
Interactive Focus and Context Visualization for Augmented Reality

Denis Kalkofen*
Graz University of Technology

Institute for Computer Graphics and
Vision, Inffeldgasse 16a

Graz, 8010, Austria

Erick Mendez†
Graz University of Technology

Institute for Computer Graphics and
Vision, Inffeldgasse 16a

Graz, 8010, Austria

Dieter Schmalstieg‡
Graz University of Technology

Institute for Computer Graphics and
Vision, Inffeldgasse 16a

Graz, 8010, Austria

Figure 1 An example of an enhanced augmentation. Focus objects (in red) are not only overlaid on top of the video image, but they are

partially occluded by key features from context objects. This provides object occlusion with key features of occluding objects. A second level
context (yellow seats) further helps an understanding of the scene. Edges in this image are enhanced considering occlusions with other

objects. This helps us to better control the depth complexity of the scene

ABSTRACT

In this article we present interactive Focus and Context (F+C)
visualizations for Augmented Reality (AR) applications. We
demonstrate how F+C visualizations are used to affect the user's
perception of hidden objects by presenting contextual
information in the area of augmentation. We carefully overlay
synthetic data on top of the real world imagery by taking into
account the information that is about to be occluded.
Furthermore, we present operations to control the amount of
augmented information. Additionally, we developed an
interaction tool, based on the Magic Lens technique, which
allows for interactive separation of focus from context. We
integrated our work into a rendering framework developed on
top of the Studierstube Augmented Reality system. We finally
show examples to demonstrate how our work benefits AR.

Categories

H.5.1 [Multimedia Information Systems]: Artificial,
augmented, and virtual realities; H.5.2 [User Interfaces]: Style
guides; E.1.3 [Data Structures]: Graphs and Networks; I.3.6
[Methodology and Techniques]: Interaction techniques,
Graphics data structures and data types.

Keywords

Object overlay and spatial layout techniques, real-time
rendering, interaction techniques for MR/AR, mediated and
diminished reality.

1 INTRODUCTION
Augmented Reality (AR) displays provide extra information

to a user’s perception by overriding parts of the real world with
synthetic, computer generated images. However, heedless
replacement of portions of the real world image can easily cause
a number of cognitive problems. For example, if too much
information is added in areas that were unimportant in the
original image, the impression of a cluttered display is caused.
Another example of problematic augmentations can be found in
X-Ray visualizations, where hidden structures are rendered on
top of visible objects. Careless augmentation with synthetic
imagery may obscure important real-world information. This
problem is illustrated in the simulated surgery depicted in Figure
2, it shows an attempt to insert a needle into a patient’s abdomen
while visualizing internal anatomy using AR. The computer-
generated augmentations occlude extremely relevant
information presented in the real world imagery. In this case the
user is unable to see the entry marks for the needle placed on the
skin of the patient.

Augmenting information on top of real imagery may also lead
to problems of depth perception. This has been a common
subject of research in the past and has been addressed by a
number of strategies, mainly based on adding monocular depth
cues to the scene [10]. For example [24][3] add a window-
shaped restriction of the rendering area to enhance depth
perception through partial occlusion, while [9] uses a box-
shaped restriction that additionally provides linear perspective
cues. However, none of the existing approaches take into
account the removed information or try to use cues present in
the real image as an aid for depth perception.*†‡

* kalkofen@icg.tugraz.at
† mendez@icg.tugraz.at
‡ schmalstieg@icg.tugraz.at

978-1-4244-1750-6/07/$25.00 ©2007 IEEE

In this paper, we address the task of carefully overlaying
synthetic data on top of the real world imagery (Figure 1). We
take into account the information that is about to be occluded by
our augmentations as well as the visual complexity of the
computer-generated augmentations added to the view. Our work
is inspired by Focus and Context (F+C) visualization techniques,
a powerful instrument for visually communicating relevant
structures. To address the problem of augmentations occluding
useful real imagery, we introduce the notion of context
preserving X-Ray vision which controls the removal of real
world information based on an importance measure of this
information. Moreover, we address the problem of cluttered
displays by providing solutions for controlling depth complexity
with an interactive, user controlled filter which combines spatial
and contextual information.

The techniques presented in this paper are embedded in a
novel AR visualization framework which operates on an
intermediate representation extracted from conventional 3D
models. This representation is image based and can be described
as a sparse, non-uniformly sampled, view-dependent volumetric
model. We use recent GPU programming techniques for
efficient rendering of this representation inspired by the G2
buffer framework [7].

Figure 2 Careless augmentations of hidden structures suffer two

key problems: they override useful information (such as
landmarks) and they lack depth cues. (Right) Original photo

before augmentation (Left) Augmentation of the liver with portal &
hepatic vessel trees as well as a tumor (in green).

2 RELATED WORK
Using Focus+Context (F+C) visualizations allows the

application to draw the attention of the user to a portion of the
data (Focus), while at the same time the overall spatial
relationship of the neighboring information (Context) is
presented in an abstracted way. Following the overview of F+C
techniques in [14], the creation of F+C visualizations can be
roughly divided into two major steps: data classification and
rendering.

The objective of the first step, data classification, is to identify
the F+C roles in the data, i.e. what information should be focus
and what should be context. Data classification may be statically
given for a particular application, or it may be determined
procedurally by some kind of interpretation procedure.

Data separation is usually performed based on user input, so
the choice of focus can be controlled by the user. A classical
example of this is the Magic Lens metaphor [2]. There are a
number of approaches how the user can be involved in the
definition of context, for example through direct pointing,
widget manipulation or tangible interfaces.

More indirect approaches interpret a particular application
state and aim to infer the user’s needs and intentions. There are
several examples of this approach with applications in AR. The
interpretation can be based on task knowledge [13] or contextual
information associated with the spatial data [18] [20]. Another
application of data separation is found in X-Ray visualization,
which is relevant both in AR and medical visualization.
Examples of the latter are techniques that use application-
dependent importance values [26] [27] [22] or iso values [4]
[12] for X-Ray vision in volume rendering.

Once having discerned these two categories, the second step is
to render the categories in visually distinctive styles in order to
separate and to draw the user’s attention to the focus. This may
be done by modifying geometry – e.g., visually distorting the
data through a magnifying lens, or by modifying appearance,
e.g., by manipulating saturation or opacity.

Most of the techniques for applying F+C rendering to 3D
scenes rely on opacity modification [1] [17] [8] [6]. Few other
works use interesting rendering changes to draw the attention of
the user such as color or depth of field discrimination [15] or
modifying shading parameters [22]. We draw inspiration from
these works since our framework allows very general non-
photorealistic effects to be applied to AR scenes.

Interaction usually works hand in hand with visual
discrimination. It facilitates a localized region where the F+C
effect should take place [2] [22] [18] [20] [1]. However, it
should be emphasized that while the focus should always be
locally bound, this does not mean that this boundary must be a
particular display region. The focus can also be defined non-
spatially, for example as a particular category of object the user
is interested in. In particular, some projects have successfully
applied it to the entirety of the image with very encouraging
results [6] [17]. In the work in this paper, we also take a similar
approach where the definition of focus and context is globally
available and can be used to achieve a variety of effects in
combination.

3 FOCUS+CONTEXT RENDERING
Focus+Context visualizations demand that we visually

discriminate objects depending on whether they are marked as
focus or context. Recent work on volume visualization, such as
that of Krüger et al. [17] and Hauser et al. [15], share the idea of
a two-pass rendering technique to achieve the desired
visualization. The first pass renders the individual objects of the
scene into a set of buffers, while the second pass composes the
final result from the individual buffers by sweeping over the
buffers in depth order. This is a very general and simple
approach, which we found suitable for our aims. Our rendering
algorithm consists of the following steps:

 Buffer Rendering: We classify the objects in the scene into

multiple context families using a simple markup mechanism,
rather than just making a binary decision of focus or context. For
every context family, a separate buffer is allocated. During this
step we render all object families into the corresponding buffers.
This enables us to apply different treatments, such as image
manipulation, in the next step.

For every object(i) {
 a) Determine context family F of object (i)
 b) Render object(i) into a Buffer (F)
}

Buffer processing: Once the buffers have been rendered, we

process each of them in turn to visually discriminate focus from

context. We apply the desired visual styling during this step.
This may include, for example, edge enhancement, color or
transparency manipulation. The actual modification is highly
application dependent and can be scripted through a mechanism
similar to shader trees [5].

For every buffer(i) {
 Modify buffer(i) according to rule(i)
}

Scene Compositing: This step combines the information

contained in the processed buffers. The compositing is not fixed,
but may also be scripted. The buffers are composed in front to
back order, evaluated by sorting the buffers based on the depth
buffer values associated with every pixel. This allows us to
maximize the control of compositing parameters.

For every pixel(x,y) {
 Sort all buffers by depth d(x,y)
 For all buffers(j) in order given by d
 r = compose(fragment(j,x,y),strategy(j),r)
 return r
}

3.1 BUFFER RENDERING
From the algorithm, it is clear that a single frame buffer does

not fulfill our requirements. We need color+alpha, but also
depth for the scene compositing, and potentially several
additional buffers resulting from the Buffer Processing. To store
this information, Geometric Buffers (G-Buffers) [23] are used.
G-Buffers are a collection of image buffers storing color,
transparency, depth values, object ids, texture coordinates,
normals or other per-pixel information. A G-Buffer encodes data
about objects, such as view-dependent information, and can be
seen as a 2.5D scene approximation.

Figure 3 Conceptual representation of the image buffers

contained by a single G-Buffer.

Figure 4 (Left) An illustration of a scene. (Right): One possible

G-Buffer volume.

A key concept of our work is to extend the information held in
the G-Buffer to include inferred information from the processing
step. This inferred information can later be used to change the
visual appearance of objects belonging to a particular family.
Figure 3 provides an illustration of a G-Buffer containing four
different bitmaps: color, depth, normals and inferred edge
information.

A single G-Buffer contains an approximation of those objects
in the scene belonging to a particular context family. We can
thereby isolate the styling applied to different families, while all
G-Buffers combined approximate the whole scene. This is
illustrated conceptually in Figure 4. Notice that objects from
different families have been bound to different buffers, in this
case the family membership is examplified by shape.

During buffer rendering we use the regular rendering pipeline
to extract all the necessary information that will be used during
the processing of the buffers. The scene is traversed in a single
pass with multiple render targets, namely all G-Buffers. Every
object is rendered to exactly one G-Buffer, which is determined
by its family membership given as semantic markup.

3.2 BUFFER PROCESSING
For every buffer, a number of image processing techniques

can be applied to compute additional information, for example
to detect edges or regions with high curvature, to extract regions
with particular color or depth values or to mark a particular
region supplied interactively by the user. Many such operations
will consider a pixel together with its neighborhood, and use
information from multiple components of the G-Buffer, such as
both depth and normal information. In this way multiple
additional image components containing auxiliary information
can be added to the G-Buffer.

3.3 SCENE COMPOSITION
In the final compositing step, the information from the set of

G-Buffers is merged into a final image using a non-uniform
GPU raycasting algorithm. Simple blending of the G-Buffers is
not enough since occlusions are given on a per pixel instead of a
per G-Buffer basis. The ray traverses the scene approximation
given by the G-Buffers in front to back order. Since the G-
Buffers are already available in view coordinates and in screen
resolution, the problem of casting a ray is reduced to sorting the
depth components of the G-Buffers.

Once this sorting has taken place we proceed to compose all
the fragments into one single output. Such composition,
however, is based on compositing rules which can arbitrarily
alter the contribution of a particular pixel from one of the G-
Buffers. For example, color or transparency of a particular pixel
may be modified based on the importance of the pixel that was
visited along the ray before the current one. A particularly useful
operation for complex AR scenes is to suppress pixels that are
unimportant or confusing.

4 CONTEXT PRESERVING X-RAY VISION
X-Ray visualization is capable of displaying hidden structures

behind real world imagery. In order to accomplish meaningful
augmentations, we face two main challenges. First, the final
image needs to have enough depth cues available to correctly
communicate spatial relationships between hidden and
occluding structures. Second, significant information of
occluding structures has to be preserved in order to retain the
occluder’s shape or simply to keep important landmarks visible
in the real world imagery (Figure 2). Notice that partially
occluding structures provide a strong monocular depth cue,

which means that these two challenges are interdependent and,
can therefore be jointly addressed.

In this section we show how we use F+C visualizations to
create comprehensible augmentations of hidden structures.
Later, we will show how the same techniques can be used to
keep important landmarks visible in the real world imagery.

4.1 FOCUS AND CONTEXT SEPARATION
For X-Ray visualization, we consider hidden structures as

information in the focus of attention, while occluding objects
represent the context. To achieve comprehensible augmentations
of hidden structures, we need to preserve important information
of occluding objects. We derive from our previous
considerations that important context information is the one
which preserves the shape of the occluder or keeps important
landmarks visible.

In order to identify important context information we need to
find filter operations to first separate Focus from Context
followed by an identification of important information in the
context area. The problem of finding important information in a
context area is again an F+C separation problem. However, this
separation is applied to the already identified context from the
first stage and therefore, the resulting Focus and Context may be
seen as Second Level Focus and Second Level Context.

Filter operations build one of the most important components
in our F+C rendering pipeline. We allow filtering to be applied
in all three stages of our algorithm. While filtering during G-
Buffer Rendering and during Scene Compositing applies to all
fragments per pixel, filtering during G-Buffer Processing applies
to groups of fragments depending on G-Buffer affiliation.

In the next section we discuss filter operations on fragments
per G-Buffer. Subsequently, we explain how fragment filtering
per pixel is achieved.

4.2 FILTERING THROUGH G-BUFFER PROCESSING
We control which parts of which G-Buffers get affected by a

certain shading operation during G-Buffer Processing. As
already mentioned, our F+C separation problem for X-Ray
visualizations builds up a hierarchy, where filters are applied on
results of previous filter operations. Therefore, we have built our
G-Buffer Processing architecture on top of a data flow graph,
similar to a shader tree [5]. Nodes in the graph represent filter or
shading operations on G-Buffers. Links are used to define on
which part of the previous filtered data a subsequent filter or
shader is applied to. Since all of our filter nodes implement a
binary segmentation into focus and context elements, links
select only between these two types.

Figure 5 shows a simple graph and its corresponding
visualization is shown in Figure 6. This graph renders the main
focus object in red (back wheels & engine) while the second
level focus is presented in yellow. Furthermore, it segments the
edges out of the second level context area and shades the
extracted edges in grey while it turns the remaining fragments to
fully transparent.

Two types of filter operation have been implemented to
achieve the desired shadings. First, filter which separate G-
Buffers. Second, filter which differentiate between fragments of
the same G-Buffer by using image processing algorithms or
simple 2D masks, which can even be derived from other G-
Buffer’s footprints. For example, one possible way to filter
important information out of a specific G-Buffer is done by
applying an edge detector on the color buffer of the G-Buffer
itself.

4.3 CONTROLLING DEPTH COMPLEXITY BY USING PER PIXEL
F+C FILTERING

Making hidden structures visible may cause information
overflow. In particular, depth complexity may increase if
multiple objects that are located at different depths in the scene
overlap in screen space. To control this problem of depth
complexity we filter fragments covering the same location on
the screen, with the goal of a controlled reduction of the number
of contributing fragments.

Figure 5 Conceptual data flow of the G-Buffers to obtain an AR

visualization. Separation can occur in a per G-Buffer or per
fragments basis. The leaves are shaders that process the filtered

fragments.

This kind of filtering happens either during G-Buffer

Rendering or during Scene Compositing. In this section we will
explain both approaches, starting with filter operations while
rendering the G-Buffer. This means that the rendering of the
scene updates all values of a particular G-Buffer.

Figure 6 Corresponding visualization of the tree in the previous

Figure

If more than one fragment falls on the same pixel of a G-

Buffer, a test needs to be defined to choose only a single
fragment. For this kind of filter operations we use traditional

OpenGL fragment testing. For example, a G-Buffer can be
configured to only use values from fragments which are not
occluded by other fragments of the same G-Buffer. Such a
strategy is simply achieved by using OpenGL’s depth test.

The way we group objects into families defines which
fragments are tested against each other. This approach, together
with the configuration of a G-Buffer’s fragment tests defines the
result of per pixel filtering during G-Buffer Rendering.

Filtering by first selecting a set of fragments depending on
their G-Buffer affiliation, then followed by regular OpenGL
fragment tests, implements an easy but powerful tool to control
the amount of visible hidden information. The amount of
augmented information in the final image depends on the
number of G-Buffers and the strategy to discard fragments.
Examples in section 6 show different ways to filter information
during G-Buffer Rendering.

In order to reduce the depth complexity during G-Buffer
Rendering, we need to have semantic information about the used
data available to be able to define a satisfying strategy to group
and discard fragments. With filtering during compositing we
reduce the amount of visible information per pixel, regardless of
the number of existing G-Buffers by filtering out fragments
depending on their z-order after depth sorting was applied.

There is no universal rule describing how much information
an observer can handle in front of an object, nor is it obvious
which of this information should be best retained. Therefore, we
enable the application to define raycasting strategies to identify
those fragments which should contribute to the final pixel’s
value.

From our consideration in the beginning of this section, we
know that a very important indication of spatial relationships
comes from partial occlusions which indicate the shape of the
occluding object. Consequently we have used a strategy which
uses only the fragments of the first occluding object and those
which belong to the focus – First Hit + Focus (Figure 7). Notice
that filtering during the last stage is generally more expensive,
because fragments discarded in this stage have already gone
through the entire pipeline before they are finally eliminated.

Figure 7 Comparison between two strategies during raycasting.

Above: all fragments contribute to the final image. Below: the
illustration shows our First Hit + Focus strategy where only the

first context fragments and the focus’ fragments are used to
compute the final pixel’s color value

4.4 VIDEO DATA IN THE G-BUFFER
The information used for filtering in all the stages of the

algorithm is only dependent on the fact that it is available in a
G-Buffer. The sources of data that are stored in a G-Buffer are
varied. The most obvious source, which has been mentioned

before, is the rendering of scene objects. However, an important
source of information in AR is the video stream used for video-
see through augmentation. Since a video stream can also be
represented in terms of a G-Buffer, it is also subject to the
operations described throughout the paper.

The choice of which data source to use depends on the desired
visualization and the conditions of the augmentation. For
example, in the case of edge detection better results may be
obtained from G-Buffers generated from rendered objects. This
is because rendered objects are not affected by image noise and,
therefore easily processed. However, this implies that the
resulting edges are also subject to tracking errors and poor
registration. A video stream does not suffer the registration
problem. However, it is subject to noise which can cause
artifacts in the computed visualization. In section 6 we will
illustrate some of these situations with practical examples. We
will use different sources of data to compare and enhance our
visualizations.

5 IMPLEMENTATION
To visually discriminate Focus from Context we need to

render both with different styles. Assuming a scenegraph as is
commonly used in VR and AR applications, a simple approach
would place focus objects and context objects in separate
branches of the scenegraph. This, however, would limit the
possible data sources to those with a specific separation of these
two elements. Moreover, it would make interactive changes of
F+C separation possible only if the application is tightly coupled
with the scenegraph data structure.

Instead of depending on a hierarchy that fulfils our
requirements, objects are marked with contextual information
and may be scattered throughout the scenegraph in any naturally
occurring order without any enforced grouping. Sorting objects
by context family happens implicitly during the scenegraph
traversal, using the parameterized scenegraph described in [21].
Figure 8 shows a conceptual grouping of objects in the
scenegraph regardless of where they are in the graph
(highlighted in blue). In our implementation, objects are marked
up with the context family they belong to, and this property is
inherited to the subgraph below such a markup. The family in
turn determines which G-Buffer to target in subsequent
rendering.

Figure 8 Context families of objects with the same contextual

information (in blue) can be jointly referenced regardless of their
position in the scenegraph

Our implementation is based on the GPU programming

language Cg [19] and the OpenGL Frame Buffer Object (FBO)
extension [11] as well as on multiple render targets. FBOs are
collections of logical buffers such as color, stencil or depth. This

extension provides a mechanism for rendering to destinations
other than those provided by the window system, and is
therefore highly suitable for our purposes.

We have implemented a G-Buffer as a collection of 2D
textures. Each of the texture’s components is used to represent a
specific value, such as the color buffer’s red component or the
fragments depth value. For example, a G-Buffer with color,
depth and object-id information needs to have six fields
available: Four for RGBA color, one for depth and one for the
id. Those six fields are represented by two 2D textures with
three components each, and rendered using an FBO with
multiple render targets and a fragment shader. The usage of
multiple-render targets makes it possible to extract a large
number of information from a single rendering pass. Latest
graphics hardware is capable to render up to eight different
targets. By using textures with four components, we are able to
store 32 values per G-Buffer, a value we have found to be
sufficient for our experimental implementation. We use a simple
texture tiling technique, where each tile represents a G-Buffer.
Switching G-Buffers when objects from a different context
family are encountered during the traversal thereby merely
means looking up corresponding viewport parameters to address
the appropriate tile within the single target texture. We easily get
an average of about 25fps without optimization on the examples
shown in this paper.

6 EXAMPLES
In this section we demonstrate how our visualizations benefits

Augmented Reality. We show an example of preserving context
information to better communicate spatial relationships. We
exemplify how the problem of depth complexity can be
controlled and we cover different sources of context data.

6.1 CONTEXT PRESERVING VISUALIZATION WITH CONTROL
OF COMPLEXITY

We will now illustrate the problem of depth perception in X-
Ray vision and how our system addresses it by preserving
important context information. We also demonstrate how our
developed filters can be used to control the complexity of the
created visualizations.

Figure 9 shows a naïve augmentation of objects in the focus
of attention. Because the image is monocular, it is impossible to
perceive the correct spatial arrangements of the hidden objects
(in this case the engine and the back wheels).

Figure 9 A naïve overlay of hidden information. The engine and

the wheels of the car do not provide sufficient depth cues.
Occluded objects seem to be in front of the car rather than inside

A better approach for X-Ray visualization is to include key

information of the context layers that occlude the focus. This
information may be in the form of texture detail, half transparent

material or edges. This technique adds a monocular depth cue
called Object Occlusion [10]. Figure 10 shows an example of an
enhancement of depth cues of the focus object. However, this
comes at the expense of image clutter. The resulting image has
an excess of important context information leading to a reduced
visual perception of the focus.

Figure 10 Adding key features from the context area. In this
example we overlay visual key features such as edges. This

enhances the depth perception of the focus objects. However,
image clutter is caused due to excess of key features

Figure 11 An example of the removal of fragments during Buffer

Rendering. This is supported by grouping objects and using
OpenGL fragment testing. In the image we combine all the car’s

faces and the seats. Extracted key features are no longer
distracting. This is achieved by displaying only those key features
which are visible in the real world’s imagery. This yields to a more

pleasant and better informative augmentation

Figure 12 Including several level of context allows us to further

discriminate the presented key features. In this image we present
second level context objects in yellow outline. This further helps in

scene perception

Our framework enables us not only to extract key features
from context layers, but to also to control the amount of
information visible in the final image. In this case we are
interested in reducing the amount of distracting information.

Figure 11 shows filter results during G-Buffer Rendering
achieved by simply grouping different objects into fewer G-
Buffers and using regular OpenGL depth testing. Compared to
Figure 10, we group the car’s exterior back faces with its front
faces and the seats in a single G-Buffer. This results in a display
of less information by presenting only those key feature
fragments of the context area which are visible in the real world
imagery.

Color coding objects gives further cues to the user, not only
relying on object occlusion (Figure 11). Shading objects
differently can be achieved by using the objects id or by
rendering objects to different G-Buffers. Figure 12 shows the
image resulting from rendering the seats of the car in a new G-
Buffer which is then shaded with yellow edges.

By introducing more G-Buffers we also introduce more
information in the final image. By using per pixel filtering
during raycasting we are able to control the amount of fragments
depending on a chosen strategy. Figure 13 shows different
colored G-Buffers and the ‘First Hit + Focus’ strategy
(described in section 4.3) during scene compositing. Notice with
per pixel filtering during scene compositing we are able to
interactively change the strategy to filter fragments in different
regions of the display which would be a complex and time
consuming task by using filtering during Buffer filling. An
example of using a magic lens tool to interactively control the
filter region is given in Figure 22a.

Figure 13 By using a First Hit + Focus strategy we are able to

remove hidden fragments in the context area (regardless whether
they are marked as important information or not).

6.2 INTERACTIVE MAGIC LENS FILTERING
Magic Lenses implement filter operation which can be

interactively applied on a user controlled spatial area. They were
first introduced as a user interface tool in 2D [2], and later
extended to 3D [25]. Viega et al. also define flat lenses in 3D
space which create another frustum, inside the cameras frustum
in which they affect the rendering style of objects.

We use the concept of flat lenses to add another way of spatial
filtering to interactively control the appearance of
augmentations. We therefore apply magic lens filtering during
the second step of our rendering algorithm (G-Buffer
Processing) by using a lens’ footprint as mask for F+C
separation. This is done by rendering the lens to a G-Buffer
which is used to mark fragments of another G-Buffer as either
focus or context information. Figure 14 illustrates the G-Buffer
Processing graph using a magic lens to generate the results
shown in Figure 15 and Figure 21. This illustrates how we

enhance key information in the context area, only in regions
intersected by the lens. We do not apply magic lens filtering on
all G-Buffers in a magic lenses frustum. In this example you can
see a magic lens that adds the edges of context information only
in regions that fall inside the lens frustum. However, focus
objects are augmented regardless of whether they fall inside or
outside the lens.

Figure 14 We can combine interaction techniques such as magic

lenses in our framework. For example, lenses can serve as
fragment filters. Furthermore, they can be restricted to act only in

certain G-Buffers

Figure 15 Result of the tree from the previous Figure. Notice how
in this image the edges are only shown inside the lens. However,
the focus object (the engine) is displayed regardless of whether it
is inside the lens or not. This can be achieved by using the lens

mask to control G-Buffer Processing.

Figure 16 illustrates the difference between traditional flat
lenses and our lens implementation. The top image shows how a
traditional magic lens affects everything in its frustum regardless
of whether the effect is desired in all levels of information or
not. The bottom shows our implementation and how it can affect
differently the G-Buffers.

Figure 16 A conceptual comparison of traditional magic lenses

and our work. Notice that the lens above affects the rendering of
all the objects in its viewing frustum. Our approach, however, may

be restricted to only act in certain G-Buffers

6.3 SOURCE OF CONTEXT FEATURES: REAL VS. VIRTUAL
Our framework enables us to process G-Buffers regardless of

their source of information. Whether this information comes
from rendered objects, pre-tailored masks or video streaming we
are able to process them and take advantages of the best options.
For example, adding key features, such as edges, to our
augmentations can be a powerful depth cue, but it can also be
distracting if used carelessly.

Figure 17 An image showing an augmentation of edges extracted
from a 3D model. The edges are thin and clear, however, they

suffer from poor registration

Figure 17, for example, shows an enhancement of edges of a

modeled car. The edges are clearly distinguishable in thin lines.
However, since they are model based, they are subject to
tracking errors. Notice how the registration of the edges and the
real model car is offset. This can lead to confusing rather than
helpful depth cueing.

This problem may be solved, however, if we rely on edge
detection of the video stream. Figure 18 shows an example of

this. Notice that the edges on top of the car are perfectly
registered. However, these edges are thick and less detailed than
those of Figure 17. This is a natural result of edge detection
techniques on real imagery, which may be improved but will
always be below model edge detection quality. Additionally,
edges in this mode span the whole of the image and may lead to
image clutter, since unnecessary areas are being enhanced.

Figure 18 Edges that are extracted from the video stream are

naturally registered to the image. However they are less detailed
than those of the previous Figure. They also lead to image clutter

since they are applied to the whole video image

Figure 19 Using the footprint of the model as a mask leads to a

less cluttered augmentation of edges from the video stream

A hybrid approach provides better results. Figure 19 shows an

image that has been enhanced with edges detected from the
video stream. The resulting edges, however, have not been
augmented in the whole of the image, but a virtual mask has
been used. This mask can be taken from the regions where the
modeled object was rendered. This technique enables us to take
advantage of the good registration quality of the video edge
detection. Additionally it allows us to filter the undesired
artifacts that produced image clutter in Figure 18 while at the
same time allows us to solve the problem of poor registration of
Figure 17. Nevertheless, it also suffers the problem of thick
blurred edges and the mask may occasionally allow the
augmentation of unimportant regions. In the next example we
show how we use a user controlled flat magic lens to define the
region of edge detection from the video.

Figure 20 shows how the problem presented in Figure 2 may
be solved with edges extracted from the real video stream. The
extracted edges provide an additional depth cue and since they

come from the real imagery, they are also able to preserve
important landmarks (such as the entry points).

Figure 20 By enhancing with edges, extracted from the video
stream we provide not only important occlusions but also we

preserve important landmarks. The area where edges are being
detected is interactively controlled by a flat Magic Lens which
locally restricts augmentations with edges and prevents from

cluttered displays.

7 CONCLUSIONS
Focus and Context techniques are highly successful in

scientific visualization and have the potential to become an
essential tool for Augmented Reality. They enable applications
to draw the attention of users to objects in the focus while still
perceiving contextual information. We make use of these ideas
to correctly communicate spatial arrangements of hidden
structures while the focus objects are not completely hidden
with respect to correct occlusion handling.

We have presented a framework for computing augmentations
using multi level F+C visualizations based on G-Buffer
rendering and compositing, and we have outlined a variety of
filter operations to separate the components for compelling
visualizations.

The control of visual information presented to the user does
not depend only on data structure management, nor is it only a
function of image processing. We have shown how a
combination of both enables us to better control the information
augmented in the real world imagery. This includes context
preserving X-Ray vision, and the ability to control the amount of
overlaid visual information.

Context preserving X-Ray vision has a high potential for
depth cueing, a fundamental problem of visual communication
in AR. We have shown how important features from occluding
objects may be used to enhance the depth perception to the
scene rather than being discarded by careless augmentation. We
have also addressed the problem of visual information overflow
of visible hidden structures. Based on our framework we are
able to control the amount of obscuring information in a scene,
effectively reducing image clutter.

The development of AR applications can be simplified
through the F+C techniques described in this paper, because
they enable simultaneous interaction with multiple layers of
information including the video stream, without requiring

complex separation of cases. The scriptable framework we have
developed enables the rapid prototyping of X-Ray visualization
techniques. The core of the visualization framework is simple
and only relies only on the capability to sort scene objects into
families of similar context, so that it can be easily added to
existing rendering frameworks as a post-processing step.

ACKNOWLEDGEMENTS

This work was sponsored in part by the Austrian Science
Fund FWF under contract Y193, the Austrian Forschungs-
Förderunggesellschaft FFG under contract BRIDGE 811000 and
the European Union under contract MRTN-CT-2004-512400.
We would like to thank M. Eduard Gröller and Stefan Bruckner
for useful discussions and suggestions.

REFERENCES
[1] Bane R. and Höllerer T., “Interactive tools for virtual X-Ray vision
in mobile augmented reality,” In proceedings International Symposium
on Mixed and Augmented Reality, 2004, pp. 231-239
[2] Bier E., Stone M., Pier K., Buxton W., DeRose T., “Toolglass and
Magic Lenses: the see-through interface,” In proceedings SIGGRAPH,
1993, pp. 73-80
[3] Bichlmeier C., Navab N, “Virtual Window for Improved Depth
Perception in Medical AR”, International Workshop on Augmented
Reality environments for Medical Imaging and Computer-aided Surgery
(AMI-ARCS), 2006
[4] Bruckner S., Grimm S., Kanitsar A., Gröller M. E., “Illustrative
Context-Preserving Volume Rendering,” In Proceedings of EUROVIS
2005, pp. 69-76
[5] Cook R. L., “Shade trees,” Proceedings of SIGGRAPH, 1984, pp.
223 - 231
[6] Diepstraten J., Weiskopf D., and Ertl T., “Interactive cutaway
illustrations,” In Procceedings of EUROGRAPHICS, 2003, pp. 523-532
[7] Eissele M., Weiskopf D., and T. Ertl. “The G2-Buffer Framework“,
In proceedings of SimVis, 2004, pp. 287-298,
[8] Feiner S., Seligmann D., “Cutaways and ghosting: satisfying
visibility constraints in dynamic 3D illustrations”, In The Visual
Computer 8, 1992,pp. 292-302
[9] Furmanski C., Azuma R., Daily M., “Augmented-reality
visualizations guided by cognition: Perceptual heuristics for combining
visible and obscured information”, In proceedings of ISMAR, 2002, pp.
215-226
[10] Goldstein B.,“Sensation and Perception”, Wadsworth Publishing; 7
edition, 2006
[11] Green S., "The OpenGL Framebuffer Object Extension”,
http://download.nvidia.com/developer/presentations/2005/GDC/OpenG
L_Day/OpenGL_FrameBuffer_Object.pdf
[12] Interrante V., Fuchs H., Pizer S., “Illustrating Transparent Surfaces
with Curvature-Directed Strokes,” In IEEE Visualization, 1996, pp. 211-
218
[13] Julier S., Lanzagorta M., Baillot Y., Rosenblum L., Feiner S., and
Hollerer T., “Information filtering for mobile augmented reality“, In
proceedings of ISAR, 2000, pp. 3-11
[14] Kosara R., Hauser H., Gresh D., “An Interaction View on
Information Visualization,” In proceedings of EUROGRAPHICS, 2003,
pp 123-137
[15] Kosara, R.; Miksch, S.; Hauser, H.: Focus and Context Taken
Literally, in IEEE Computer Graphics and its Applications, Special
Issue: Information Visualization, 2002, pp. 22-29
[16] Kosara Robert, Hauser Helwig, Gresh Donna L., “An Interaction
View on Information Visualization,” In State-of-the-Art proceedings of
EUROGRAPHICS, 2003, pp. 123-137
[17] Krüger J., Schneider J., Westermann R., “ClearView: An
Interactive Context Preserving Hotspot Visualization Technique,” In
IEEE Transactions on Visualization and Computer Graphics (12-5),
2006, pp. 941-948
[18] Looser J., Billinghurst M., Cockburn A., “Through the looking
glass: the use of lenses as an interface tool for Augmented Reality
interfaces,” In proceedings of the 2nd international conference on

Computer graphics and interactive techniques in Australasia and
SouthEast Asia, 2004, pp. 204-211
[19] Mark W., Glanville R. S., Akeley K., Kilgard M. “Cg: A system for
programming graphics hardware in a C-like language.“ In ACM
Transactions on Graphics, 2003,
[20] Mendez E., Kalkofen D., Schmalstieg D., "Interactive Context-
Driven Visualisation Tools for Augmented Reality," In Proceedings of
ISMAR 2006, pp. 209-218
[21] Reitmayr G., Schmalstieg D., "Flexible Parameterization of Scene
Graphs," In proceedings IEEE VR, 2005, pp. 51-58
[22] Ropinski T., Steinicke F., Hinrichs K. H., “Interactive Importance-
Driven Visualization Techniques for Medical Volume Data,” In
proceedings of the 10th International Fall Workshop on Vision,
Modeling, and Visualization, 2005, pp. 273-280
[23] Saito Takafumi, Takahashi Tokiichiro “Comprehensible rendering
of 3-D shapes,” In proceedings of SIGGRAPH 1990, pp. 197 – 206
[24] Sielhorst T.,Bichlmeier C.,Heining S.,Navab N.,”Depth perception
a major issue in medical AR: Evaluation study by twenty surgeons”,
Proceedings of Medical Image Computing and Computer-Assisted
Intervention, 2006, pp. 364-372
[25] Viega J., Conway M., Williams G., Pausch R., “3D Magic Lenses,”
In proceedings of ACM Symposium on User Interface Software and
Technology, 1996, pp. 51-58
[26] Viola I., Kanitsar A., Gröller M. E., "Importance-Driven Volume
Rendering", In proceedings of IEEE Visualization, 2004, pages 139-145
[27] Viola I., Kanitsar A., Gröller M. E., “Importance-Driven Feature
Enhancement in Volume Visualization,” In IEEE Transactions on
Visualization and Computer Graphics, (11-4), 2005. pp. 408-418

Figure 21 A Magic Lens is used to interactively control the
augmentation of important context information

(a)

(b)

(c)

Figure 22 (a) A Magic Lens tool is used to interactively control the
region where the ‘First Hit + Focus’ strategy is applied during scene
compositing. The interaction allows for spatial driven adjustments
of the amount of presented information.
(b) As a side effect of our algorithm, we are able to render correct
occlusions (c) In this example, we are not interested in a complete
augmentation of hidden structures. Instead the visible parts of the
box and the car are used as focus while the hidden parts of the car
represent context information (for example the length of the car).
We use the box as a Magic Lens tool to augment important context
information only where occlusion occur.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

