
Central European Multimedia and Virtual Reality Conference(2006)
C. Sik Lányi, B.Oláh (Editors)

Global Mesh Partitioning for Surgical Planning

Philipp Fürnstahl1, Bernhard Reitinger†1, Reinhard Beichel1, Dieter Schmalstieg1

1Institute for Computer Graphics and Vision
Graz University of Technology, Austria

Abstract
We present a set of partitioning tools that classify a tetrahedral mesh into different regions of interest while pre-
serving mesh consistency. These regions can then be individually visualized, repositioned, or combined for further
analysis or processing. A partitioning operation, either defined analytically(by a formula) or geometrically (by a
surface mesh), is applied globally to the model. A hierarchical data structure is used to store region information
and consecutive partitioning operations: it ensures consistency betweenthe specified regions of the volumetric
mesh and the visualized surface mesh. Similar to volumetric cutting, subdivision is used to split the initial model
into regions. Subdivision of tetrahedra that contain multiple intersection pointsper edge is a non-trivial task. An
extension to existing subdivision methods is presented which handles the subdivision of such tetrahedra in an iter-
ative way. Since the partitioning of a volumetric mesh is an important task in surgical planning, this paper finally
shows that the presented algorithms can be successfully integrated in a virtual reality planning system.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: I.3.8 Applications

1. Introduction

Interactive tools, which partition the underlying volumetric
model into regions of interest, give new opportunities in vi-
sualization and planning systems. These tools can be either
applied progressively to the model (e.g. a scalpel cut spec-
ifies the partitioning surface) or globally, by interactively
defined partitioning shapes. We aim at the second method:
a partitioning operation is used to divide the entire mesh
into disjoint regions. Consecutive operations can be used for
more complex partitioning.

In our concept, the shape of the tool, which can be modi-
fied interactively, defines how the affected parts of the mesh
will be separated into regions. Each specified region can then
be treated as an individual sub-model. This improves inter-
active planning since quantitative analysis can be performed
on particular regions (or a set of regions). Moreover, par-
ticular regions can be visualized, hidden, or modified for
more accurate intervention planning. Regions, created dur-
ing consecutive partitioning operations, are stored in a hier-
archically organized data model based on a binary tree. The

† contact: reitinger@tugraz.at

binary tree approach has the benefit that existing informa-
tion is preserved and previously specified regions are still
available. This feature is very important for planning envi-
ronments but usually not considered by conventional cutting
simulations where old information is discarded. The binary
tree is also used to consistently combine regions for visual-
ization (interface extraction) or analysis without node or face
doubling.

In this paper, we introduce a new approach of global tetra-
hedral mesh partitioning (especially focusing on very large
meshes) on the basis of three algorithms. In contrast to other
approaches, the same scheme can be used for both, analyt-
ically and geometrically defined partitioning tools. More-
over, complex partitioning shapes (e.g. non-planar) can be
used. Analytical partitioning is restricted to objects which
can be described by a formula so it can be carried out effi-
ciently. Geometrical partitioning shapes are represented by
triangulated surface meshes and are used for more flexi-
ble partitioning. The developed partitioning algorithms op-
erate on tetrahedral meshes. In contrast to other approaches,
we designed the algorithms to work with high-resolution
tetrahedral meshes. We accept higher computation times but



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

achieve highest quality for both meshes, the tetrahedral mesh
and the visualized surface mesh.

Partitioning is especially useful for surgical environments
where surgeons need to interactively classify an organ into
healthy (benign) and diseased (malignant) tissue. For our
target application, the intervention of a liver tumor resec-
tion must be planned using partitioning tools [Rei05]. Fig. 1
sketches an example of a liver model which will be parti-
tioned into healthy and diseased regions. The partitioning
procedure starts by locating a tumor in the initial mesh. Next,
the dataset is partitioned using a plane in order to uncover
the tumor. Two new regions are created, colored yellow and
orange. Subsequently, the left part of the liver (yellow re-
gion) is hidden. A suitable shape is then used to apply a more
specific partitioning operation for removing the residual. Fi-
nally, the binary tree is used to visualize and measure vol-
umes of the healthy and diseased regions in order to obtain
important quantitative indices.

tumor

liver

(a) initial model

plane

(b) plane partition-
ing is applied

shape

(c) shape partitioning is
applied

Figure 1: A medical example showing the classification of a
tetrahedral mesh into disjoint regions.

2. Related Work

The partitioning operations presented in this paper are con-
ceptually related to constructive solid geometry and virtual
sculpting but share many technical aspects with existing vol-
umetric cutting techniques.

Ganovelli et al. [GCMS01] presented a technique to en-
able cuts with a shape on multi-resolution representations.
A lookup table is used to determine which basic subdivi-
sion case is necessary. Simplicial complex properties are al-
ways preserved. In contrast to our approach, this method is
restricted to planar cut shapes but supports shape faces pok-
ing inside tetrahedra.

Another approach for specifying virtual resections in
liver surgery planning is described by Konrad-Verse et
al. [KVPL04]. A deformable cutting plane is used to define
the cut shape. Our algorithms are not limited to planes or de-
formable planes and can use other complex shapes as well.
In addition, Konrad-Verse’s algorithm is based on vertex dis-
placement instead of subdivision yielding more approximate
results. Unfortunately, neither the performance nor the accu-
racy of the algorithm are discussed.

A progressive cutting algorithm, using a state machine,
was recently published by Bielser et al. [BGTG04]. They
outlined a hierarchical subdivision method where already
subdivided tetrahedra can further be split, based on the tran-
sition of the state machine. In addition, example applications
are described where scalpel cutting is used to partition and
visualize regions of interest.

Based on this method, Steinemann et al. [SHGS06] intro-
duced a real-time cutting approach where the low-resolution
mechanical model is decoupled from the high-resolution vi-
sualized model. This allows efficient real-time cutting, how-
ever, the visualized surface mesh is only an approximation
of the tetrahedral mesh boundary.

Nienhuys and van der Stappen presented methods for
cutting in deformable objects using the finite element
method [NvdS00,NvdS02]. Their goal was to enable interac-
tive cutting in volumetric meshes while preserving the finite
element mesh model. To avoid the generation of degenera-
cies, a node snapping technique was described as well.

Several other techniques like volume sculpting or con-
structive volume geometry are related to our approach.
Sculpting is done by moving voxel-based tools within the
model (e.g. [FCG00]). In constructive volume geometry, in-
troduced by Chen and Tucker [CT00], a set of algebraic op-
erations is applied to scalar fields. However, direct volume
rendering techniques rather than more efficient polygonal
rendering techniques are used for visualization.

3. Data Representation and Visualization

For the proposed partitioning tools, we developed a two-
level data model consisting of atetrahedral meshand abi-
nary tree.

We call a tetrahedral meshconsistentif its set of tetra-
hedra is a 3-dimensional simplicial complex [Ede01]. The
properties of simplicial complexes enables us to define re-
gions (simplicial sub-complexes) and to consistently extract
boundaries for visualization (the mesh boundary is inher-
ently available).

In addition to the tetrahedral mesh, a binary tree is used
for storing the actual partitioning results (regions). This sec-
tion gives a basic overview of the binary tree representation,
interfaces (region boundaries), and finally interface extrac-
tion and visualization.

Per definition, each partitioning operation splits the under-
lying mesh into two new, disjoint parts. Therefore, a binary
tree can be used to store the relation of tetrahedra to certain
regions. Each leaf node in the tree represents a region and
stores the indices of associated tetrahedra (see Fig.2). Ini-
tially, the root of the binary tree stores all tetrahedron indices
of the mesh as one region. If partitioning operations are ap-
plied, additional tree levels are created by splitting each leaf
node into two child nodes. Thus the path from the root to a



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

given leaf node can be encoded into an index that represents
a sequence of partitioning operations (similar to a location
code). A binary representation, implemented as a bit vector,
is used for encoding: each bit corresponds to either a left or
right link in the tree.

To visualize a set of regionsS of a tetrahedral meshM,
an interfacecan be defined which represents the boundary
to the remaining regionsM\S. By using the properties of
simplicial complexes, each interface consists of a set of tetra-
hedron faces which can be always represented by a prop-
erly connected triangular mesh. These triangles are inher-
ently available in the tetrahedral mesh: no additional geom-
etry is generated, because the geometry of the parent model
is used. This avoids duplicate vertices or faces and guaran-
tees an overall consistent connection between the volumetric
model and its visualized surface mesh.

The basic idea of the extraction algorithm is to traverse the
binary tree for identifying the list of regions which are target
for rendering (see Fig.2). A rendering bit vectorr specifies
all regions which should be visualized. For each indexi of a
traversed node a bitwiseXORcompare withr is performed
(trimming i andr to equal length). Ifr ⊗ i = 0, then the child
nodes are rendering candidates and recursively processed.
Finally, all visited leaf nodes and their lists of associated
tetrahedra are examined for retrieving the boundary faces.
A tetrahedron face is extracted if the neighboring tetrahe-
dron does not belong to a region which should be rendered
(defined byr).

shape

plane

(a) liver model

target for rendering

1

10

100 101 110 111

11

(b) e.g. render bit vectorr = 11

Figure 2: A plane and shape partitioning operation is ap-
plied to the tetrahedral mesh in Figure (a). Figure (b) shows
the corresponding binary tree. The root node consists of one
region. After plane partitioning, two child nodes are created,
partitioning the domain into two pieces. If applying another
operation, 4 new leaf nodes, storing the regions, are created.
Interfaces can be extracted to visualize arbitrary regions.

Since vertices of the mesh are shared by adjacent mesh
primitives, a concept is required which allows the assign-
ment of attributes to vertices. For each tetrahedron, belong-
ing to a certain region, a unique set of attributes must be

available (e.g. to render each region in a different color).
Therefore, thewedge conceptproposed by Hoppe [Hop98]
is used. A wedge acts as a wrapper for vertices. It stores a
vertex index and additional local parameters but is associ-
ated with exactly one tetrahedron. This has the effect of al-
locating multiple wedges each of which is indexing a similar
vertex but storing different attributes.

4. Partitioning Algorithms

Global modification of tetrahedral meshes are computation-
ally expensive and acceptable computation times require the
design of efficient algorithms. We introduce a hierarchy of
three partitioning algorithms which differ in the complexity
of the partitioning shape and consequently in computation
times. The first algorithm uses an analytically defined plane
and is typically applied in order to perform coarse partition-
ing operations. Due to its simple shape, several algorithm
parts can be specialized and optimized (e.g. subdivision).
The second algorithm uses a generalized analytical shape.
Contrary, the partitioning shape of last algorithm is specified
by a triangular surface mesh for most flexible partitioning.
In general, a partitioning algorithm consists of four essential
parts:

1. Collision detection: tetrahedra which are intersected by
the partitioning tool are detected.

2. Intersection point calculations: after testing if an inter-
section point is not yet calculated, it is stored in a hash
table.

3. Subdivision: intersected tetrahedra must be split accord-
ing to the intersection points for a unique region assign-
ment.

4. Assignment to regions and binary tree update: all
tetrahedra can now be assigned to one of the newly cre-
ated regions. A new level is added to the binary tree and
tetrahedron indices are stored in the corresponding leaf
nodes.

According to these four steps, the following partitioning
algorithms were developed.

4.1. Analytical Plane Partitioning

The plane partitioning algorithm starts with a traversal of
the tetrahedral mesh and determines for each tetrahedron
whether it is intersected by the plane. Tetrahedra which are
not split, are immediately assigned to a region (correspond-
ing to the side of the plane). A tetrahedron is intersected by
the plane if not all of its vertices lie on the same side of the
plane. This verification is done by calculating the signed dis-
tance between all tetrahedron vertices and the plane. The dis-
tance is computed by using robust orientation tests to avoid
floating point inconsistency [She97]. If calculated distances
have different signs, then the corresponding edges contain
intersection points and the tetrahedron is target for subdi-
vision. According to the signed distances of the vertices, a



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

lookup table is used to determine the appropriate subdivision
case (eight cases, one possible intersection point per edge).

Before subdivision, the intersection points are calculated
using basic vector algebra. In order to keep the mesh consis-
tent, shared intersection points of adjacent tetrahedra must
be stored uniquely in the vertex buffer. Therefore, a hash ta-
ble is used for efficient propagation of intersection points to
adjacent tetrahedra. The index of each newly calculated in-
tersection point is stored in the hash table. The correspond-
ing tetrahedron edge uniquely defines the hash table’s key
value.

In case of plane partitioning only one intersection point
per tetrahedron edge can exist. Therefore, an ordinary sub-
division technique can be applied. We chose a subdivision
method by Dompierre et al. [DLVC99] who splits quadri-
lateral faces by choosing the diagonal which contains the
smallest vertex index in the face. This method is efficient,
does not depend on floating point calculations, and guaran-
tees that tetrahedra faces are always split uniquely.

Before adding newly created tetrahedra to the mesh, in-
valid orientations are detected and fixed. In addition, the bi-
nary tree is updated by adding the tetrahedron index to the
corresponding node in tree (representing the correct region).

4.2. Analytical Shape Partitioning

Shape partitioning provides a more flexible way than plane
partitioning, because more general shapes can be used to
specify partitions. The method requires shapes, which can
be defined by a formula but leads to an efficient algorithm.
Since a partitioning operation must completely split each
tetrahedron (required by the binary tree concept), partially
split tetrahedra are not considered. In these cases the shape
partitioning methods are approximative, but subsequently
generate less tetrahedra and vertices. This has a positive ef-
fect on the mesh complexity. Since the partitioning shape
can be specified analytically, the algorithm is efficient even
for non-planar shapes.

An analytically defined partitioning shapeP has to pro-
vide two functions. An intersection functionI(et) that cal-
culates the intersection points betweenP and a tetrahedron
edgeet, and a distance functionD(pt) that determines the
location of a pointpt relative to the partitioning shape. As
an example, the distance function of a sphere is defined as
D(p) = (px −mx)

2 + (py −my)
2 + (pz−mz)

2 − r2, where
center pointm and radiusr specify the partitioning sphere.
I(et) is then an ordinary sphere – line segment intersection
test.

At first the distance function is calculated for each ver-
tex p of the mesh by traversing the vertex buffer. After-
wards the mesh tetrahedra are traversed and the result of the
D(p) is stored in the corresponding wedges of each tetrahe-
dron (see Section3). Three states represent this result:inside

(D(p) < 0), intersection(D(p) = 0), andoutside(D(p) > 0).
Since partially split tetrahedra are ignored, intersected tetra-
hedra can be identified corresponding to the sign ofD: if
D(pi) > 0 andD(p j ) < 0 for tetrahedron verticespi andp j ,
then this tetrahedron is target for subdivision. Otherwise it
can be assigned immediately to the inside or outside region
(according to the sign of the distance function).

Subsequent to the identification of an intersected tetrahe-
dront, the exact intersection points are calculated. Similar to
Section4.1, a hash table stores the intersection information.
In order to uniquely calculate the intersection points between
t andP, the hash table is examined for intersection points:
for each edge of the current tetrahedron, existing intersec-
tion points are retrieved. If no entry for an edge is found, all
its intersection points are calculated (and stored in the hash
table) using the intersection function.

Intersecting tetrahedra with non-planer shapes can result
in multiple intersection points per tetrahedron edge (e.g. a
small sphere can intersect a tetrahedron edge twice). The
iterative subdivision (described in the next paragraph) sub-
divides such tetrahedra according to the order of stored in-
tersection points. Moreover, the used hash table approach
must be extended. An ordinary hash table with the ability
to store objects with equivalent key values is organized in
buckets (usually arranged in a linked-list). These buckets are
extended to so-calledsorted bucketsby storing all intersec-
tion points of a tetrahedron edge in a specific order. In our
case, all intersection points of a tetrahedron edge are sorted
based on the distance to the edge’s start-point. The order rep-
resents the correct cut sequence and is required later in the
subdivision process.

After all intersection points are calculated, each inter-
sected tetrahedront must be subdivided for a unique assign-
ment to the corresponding region. Basically, 10 symmetri-
cal different subdivision cases are required to split a tetra-
hedron into two parts (see Fig.3). However, the subdivision
of a tetrahedron that contains edges with multiple intersec-
tion points is a non-trivial task. We introduce an iterative ap-
proach: In the first iteration, the currently active intersection
point of each tetrahedron edge is determined by choosing
the first stored point in the corresponding sorted buckets of
the hash table (see Fig.4(a)). Subsequently, a lookup table is
used to determine how to rotate or flip the vertices to fit the
default orientation in order to perform the basic subdivision
by Dompierre [DLVC99]. Active intersection points of the
next iteration are retrieved by incrementing the position in
the sorted buckets of the edges (Fig.4(b)). Finally, the algo-
rithm is iteratively applied to subdivided tetrahedra until all
intersection points are processed (shown in Fig.4(c)).

In the last step of the partitioning algorithm each subdi-
vided tetrahedron is assigned to the corresponding region.
It contains only vertices of the original tetrahedron or in-
tersection points (labeled withintersectionstate). Thus the
vertex states, which are stored in the wedge data structures,



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

(a) 2 tets (b) 1 tet, 1
pyramid

(c) 1 tet, 1
prism

(d) 2 prisms (e) 4 tets

(f) 4 tets (g) 1 tet, 2
pyramids

(h) 2 tets, 2
pyramids

(i) 2 tets, 1
pyramid, 1
prism

(j) 4 tets, 2
pyramids

Figure 3: Partitioning cases of a tetrahedron and an arbi-
trary partitioning shape with subdivision into primitives. In-
tersection points are colored red; red-black points denote
tetrahedron vertices lying on the shape. Red colored faces
denote configurations which are required definitely. Either
yellow or green colored faces are required in 4 cases to guar-
antee, that the tetrahedron is split completely. Yellow-black
or green-black points must lie on the partitioning shape re-
spectively.

p
1

p
2

p
3

(a) initial state

p
1

i2

i3
p
2

p
3

i1

(b) 1st iteration

i4 

i5

p
1

i1 

i2

i3
p
2

p
3 

(c) 2nd iteration

Figure 4: Iterative tetrahedra subdivision with multiple in-
tersection points per edge (simplified shown as a triangle
subdivision). In each iteration an ordinary subdivision is
performed, using active intersection points (red arrows).

are then used to assign those tetrahedra to the correct region.
If a tetrahedron does not contain a vertex with stateoutside,
it is assigned to the inside region. Respectively, if a tetrahe-
dron does not contain aninsidevertex, it is assigned to the
outside region. Tetrahedra, where no unique assignment is
possible, are assigned to the outside.

4.3. Geometrical Shape Partitioning

More flexible partitioning can be achieved by using a tri-
angulated surface mesh to define the partitioning shape. In
order to divide the tetrahedral mesh into disjoint regions, the
partitioning shape must be a closed mesh or an object home-
omorphic to an open disc.

All tetrahedra, which are intersected by partitioning shape
faces, must be identified. In addition, remaining tetrahedra
have to be assigned to the inside or outside region as well.
Both steps can be handled efficiently by using an octree, gen-

erated from the partitioning shape. Since the shape is usually
modified interactively, the octree generation must be done
on-the-fly.

For each vertex of the tetrahedral mesh, it is determined if
a point lies inside or outside of the partitioning shape. Tetra-
hedron vertices, lying on a partitioning shape face, are iden-
tified later during exact intersection point calculations. A ray
shooting approach, which can handle open surfaces, is used:

• A ray is shot, starting from each vertex of the volumetric
mesh. The ray direction is specified by the barycenter of
a certain partitioning shape face (e.g. primitive with in-
dex 0). This guarantees that the ray always intersects the
partitioning shape.

• The intersected partitioning shape face with the minimal
distance to the ray origin must be identified. Starting at the
root of the octree, child nodes, which are hit by the ray, are
traversed recursively in the order of the smallest distance
to the ray origin. Once a leaf node with stored primitives
is visited, an exact ray – triangle intersection test is per-
formed for each stored primitive [MT97]. Subsequently,
the algorithm terminates and returns the primitive index
with the minimum distance.

• If the supporting plane’s normal vector of the chosen
primitive points in the same direction as the ray (com-
puted in step one), then the tested vertex is located inside
the partitioning shape.

In the next step, the tetrahedra of the mesh are traversed.
According to the results of the ray shooting, theinside or
outsidestate is set in the wedges of each tetrahedron. If all
four vertices have the same state, the tetrahedron is imme-
diately assigned to the corresponding region. Otherwise, it
is intersected by the partitioning shape and the exact inter-
section points must be calculated. Each tetrahedron is tested
against the octree (bounding box tests) to retrieve the list
of overlapping partitioning shape faces. For each of these
shape faces, the exact intersection points between the tetra-
hedron and the supporting plane of the shape face are calcu-
lated (similar to Section4.1). Subsequently, it must be tested
whether a calculated intersection point lies inside the parti-
tioning shape face by projecting the point and the triangle
into 2D: a robust 2D orientation test [She97] finally deter-
mines if the intersection point is located in the triangle and
can be stored.

Analogue to analytical shape partitioning, the hash table
approach is used for the propagation of intersection points.
Since partitioning shape faces are tested in arbitrary order,
the verification whether an intersection point is already cal-
culated, is more complex. The following information must
be stored in the hash table for each intersection point:

• The index of the intersection pointpk.
• The index of the partitioning shape facef which intersects

the tetrahedron edge inpk.
• The vertex indices of the edge off if pk lies on this edge.



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

• The vertex index of a point off if pk coincides with this
point.

To ensure mesh consistency and avoid degeneracy, each in-
tersection point must be inserted in the hash table only once.
Three possible cases can arise:

1. If an intersection pointpk lies inside a single partitioning
shape facef, thenpk is only shared by adjacent tetrahedra
faces. A comparison of the identifier off with stored hash
table values is sufficient to verify thatpk was already cal-
culated.

2. If pk lies on an edge shared by two partitioning shape
faces, then additionally the vertex indices of the affected
partitioning shape edge must be compared with corre-
sponding hash table values.

3. Otherwise, ifpk coincides with a vertex off, then this
vertex index is compared with stored hash table values as
well.

Finally, the actual subdivision and the assignment of subdi-
vided tetrahedra is performed according to Section4.2.

5. Results

We evaluated the algorithms in 45 test cases for perfor-
mance and quality measurements. In this test environment,
high-quality tetrahedral meshes with sizes ranging between
10,000 and 280,000 tetrahedra were used. In case of geomet-
rical shape partitioning, partitioning shapes were specified
by 800−2,000 triangular primitives.

The performance measurements were done on a Pen-
tium 4 with 2 GHz. Experiments showed that in a typical
partitioning operation 1,000−5,000 tetrahedra were inter-
sected by the partitioning tool. The graph of Figure5 gives
a runtime comparison of all algorithms. On average, a com-
plete partitioning operation, applied to a 50,000 tetrahedra
mesh, took 75 ms, 320 ms, and 685 ms for plane, analyti-
cal shape, and geometrical plane partitioning. We carried out
particular runtime measurements for collision detection, in-
tersection point calculation, subdivision, and region assign-
ment.

Plane partitioning can be performed very efficiently. Col-
lision detection and region assignment was performed in
7 ms per 10,000 tetrahedra. In the remaining time, intersec-
tion points are consistently calculated and the subdivision is
performed. For 1,000 tetrahedra, these operations together
took 28 ms on average.

Analytical shape partitioning takes longer. Collision de-
tection, intersection point calculations, and region assign-
ment only depend on the complexity of the distance and
intersection function. In case of a sphere, those steps took
about 17 ms for 10,000 tetrahedra. In addition, iterative sub-
division, which is more complex and thus has more over-
head, contributed with 100 ms per 1,000 tetrahedra.

The additional runtime increase if using geometrical
shapes is primarily caused by the collision detection (octree)
and region assignment (ray shooting). We used an on-the-
fly generated octree with depth 5 (100−220 ms generation
time in experiments). The described ray shooting approach
took about 40 ms for 1,000 mesh vertices. Finally, the con-
sistent propagation of calculated intersection points is more
runtime expensive since triangular faces are processed in-
stead of evaluating analytical functions.

We also analyzed the quality of all tetrahedra, created
after a partitioning operation, since degenerated tetrahe-
dra are a known problem of subdivision. In our exper-
iments, 4− 7.1% of subdivided tetrahedra were degen-
erated according to a quality ratio proposed by Nien-
huys [NvdS02]. Node snapping was applied on-the-fly dur-
ing subdivision [NvdS02], reducing the number of degenera-
cies by 52% on average.

Peer-to-peer comparisons to state-of-the-art techniques
are difficult since most of them aim at local real-time cutting
where small-sized tetrahedral meshes are used (< 5,000).
Most related toglobal partitioningis a technique of Ganov-
elli et al. [GCMS01] where planar cut shapes are used to
cut multi-resolution meshes with 37,000 tetrahedra. The run-
time, given in their paper, consists of tetrahedra subdivision
(60− 530 ms) and data structure updates (150− 344 ms).
Ganovelli achieves a total runtime of 219− 875 ms (Pen-
tium 2, 400 MHz).

0 0.5 1 1.5 2 2.5 3

x 105

0

500

1000

1500

2000

2500

3000

ti
m

e
 [

m
s]

mesh size [tetras]

plane
analytical shape
geometrical shape

Figure 5: Average runtime of the proposed partitioning al-
gorithms in relation to the initial mesh size (P4, 2 GHz).

5.1. Application

Several 3D applications require the ability to define and alter
arbitrary regions of a volumetric mesh. In our case, the par-
titioning algorithms are integrated into a virtual liver surgery
planning system [Rei05]. This system provides the possibil-
ity for surgeons to simulate atypical (non-segment oriented)
tumor resections.



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

Figure7 shows a medical scenario where partitioning is
used to plan a surgical intervention. The partitioning con-
cept is helpful in supporting physicians, who need to care-
fully consider a limited number of alternatives for the most
promising outcome of an intervention. In this example, two
tumors are target for resection (a). Inside the semitransparent
liver the vessel structure can be seen. After investigation, the
surgeon has several different possibilities for removing the
diseased parts. In strategy 1, the dataset is partitioned using
a plane in order to uncover the tumors (b). The left part of
the liver is hidden after the partitioning operation (c). Subse-
quently, two options must be considered. In strategy 1a ((e)
to (h)), the surgeon plans to remove (hide) each tumor sepa-
rately. Therefore, two spheres are positioned for applying an
analytically defined shape partitioning operation. In contrast,
both tumors are removed at once with a single bigger sphere
in strategy 1b ((i) and (j)). Another strategy simulates the
tumor resection by removing a single tissue part: a geomet-
rically defined deformable grid is applied in strategy 2 ((k)
and (l)).

Since the hierarchically organized data structure of Sec-
tion 3 is used, the different intervention strategies can be
stored in a single data model. Moreover, it also enables to
switch between those strategies (or combine them) in real-
time, e.g. for measuring the volume of removed tissue.

Figure 6 shows two different scenarios of the virtual
liver surgery planning where the presented partitioning tools
are interactively used in a virtual reality setup. By using a
tracked pencil and panel, partitioning tools can be specified
and partitioning can be initiated intuitively.

An evaluation with a surgeon has shown that the intro-
duced partitioning tools can be used successfully within
a complete planning process (evaluations are detailed
in [Rei05]). Surgeons can save time by using the presented
atypical planning methods compared to traditional interven-
tion planning. In addition, the performance of the partition-
ing algorithms was stated reasonable, since they are initiated
in a separate thread without disturbing interactive rendering.

6. Conclusion and Future Work

We have presented an entire concept for implementing par-
titioning tools into interactive visualization or planning en-
vironments. Based on the required complexity of the tool,
one of three algorithms can be chosen. Evaluations have
shown that the provided algorithms are feasible for surgical
planning in interactive systems. The presented methods are
not limited to surgical environments, thus partitioning has a
broad field of application in volumetric visualization.

Nevertheless, several improvements are reasonable and
addressed for future work. The algorithms can be further
optimized, however, experiments indicate that the runtime
is sufficient for interactive planning. In addition, situations
may arise where a unique assignment of tetrahedra to the

correct region is not possible. In this case, the methods are
currently approximative. We intend to overcome this prob-
lem by performing on-the-fly mesh refinement.

Acknowledgments

This work was funded by the Austrian Science FundFWF
under contract no. P17066.

(a) The right part of the liver
includes a tumor. An analytical
shape partitioning is initialized,
choosing a sphere primitive.

(b) The sphere is interactively
scaled and positioned to cover
the tumor completely.

(c) After partitioning, each re-
gion can be modified separately
while the information is stored
in one model. In this case, the
left region is set to transparent.

(d) Another strategy is chosen
where geometrical shape par-
titioning, using a deformable
grid, is initialized.

(e) The grid is interactively de-
formed in such a way that the
tumor is completely contained
in the left liver part.

(f) Two regions are created af-
ter the operation. The left one
is hidden in order to verify that
the tumor was successfully re-
sected.

Figure 6: Partitioning methods embedded into a virtual
reality-based liver surgery planning setup.



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

References

[BGTG04] BIELSER D., GLARDON P., TESCHNER M.,
GROSSM.: A state machine for real-time cutting of tetra-
hedral meshes.Graphical Models 66(2004), 398–417.

[CT00] CHEN M., TUCKER J. V.: Constructive volume
geometry.Computer Graphics Forum 19, 4 (2000), 281–
293.

[DLVC99] DOMPIERRE J., LABBE P., VALLET M.-G.,
CAMARERO R.: How to subdivide pyramids, prisms, and
hexahedra into tetrahedra. In8th International Meshing
Roundtable(1999), pp. 195–204.

[Ede01] EDELSBRUNNERH.: Geometry and Topology for
Mesh Generation. Cambridge Univ. Press, 2001.

[FCG00] FERLEY E., CANI M.-P., GASCUEL J.-D.:
Practical volumetric sculpting.Visual Computer 16, 8
(2000), 469–480.

[GCMS01] GANOVELLI F., CIGNONI P., MONTANI C.,
SCOPIGNO R.: Enabling cuts on multiresolution repre-
sentation.Visual Computer 17, 5 (2001), 274–286.

[Hop98] HOPPEH.: Efficient implementation of progres-
sive meshes.Journal of Computers & Graphics 22, 1
(1998), 27–36.

[KVPL04] K ONRAD-VERSE O., PREIM B., LITTMANN

A.: Virtual resection with a deformable cutting plane. In
Simulation und Visualisierung 2004(2004), pp. 203–214.

[MT97] M ÖLLER T., TRUMBORE B.: Fast, minimum
storage ray-triangle intersection.J. Graph. Tools 2, 1
(1997), 21–28.

[NvdS00] NIENHUYS H.-W., VAN DER STAPPEN A.:
Combining finite element deformation with cutting for
surgery simulations. InProc. of Eurographics 2000
(2000), pp. 274–277.

[NvdS02] NIENHUYS H.-W., VAN DER STAPPEN A.:
Supporting cuts and finite element deformation in inter-
active surgery simulations. Tech. Rep. UU-CS-2001-16,
Univ. Utrecht, 2002.

[Rei05] REITINGER B.: Virtual Liver Surgery Plan-
ning: Simulation of Resections using Virtual Reality Tech-
niques. PhD thesis, Graz University of Technology, 2005.

[She97] SHEWCHUK J. R.: Adaptive Precision Floating-
Point Arithmetic and Fast Robust Geometric Predicates.
Discrete & Computational Geometry 18, 3 (october
1997), 305–363.

[SHGS06] STEINEMANN D., HARDERS M., GROSSM.,
SZEKELY G.: Hybrid cutting of deformable solids. In
IEEE Virtual Reality 2006(2006), pp. 35–42.



P. Fürnstahl et al. / Global Mesh Partitioning for Surgical Planning

(a) (k) (l)

(b) (c) (d)

(e) (f)

(g) (h) (j)

(i)

Strategy 2: deformable grid

Strategy 1a: two separate spheres
Strategy 1b:

single sphere

plane partitioning to uncover tumors

initial liver dataset

Figure 7: Medical scenario showing different possibilities for the removal of liver tumors. Either plane partitioning and an-
alytical shape partitioning (strategy 1, 1a, 1b), or geometrical shape partitioning (strategy 2) are used two simulate different
intervention strategies.


