X-RAY VISION 
X-Ray visualization is capable of displaying hidden structures 

behind real world imagery. In order to accomplish meaningful 
augmentations, we face two main challenges. First, the final 
image needs to have enough depth cues available to correctly 
communicate spatial relationships between hidden and 
occluding structures. Second, significant information of 
occluding structures has to be preserved in order to retain the 
occluder’s shape or simply to keep important landmarks visible 
in the real world imagery (Figure 2). Notice that partially 
occluding structures provide a strong monocular depth cue, 



which means that these two challenges are interdependent and, 
can therefore be jointly addressed. 

In this section we show how we use F+C visualizations to 
create comprehensible augmentations of hidden structures. 
Later, we will show how the same techniques can be used to 
keep important landmarks visible in the real world imagery. 

4.1 FOCUS AND CONTEXT SEPARATION 
For X-Ray visualization, we consider hidden structures as 

information in the focus of attention, while occluding objects 
represent the context. To achieve comprehensible augmentations 
of hidden structures, we need to preserve important information 
of occluding objects. We derive from our previous 
considerations that important context information is the one 
which preserves the shape of the occluder or keeps important 
landmarks visible.  

In order to identify important context information we need to 
find filter operations to first separate Focus from Context 
followed by an identification of important information in the 
context area. The problem of finding important information in a 
context area is again an F+C separation problem. However, this 
separation is applied to the already identified context from the 
first stage and therefore, the resulting Focus and Context may be 
seen as Second Level Focus and Second Level Context. 

Filter operations build one of the most important components 
in our F+C rendering pipeline. We allow filtering to be applied 
in all three stages of our algorithm. While filtering during G-
Buffer Rendering and during Scene Compositing applies to all 
fragments per pixel, filtering during G-Buffer Processing applies 
to groups of fragments depending on G-Buffer affiliation. 

In the next section we discuss filter operations on fragments 
per G-Buffer. Subsequently, we explain how fragment filtering 
per pixel is achieved. 

4.2 FILTERING THROUGH G-BUFFER PROCESSING 
We control which parts of which G-Buffers get affected by a 

certain shading operation during G-Buffer Processing. As 
already mentioned, our F+C separation problem for X-Ray 
visualizations builds up a hierarchy, where filters are applied on 
results of previous filter operations. Therefore, we have built our 
G-Buffer Processing architecture on top of a data flow graph, 
similar to a shader tree [5]. Nodes in the graph represent filter or 
shading operations on G-Buffers. Links are used to define on 
which part of the previous filtered data a subsequent filter or 
shader is applied to. Since all of our filter nodes implement a 
binary segmentation into focus and context elements, links 
select only between these two types.  

Figure 5 shows a simple graph and its corresponding 
visualization is shown in Figure 6. This graph renders the main 
focus object in red (back wheels & engine) while the second 
level focus is presented in yellow. Furthermore, it segments the 
edges out of the second level context area and shades the 
extracted edges in grey while it turns the remaining fragments to 
fully transparent.  

Two types of filter operation have been implemented to 
achieve the desired shadings. First, filter which separate G-
Buffers. Second, filter which differentiate between fragments of 
the same G-Buffer by using image processing algorithms or 
simple 2D masks, which can even be derived from other G-
Buffer’s footprints. For example, one possible way to filter 
important information out of a specific G-Buffer is done by 
applying an edge detector on the color buffer of the G-Buffer 
itself. 

4.3 CONTROLLING DEPTH COMPLEXITY BY USING PER PIXEL 
F+C FILTERING 

Making hidden structures visible may cause information 
overflow. In particular, depth complexity may increase if 
multiple objects that are located at different depths in the scene 
overlap in screen space. To control this problem of depth 
complexity we filter fragments covering the same location on 
the screen, with the goal of a controlled reduction of the number 
of contributing fragments. 

 

 
Figure 5 Conceptual data flow of the G-Buffers to obtain an AR 

visualization. Separation can occur in a per G-Buffer or per 
fragments basis. The leaves are shaders that process the filtered 

fragments. 
 
This kind of filtering happens either during G-Buffer 

Rendering or during Scene Compositing. In this section we will 
explain both approaches, starting with filter operations while 
rendering the G-Buffer. This means that the rendering of the 
scene updates all values of a particular G-Buffer.  

 

 
Figure 6 Corresponding visualization of the tree in the previous 

Figure 
 
If more than one fragment falls on the same pixel of a G-

Buffer, a test needs to be defined to choose only a single 
fragment. For this kind of filter operations we use traditional 



OpenGL fragment testing. For example, a G-Buffer can be 
configured to only use values from fragments which are not 
occluded by other fragments of the same G-Buffer. Such a 
strategy is simply achieved by using OpenGL’s depth test.  

The way we group objects into families defines which 
fragments are tested against each other. This approach, together 
with the configuration of a G-Buffer’s fragment tests defines the 
result of per pixel filtering during G-Buffer Rendering. 

Filtering by first selecting a set of fragments depending on 
their G-Buffer affiliation, then followed by regular OpenGL 
fragment tests, implements an easy but powerful tool to control 
the amount of visible hidden information. The amount of 
augmented information in the final image depends on the 
number of G-Buffers and the strategy to discard fragments. 
Examples in section 6 show different ways to filter information 
during G-Buffer Rendering. 

In order to reduce the depth complexity during G-Buffer 
Rendering, we need to have semantic information about the used 
data available to be able to define a satisfying strategy to group 
and discard fragments. With filtering during compositing we 
reduce the amount of visible information per pixel, regardless of 
the number of existing G-Buffers by filtering out fragments 
depending on their z-order after depth sorting was applied.  

There is no universal rule describing how much information 
an observer can handle in front of an object, nor is it obvious 
which of this information should be best retained. Therefore, we 
enable the application to define raycasting strategies to identify 
those fragments which should contribute to the final pixel’s 
value. 

From our consideration in the beginning of this section, we 
know that a very important indication of spatial relationships 
comes from partial occlusions which indicate the shape of the 
occluding object. Consequently we have used a strategy which 
uses only the fragments of the first occluding object and those 
which belong to the focus – First Hit + Focus (Figure 7). Notice 
that filtering during the last stage is generally more expensive, 
because fragments discarded in this stage have already gone 
through the entire pipeline before they are finally eliminated. 

 
Figure 7 Comparison between two strategies during raycasting. 

Above: all fragments contribute to the final image. Below: the 
illustration shows our First Hit + Focus strategy where only the 

first context fragments and the focus’ fragments are used to 
compute the final pixel’s color value 

 

4.4 VIDEO DATA IN THE G-BUFFER 
The information used for filtering in all the stages of the 

algorithm is only dependent on the fact that it is available in a 
G-Buffer. The sources of data that are stored in a G-Buffer are 
varied. The most obvious source, which has been mentioned 

before, is the rendering of scene objects. However, an important 
source of information in AR is the video stream used for video-
see through augmentation. Since a video stream can also be 
represented in terms of a G-Buffer, it is also subject to the 
operations described throughout the paper. 

The choice of which data source to use depends on the desired 
visualization and the conditions of the augmentation. For 
example, in the case of edge detection better results may be 
obtained from G-Buffers generated from rendered objects. This 
is because rendered objects are not affected by image noise and, 
therefore easily processed. However, this implies that the 
resulting edges are also subject to tracking errors and poor 
registration. A video stream does not suffer the registration 
problem. However, it is subject to noise which can cause 
artifacts in the computed visualization. In section 6 we will 
illustrate some of these situations with practical examples. We 
will use different sources of data to compare and enhance our 
visualizations. 

5 IMPLEMENTATION 
To visually discriminate Focus from Context we need to 

render both with different styles. Assuming a scenegraph as is 
commonly used in VR and AR applications, a simple approach 
would place focus objects and context objects in separate 
branches of the scenegraph. This, however, would limit the 
possible data sources to those with a specific separation of these 
two elements. Moreover, it would make interactive changes of 
F+C separation possible only if the application is tightly coupled 
with the scenegraph data structure. 

Instead of depending on a hierarchy that fulfils our 
requirements, objects are marked with contextual information 
and may be scattered throughout the scenegraph in any naturally 
occurring order without any enforced grouping. Sorting objects 
by context family happens implicitly during the scenegraph 
traversal, using the parameterized scenegraph described in [21]. 
Figure 8 shows a conceptual grouping of objects in the 
scenegraph regardless of where they are in the graph 
(highlighted in blue). In our implementation, objects are marked 
up with the context family they belong to, and this property is 
inherited to the subgraph below such a markup. The family in 
turn determines which G-Buffer to target in subsequent 
rendering.   

 
Figure 8 Context families of objects with the same contextual 

information (in blue) can be jointly referenced regardless of their 
position in the scenegraph 

 
Our implementation is based on the GPU programming 

language Cg [19] and the OpenGL Frame Buffer Object (FBO) 
extension [11] as well as on multiple render targets. FBOs are 
collections of logical buffers such as color, stencil or depth. This 



extension provides a mechanism for rendering to destinations 
other than those provided by the window system, and is 
therefore highly suitable for our purposes. 

We have implemented a G-Buffer as a collection of 2D 
textures. Each of the texture’s components is used to represent a 
specific value, such as the color buffer’s red component or the 
fragments depth value. For example, a G-Buffer with color, 
depth and object-id information needs to have six fields 
available: Four for RGBA color, one for depth and one for the 
id. Those six fields are represented by two 2D textures with 
three components each, and rendered using an FBO with 
multiple render targets and a fragment shader. The usage of 
multiple-render targets makes it possible to extract a large 
number of information from a single rendering pass. Latest 
graphics hardware is capable to render up to eight different 
targets. By using textures with four components, we are able to 
store 32 values per G-Buffer, a value we have found to be 
sufficient for our experimental implementation. We use a simple 
texture tiling technique, where each tile represents a G-Buffer. 
Switching G-Buffers when objects from a different context 
family are encountered during the traversal thereby merely 
means looking up corresponding viewport parameters to address 
the appropriate tile within the single target texture. We easily get 
an average of about 25fps without optimization on the examples 
shown in this paper. 

6 EXAMPLES 
In this section we demonstrate how our visualizations benefits 

Augmented Reality.  We show an example of preserving context 
information to better communicate spatial relationships. We 
exemplify how the problem of depth complexity can be 
controlled and we cover different sources of context data. 

6.1 CONTEXT PRESERVING VISUALIZATION WITH CONTROL 
OF COMPLEXITY 

We will now illustrate the problem of depth perception in X-
Ray vision and how our system addresses it by preserving 
important context information. We also demonstrate how our 
developed filters can be used to control the complexity of the 
created visualizations.  

Figure 9 shows a naïve augmentation of objects in the focus 
of attention. Because the image is monocular, it is impossible to 
perceive the correct spatial arrangements of the hidden objects 
(in this case the engine and the back wheels). 

 

 
Figure 9 A naïve overlay of hidden information. The engine and 

the wheels of the car do not provide sufficient depth cues. 
Occluded objects seem to be in front of the car rather than inside 

 
A better approach for X-Ray visualization is to include key 

information of the context layers that occlude the focus. This 
information may be in the form of texture detail, half transparent 

material or edges. This technique adds a monocular depth cue 
called Object Occlusion [10]. Figure 10 shows an example of an 
enhancement of depth cues of the focus object. However, this 
comes at the expense of image clutter. The resulting image has 
an excess of important context information leading to a reduced 
visual perception of the focus.  

 

 
Figure 10 Adding key features from the context area. In this 
example we overlay visual key features such as edges. This 

enhances the depth perception of the focus objects. However, 
image clutter is caused due to excess of key features 

 

 
 
Figure 11 An example of the removal of fragments during Buffer 

Rendering. This is supported by grouping objects and using 
OpenGL fragment testing. In the image we combine all the car’s 

faces and the seats. Extracted key features are no longer 
distracting. This is achieved by displaying only those key features 
which are visible in the real world’s imagery. This yields to a more 

pleasant and better informative augmentation 
 

 
Figure 12 Including several level of context allows us to further 

discriminate the presented key features. In this image we present 
second level context objects in yellow outline. This further helps in 

scene perception 
 
 
 



Our framework enables us not only to extract key features 
from context layers, but to also to control the amount of 
information visible in the final image. In this case we are 
interested in reducing the amount of distracting information.  

Figure 11 shows filter results during G-Buffer Rendering 
achieved by simply grouping different objects into fewer G-
Buffers and using regular OpenGL depth testing. Compared to 
Figure 10, we group the car’s exterior back faces with its front 
faces and the seats in a single G-Buffer. This results in a display 
of less information by presenting only those key feature 
fragments of the context area which are visible in the real world 
imagery. 

Color coding objects gives further cues to the user, not only 
relying on object occlusion (Figure 11). Shading objects 
differently can be achieved by using the objects id or by 
rendering objects to different G-Buffers. Figure 12 shows the 
image resulting from rendering the seats of the car in a new G-
Buffer which is then shaded with yellow edges.  

By introducing more G-Buffers we also introduce more 
information in the final image. By using per pixel filtering 
during raycasting we are able to control the amount of fragments 
depending on a chosen strategy. Figure 13 shows different 
colored G-Buffers and the ‘First Hit + Focus’ strategy 
(described in section 4.3) during scene compositing. Notice with 
per pixel filtering during scene compositing we are able to 
interactively change the strategy to filter fragments in different 
regions of the display which would be a complex and time 
consuming task by using filtering during Buffer filling. An 
example of using a magic lens tool to interactively control the 
filter region is given in Figure 22a. 

 

 
Figure 13 By using a First Hit + Focus strategy we are able to 

remove hidden fragments in the context area (regardless whether 
they are marked as important information or not).  

6.2 INTERACTIVE MAGIC LENS FILTERING 
Magic Lenses implement filter operation which can be 

interactively applied on a user controlled spatial area. They were 
first introduced as a user interface tool in 2D [2], and later 
extended to 3D [25]. Viega et al. also define flat lenses in 3D 
space which create another frustum, inside the cameras frustum 
in which they affect the rendering style of objects.  

We use the concept of flat lenses to add another way of spatial 
filtering to interactively control the appearance of 
augmentations. We therefore apply magic lens filtering during 
the second step of our rendering algorithm (G-Buffer 
Processing) by using a lens’ footprint as mask for F+C 
separation. This is done by rendering the lens to a G-Buffer 
which is used to mark fragments of another G-Buffer as either 
focus or context information. Figure 14 illustrates the G-Buffer 
Processing graph using a magic lens to generate the results 
shown in Figure 15 and Figure 21. This illustrates how we 

enhance key information in the context area, only in regions 
intersected by the lens.  We do not apply magic lens filtering on 
all G-Buffers in a magic lenses frustum. In this example you can 
see a magic lens that adds the edges of context information only 
in regions that fall inside the lens frustum. However, focus 
objects are augmented regardless of whether they fall inside or 
outside the lens.  

 

 
Figure 14 We can combine interaction techniques such as magic 

lenses in our framework. For example, lenses can serve as 
fragment filters. Furthermore, they can be restricted to act only in 

certain G-Buffers 
 

 
Figure 15 Result of the tree from the previous Figure. Notice how 
in this image the edges are only shown inside the lens. However, 
the focus object (the engine) is displayed regardless of whether it 
is inside the lens or not. This can be achieved by using the lens 

mask to control G-Buffer Processing.  
 



Figure 16 illustrates the difference between traditional flat 
lenses and our lens implementation. The top image shows how a 
traditional magic lens affects everything in its frustum regardless 
of whether the effect is desired in all levels of information or 
not. The bottom shows our implementation and how it can affect 
differently the G-Buffers. 

 

 
Figure 16 A conceptual comparison of traditional magic lenses 

and our work. Notice that the lens above affects the rendering of 
all the objects in its viewing frustum. Our approach, however, may 

be restricted to only act in certain G-Buffers 
 

6.3 SOURCE OF CONTEXT FEATURES: REAL VS. VIRTUAL 
Our framework enables us to process G-Buffers regardless of 

their source of information. Whether this information comes 
from rendered objects, pre-tailored masks or video streaming we 
are able to process them and take advantages of the best options. 
For example, adding key features, such as edges, to our 
augmentations can be a powerful depth cue, but it can also be 
distracting if used carelessly.  

 

 

Figure 17 An image showing an augmentation of edges extracted 
from a 3D model. The edges are thin and clear, however, they 

suffer from poor registration 
 
Figure 17, for example, shows an enhancement of edges of a 

modeled car. The edges are clearly distinguishable in thin lines. 
However, since they are model based, they are subject to 
tracking errors. Notice how the registration of the edges and the 
real model car is offset. This can lead to confusing rather than 
helpful depth cueing. 

This problem may be solved, however, if we rely on edge 
detection of the video stream. Figure 18 shows an example of 

this. Notice that the edges on top of the car are perfectly 
registered. However, these edges are thick and less detailed than 
those of Figure 17. This is a natural result of edge detection 
techniques on real imagery, which may be improved but will 
always be below model edge detection quality. Additionally, 
edges in this mode span the whole of the image and may lead to 
image clutter, since unnecessary areas are being enhanced. 

 

 
Figure 18 Edges that are extracted from the video stream are 

naturally registered to the image. However they are less detailed 
than those of the previous Figure. They also lead to image clutter 

since they are applied to the whole video image 
 

 
Figure 19 Using the footprint of the model as a mask leads to a 

less cluttered augmentation of edges from the video stream 
 
A hybrid approach provides better results. Figure 19 shows an 

image that has been enhanced with edges detected from the 
video stream. The resulting edges, however, have not been 
augmented in the whole of the image, but a virtual mask has 
been used. This mask can be taken from the regions where the 
modeled object was rendered. This technique enables us to take 
advantage of the good registration quality of the video edge 
detection. Additionally it allows us to filter the undesired 
artifacts that produced image clutter in Figure 18 while at the 
same time allows us to solve the problem of poor registration of 
Figure 17. Nevertheless, it also suffers the problem of thick 
blurred edges and the mask may occasionally allow the 
augmentation of unimportant regions. In the next example we 
show how we use a user controlled flat magic lens to define the 
region of edge detection from the video. 

Figure 20 shows how the problem presented in Figure 2 may 
be solved with edges extracted from the real video stream. The 
extracted edges provide an additional depth cue and since they 



come from the real imagery, they are also able to preserve 
important landmarks (such as the entry points).  

 

 
Figure 20 By enhancing with edges, extracted from the video 
stream we provide not only important occlusions but also we 

preserve important landmarks. The area where edges are being 
detected is interactively controlled by a flat Magic Lens which 
locally restricts augmentations with edges and prevents from 

cluttered displays. 
 

7 CONCLUSIONS 
Focus and Context techniques are highly successful in 

scientific visualization and have the potential to become an 
essential tool for Augmented Reality. They enable applications 
to draw the attention of users to objects in the focus while still 
perceiving contextual information. We make use of these ideas 
to correctly communicate spatial arrangements of hidden 
structures while the focus objects are not completely hidden 
with respect to correct occlusion handling.  

We have presented a framework for computing augmentations 
using multi level F+C visualizations based on G-Buffer 
rendering and compositing, and we have outlined a variety of 
filter operations to separate the components for compelling 
visualizations. 

The control of visual information presented to the user does 
not depend only on data structure management, nor is it only a 
function of image processing. We have shown how a 
combination of both enables us to better control the information 
augmented in the real world imagery. This includes context 
preserving X-Ray vision, and the ability to control the amount of 
overlaid visual information. 

Context preserving X-Ray vision has a high potential for 
depth cueing, a fundamental problem of visual communication 
in AR. We have shown how important features from occluding 
objects may be used to enhance the depth perception to the 
scene rather than being discarded by careless augmentation. We 
have also addressed the problem of visual information overflow 
of visible hidden structures. Based on our framework we are 
able to control the amount of obscuring information in a scene, 
effectively reducing image clutter. 

The development of AR applications can be simplified 
through the F+C techniques described in this paper, because 
they enable simultaneous interaction with multiple layers of 
information including the video stream, without requiring 

complex separation of cases. The scriptable framework we have 
developed enables the rapid prototyping of X-Ray visualization 
techniques. The core of the visualization framework is simple 
and only relies only on the capability to sort scene objects into 
families of similar context, so that it can be easily added to 
existing rendering frameworks as a post-processing step. 
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Figure 21 A Magic Lens is used to interactively control the 
augmentation of important context information  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 22 (a) A Magic Lens tool is used to interactively control the 
region where the ‘First Hit + Focus’ strategy is applied during scene 
compositing. The interaction allows for spatial driven adjustments 
of the amount of presented information. 
(b) As a side effect of our algorithm, we are able to render correct 
occlusions (c) In this example, we are not interested in a complete 
augmentation of hidden structures. Instead the visible parts of the 
box and the car are used as focus while the hidden parts of the car 
represent context information (for example the length of the car). 
We use the box as a Magic Lens tool to augment important context 
information only where occlusion occur. 
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