
Interactive Editing of Segmented Volumetric Datasets in a
Hybrid 2D/3D Virtual Environment

Alexander Bornik
bornik@icg.tu-graz.ac.at

Reinhard Beichel
beichel@icg.tu-graz.ac.at

Dieter Schmalstieg
schmalstieg@icg.tu-graz.ac.at

Institute for Computer Graphics and Vision
Graz University of Technology

Inffeldgasse 16, A-8010 Graz, Austria

Figure 1: The automatic segmentation of a human liver (blue)on the left suffers from severe, but locally limited under-
segmentation. Given appropriate 3D editing tools, the effort to manually correct the 3D model (middle) reconstructed
from the segmentation is much smaller than the effort to manually segment the whole dataset from scratch.

ABSTRACT
In this paper we present a novel system for segmentation refine-
ment, which allows for interactive correction of surface models
generated from imperfect automatic segmentations of arbitrary vol-
umetric data. The proposed approach is based on a deformablesur-
face model allowing interactive manipulation with a hybriduser in-
terface consisting of an immersive stereoscopic display and a Tablet
PC. The user interface features visualization methods and manip-
ulation tools specifically designed for quick inspection and correc-
tion of typical defects resulting from automated segmentation of
medical datasets. A number of experiments show that typicalseg-
mentation problems can be fixed within a few minutes using the
system, while maintaining real-time responsiveness of thesystem.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques; I.3.5
[Computer Graphics]: Computational Geometry and Object Mod-
eling; C.2.4 [Distributed System]: Distributed Applications; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism

Keywords
Segmentation Refinement, Interactive Segmentation, Virtual Real-
ity, Hybrid User Interfaces, 3D User Interfaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’06November 1–3, 2006, Limassol, Cyprus.
Copyright 2006 ACM 1-59593-321-2/06/0011 ...$5.00.

1. INTRODUCTION
Medical imaging facilities like X-ray computed tomography(CT)

or magnetic resonance tomography (MR) as well as measurements
from industries such as oil and gas or mechanical engineering pro-
duce high resolution volumetric datasets. Many applications re-
quire the extraction of geometric objects from the volume data
through segmentation. Techniques for automatic segmentation have
been extensively studied in computer vision, but certain problems
remain. For example, noisy CT data makes it hard to extract exact
object boundaries in particular for non-rigid objects suchas human
tissue.

We are developing a system for computer-aided liver surgery
planning [6]. The surgeon is concerned with pathological struc-
tures (tumors) and the liver vasculature. These structuresneed to
be accurately segmented to study the patient specific anatomy, and
derive quantitative indices such as the volume of healthy tissue.
Segmentation errors are not tolerable since they will lead to mis-
understanding of the anatomical relations and to wrong treatment
decisions with severe effects for the patient.

Current automatic segmentation approaches for soft tissueor-
gans are highly problem specific. Some organs like the heart can be
addressed using model-based approaches, since the degree of shape
variation is low. For organs with a high degree of shape variation,
like the liver, such approaches fail, and segmentation algorithms
have to rely on evidence in the image such as gray value and gra-
dient information. Unfortunately, the required information cannot
always be extracted from the images using known algorithms,for
example when adjacent organs share the same gray values in the CT
image. The resulting incorrect segmentation is useless forsurgery
planning, and therefore the current clinical practice relies on man-
ual segmentation by drawing segmentation outlines in stacks of 2D
images. This is time consuming at best and impractical for high
resolution scans with hundreds of slices. Moreover, even trained
radiologists tend to misinterpret complex 3D anatomy when only

viewing 2D cross-sections.
It must be emphasized that automatic segmentation algorithms

are capable of recovering major parts of the required objects struc-
ture correctly in many medical applications including liver segmen-
tation. However, certain cases defeat attempts at fully automated
segmentation. These defects are often locally bound, such as – in
case of the liver – leakage into the heart and stomach region,or
problems with vena cava inferior. These observations have led us
to believe that computer-aided interactive editing of the segmented
surface generated by an automatic algorithm –segmentation refine-
ment – is a suitable compromise, which is much less time con-
suming than manual segmentation, yet yields high quality results
directly usable in surgery planning. This paper presents a system
for segmentation refinement of the liver, but the presented tech-
niques are generally applicable and potentially useful forany kind
of application relying on segmentation. Figure 1 shows the idea of
segmentation refinement.

At a first glance, it may appear that segmentation refinement is
similar to free-form modeling for digital content creation. How-
ever, the workflow of segmentation refinement is completely deter-
mined by evidence in the original volumetric dataset, whiledigital
content creation relies on the artistic imagination of the designer.
The objective of the radiologist working on segmentation refine-
ment is to produce a segmentation (model) matching the shapeof
anatomical object, which can be arbitrarily complex and canof-
ten not be reconstructed accurately with typical free-formmodeling
tools such as parametric surfaces.

The contribution of this paper is therefore a Virtual Reality (VR)
system for interactive segmentation refinement. The systemuses a
hybrid 2D/3D user interface (Section 3) for efficient yet accurate
manipulation of the segmented dataset. It emphasizes the descrip-
tion of specialized editing (Section 4), visualization (Section 5) and
deformation (Section 6) tools, which attempt to maximize the use
of contextual information that can be directly or indirectly derived
from the original volumetric dataset in order to assist the radiol-
ogist. We present preliminary results (Section 7) of several test
cases evaluated by medical students and physicians, which show
that many typical segmentation defects can be solved withinmin-
utes, providing first evidence of practical relevance for the time-
critical clinical work flow.

2. RELATED WORK
Medical Virtual Reality is an interdisciplinary venture, drawing

its inspirations from a variety of fields. In this section, weconcen-
trate on selected work in computer graphics, geometric modeling,
computer vision and medical applications that we found mostin-
fluential for our approach.

2.1 Computer-aided Surgical Planning
Segmentation refinement is part of a liver surgery planning sys-

tem [6] relying on computer graphics and virtual reality methods.
There are many examples of surgical planning systems, whichare
typically highly specialized towards the medical procedure they
support. A good general overview of literature on medical com-
puter graphics and virtual reality can be found in [10]. Liver surgery
planning in particular has mainly been investigated by fourother
groups: The German cancer research center DKFZ, the Center
for Medical Diagnostic Systems and Visualization (MeVis),the
Zuse Institute Berlin (ZIB), and INRIA. Work at DKFZ [24] on
a computer-aided planning system for liver surgery focusesmainly
on automatic segmentation. MeVis also focused on segmentation,
and also modeling of liver structures [13]. Reserach work byZIB
included model-based techniques for liver segmentation in[22].
INRIA was concerned with model based segmentation [32] and
later tissue simulation. While these projects share a similar appli-
cation goal, none of them attempts to provide interactive segmen-
tation refinement in a way comparable to our approach.

2.2 Interactive Segmentation and Editing
Interactive segmentation of three-dimensional medical datasets

can be used to create models for objects, that cannot be segmented
automatically. A great number of such techniques and tools can
be found in literature. According toFoo, such techniques can be
classified into three main groups according to how and when user
interaction has to be performed [12].

On the one hand, there areuser-steeredmethods like painting
tools similar to [15]. Also more sophisticated algorithms like the
live-wire approach [1], which can be used to speed up the taskby
exploiting structural information contained in the dataset, belong
to this category. The original live-wire approach working on 2D
slices of the dataset has been extended to 3D in [11]. Such methods
require frequent user interaction throughout the modelingprocess
as shown in Figure 2(a).

The second group,user intervenedtechniques are autonomous
techniques operating automatically. They can be interrupted by the
user and provided with supplementary input affecting the automatic
process at any time (see Figure 2(b)). Such techniques are often
interactive applications of deformable models like in [35]or [23].

The third group of interactive segmentation describes tools for
correction or manipulation of previous results instead of assisting
the segmentation from scratch, so calledsegmentation refinement
tools (see Figure 2(c)). One of the rare examples in literature is
reported in work byJackowski et al.[19] and [3]. This work uses
Rational Gaussian (RaG) Surfaces to represent segmented objects.
Segmentation errors can be corrected manipulating surfacecontrol
points using a 2D desktop interface for the 3D task. Another system
to correct segmentations was reported in [20]. The boundaryof the
segmented object can be altered using a variety of tools. Themost
effective one from the functional point of view, spline interpolation
based on user interaction, turned out to be difficult to use due to
user interface issues according to [12]. In fact the system uses 2D
interaction and visualization techniques. There have beenattempts
towards 3D segmentation environments based on VR technology
e.g. [30], mostly leading to a proof of concept. A practically more
useful example, an interactive vessel segmentation tool exploiting
tactile feedback, has been introduced in [14]. These tools fit to the
group ofuser steeredor user intervenedtechniques. The proposed
approach is, to our knowledge, the first interactivesegmentation
refinementsystem utilizing both 2D and 3D interaction techniques
in a immersive environment.

A d d i t i o n a lI n p u tE v a l u a t i o n

S t a r t
A u t o m a t i cC a l c u l a t i o nS t e p

I n i t i a l i z a t i o nI n i t i a l I n p u t
D i s p l a yR e s u l t

D o n e r e a d y n o t r e a d y i nt eracti ve
(a)

P a r a m e t e rC h a n g eE v a l u a t i o n

S t a r t
A u t o m a t i cC a l c u l a t i o nS t e p

I n i t i a l i z a t i o nI n i t i a lP a r a m e t e r s
D i s p l a yR e s u l t

D o n e r e a d y u n d e s i r e dp r o g r e s sg o o dp r o g r e s s i nt eracti ve
(b)

E v a l u a t i o n
S t a r t

A u t o m a t i cS e g m e n t a t i o nA l g o r i t h m
I n i t i a l i z a t i o n

D i s p l a yR e s u l t
D o n en o e r r o r s e r r o r sS e g m e n t a t i o nR e fi n e m e n t

P a r a m e t e rC a l c u l a t i o n aut omati c/ offli ne
i nt eracti ve

(c)
Figure 2: Classification of interactive segmentation techniques: (a) User-steered segmentation requires frequent user input through-
out the segmentation process. (b) In user-intervened segmentation the segmentation process still requires permanentuser attention,
although interaction is only needed occasionally. (c) Segmentation refinement is performed after a fully automated offline segmenta-
tion process.

2.3 Rendering Techniques
In our implementation, we use a number of computer graphics

techniques that draw from the rich pool of work on real-time graph-
ics. For example, highlighting of contours outlines and similar fea-
tures also appears in the area of non-photorealistic rendering, where
related hardware-accelerated rendering techniques are used. Nien-
haus et al., for instance, exploit intermediate programmable graph-
ics hardware to detect edges in image spaces forblueprint render-
ing or simply edge enhancement [27, 28]. However, in this work
contours of arbitrary polygonal geometry on a clipping plane need
to be rendered, which makes a difference, looking at the problem
in more detail. Efficient rendering of changing polygonal models
has been mainly studied in conjunction with level of detail (LOD)
techniques.Hoppereported a strategy to minimize data transfers
between main memory and the CPU, using indexed triangle strips
and transparent vertex caching [17], which is in some sense simi-
lar to our approach. For real-time rendering of deformable models,
Kry et al. [21] exploit programmable vertex units on the GPU to
achieve real-time character skinning for large models.

2.4 Deformable models
Deformable models are used in many scientific fields like com-

puter vision, where they are used for e.g. image segmentation,
where deformable models have been applied for automatic segmen-
tation as well as interactive tools. In computer graphics, pioneering
work was done byTerzopoulos et al.[34]. For modeling physi-
cal properties of 3D objects, volumetric models and finite elements
are employed as in recent work byTeran et al.[33]. In segmenta-
tion refinement the boundary of segmented structures shouldbe al-
tered, which affords deformable surface models. A good overview
of such models can be found in [25].

3. SYSTEM DESCRIPTION
After developing several prototypes and discussions with end

users, the current user interface design for segmentation refinement
is based on a hybrid approach, combining aspects of VR and desk-

top workstations [5]. It is motivated by the observation that the
editing task requires both intuitive 3D inspection/manipulation and
fine-grained control over the editing. Since there are inherent lim-
its to the precision of free-handed operation, a combination of an
immersive stereo display using a free-handed 6-DOF input device
for direct manipulation and a Tablet PC for extremely accurate 2D
input was adopted. A special input device, theEye of Ra(Fig-
ure 3(c)) was built for simultaneous operation of the 2D and 3D
interface. For more details and results of the system from anHCI
perspective refer to [5].

The immersive display is a large stereo wall (stereoscopic back-
projection system, 375cm diameter, 1280x1024 pixels) driven by
a Barco Galaxy projector and viewed with shutter glasses. The
stereo wall is driven by a PC workstation (dual 3GHz Xeon, NVidia
Quadro FX 3400). Optical tracking of the user’s head and the in-
put device is done using a 4-camera infrared system from Advanced
Realtime Tracking. The Tablet PC interface (Toshiba Portégé M200,
1.8 GHz CPU, GeForce Go 5200 graphics card, 12-inch TFT touch
screen at 1400x1050 pixels) is placed on a desk approximately
1.5m in front of the stereo wall, tilted at approximately 60 degrees
for convenient viewing. The user is seated at the desk so thatboth
stereo wall and Tablet PC are within the field of view as shown in
Figure 3(a).

All user interaction can either be performed on the Tablet PC, or
by 3D direct manipulation in the VR environment. The exception
are system control tasks, such as tool selection or menu settings,
which are done exclusively on the Tablet PC. The two software
components of the system, for VR and Tablet PC, share most of
the code based on theStudierstubeVR framework and synchronize
using a distributed shared scene graph [16].

4. REFINEMENT TOOLS
There are two different ways how segmentation refinement is ad-

dressed by the presented system. The final segmentation can be im-
proved exploiting temporary data produced in the automaticstage,
so called segmentation chunks. The chunks themselves are directly

(a) (b) (c)
Figure 3: (a) System setup: camera of the optical tracking system (1), Tablet PC andEye of Ra (2), stereoscopic large screen
projection system (3). (b) Closeup of the Tablet PC 2D user interface. (c) Eye of Ra - Input device for the hybrid user interface: The
tip contains a conventional Tablet PC stylus tip for 2D interaction. Two buttons, a scroll wheel and tracking targets arenecessary for
3D interaction. The device can be grasped like a remote control or like a stylus.

derived from regions of different likelihood to be part of the final
segmentation, as produced by the used multi-object fuzzy connect-
edness approach [2]. Algorithms like graph cuts can be used to pro-
duce similar data [7]. Furthermore segmentation refinementbased
on a deformable surface model can be done. It is reconstructed
from the selected segmentation chunks. The overall procedure can
be split into five tasks:

1. Chunk Inspection - The user tries to locate errors in the au-
tomatic segmentation result visualized based on the selected
chunks

2. Chunk Selection- The set of chunks approximating the tar-
get structure most accurately is found by adding or removing
individual chunks.

3. Segmentation Surface Inspection- The user tries to locate
errors in the surface model by comparing raw CT data to the
boundary of the segmentation surface.

4. Error Marking - Regions of the surface model that were
found erroneous during the inspection step are marked for
further processing. This allows to restrict the following cor-
rection step to the erroneous regions, and avoids accidentally
modifying correct regions.

5. Error Correction - Marked regions are fixed using special
correction tools based on direct surface model deformation
or template shape based modeling.

There is no strict order for these tasks. In general the best strat-
egy is to perform steps 1 and 2 first, resulting in an optimal initial
surface model. In the sequel steps 3 to 5 are performed repeatedly
until the model is corrected. Figure 4 gives an overview of the re-
finement workflow.

In the reminder of this section will give an overview of the seg-
mentation refinement tools, mostly from the user’s point of view.
Technical details on the implementation will be given Sections 5
and 6.

4.1 Inspection
The first step in both refinement stages, inspection, can be per-

formed on the Tablet PC screen using theEye of Ra’stip for in-
teraction with the rotation, movement and scaling controlsin the
2D user interface. In VR the model can be moved and rotated by
pressing the scroll-wheel button on the input device, whichfixes
the model to the input device, while moving the device.

Volume data is visualized on a 2D cutting plane that can be arbi-
trarily placed inside the scan volume. On the Tablet PC the plane
can be manipulated by dragging 3D control widgets provided by
the scene graph library. In the VR system the cutting plane, visual-
ized as a rectangle attached to the input device, is set by dragging
in 3D with a specific button pressed. The user may also configure
several visualization parameters. Especially in the second stage,
surface model based refinement, the user can choose to visualize
the surface model in any combination of wireframe, Gouraud shad-
ing and textured with the volume data. Optional clipping of the
model above the cutting plane with contour highlighting allows to
inspect the surface model near the clipping plane.

4.2 Chunk Selection
Chunk selection is facilitated by allowing the user to clickon

the screen in regions, where chunks should be added or removed,
if using the Tablet PC as input device. In 3D the same procedure
can be done by pressing a button on the input device at the desired
location. Clipping the chunks above the cutting plane givesmore
insight and allows to perform the selection in the 2D plane. Se-
lected chunks are visualized transparently in different colors based
on point rendering techniques. Figure 5 shows an example.

4.3 Error Marking
For efficient organization of the surface based correction proce-

dure, the user marks regions of the surface according to the type of
observed error by painting a ”traffic light” color code - green, yel-
low or red. Green indicates that a portion of the surface is correct
and will be immutable by subsequent correction operations.Yellow
indicates that the surface should approximate the boundaryof the
binary segmentation. Finally, red indicates the surface isincorrect.
It does not obey the segmentation boundary any more and may be
drastically altered by the error correction tools.

4.4 Error Correction
The presented system allows for correction of segmentationer-

rors using a number of different tools for interactively deforming
the surface representation of the object.

Thesphere deformation toolconsists of a sphere of user-defined
radius which can be interactively placed in the datasets. Inthe
VR system this is realized by moving the input device, while the
tool position in the desktop setup is calculated as the position on
the cutting plane corresponding to the 2D position of the cursor.
Triggering sphere deformation causes object surface partslocated
within the sphere shape to be successively moved out of the sphere
on the shortest possible path. Therefore, placing the sphere tool

Figure 4: Segmentation Refinement Workflow: The initial segmentation calculated in an automatic preprocessing step canbe opti-
mized in the first refinement stage through chunk selection. Asurface model reconstructed from the set of selected chunkscan be
altered using model based refinement tools in stage two.

so that most parts of it are outside the object, causes its surface to
move inwards, while outward movement is achieved by placingthe
sphere mostly inside the object. Moving the input device, while the
deformation tool is active, causes the tool to respond, justas if one
was deforming a piece of clay using a real world modeling tool.

Theplane deformation toolis much like the sphere deformation
tools, except that its behavior is similar to modeling usinga scraper.
It can be used to flatten the object’s surface. In the VR systemthe
position and orientation of the tools is directly determined by the
input device, while cutting plane and the pen stroke direction define
the tool’s behavior in the desktop setup.

Fine grained deformation can be achieved using thepoint drag-
ging tool, which can be used to pick individual surface vertices and
move them directly to the desired location, while the surface de-
forms like a rubber sheet in the vicinity.

Figure 6 shows a sequence of images taken during segmentation
refinement using the plane deformation tool.

The above mentioned direct surface deformation tools are useful
for correcting small local problems in the segmentation, but not
efficient if a larger deviation from the true surface is identified.
Modifying a surface patch by repeated deformation followedby
comparison of the resulting segmentation to the original volumet-
ric dataset becomes increasingly cumbersome with growing patch
area and distance to the intended surface.

Therefore we have designed an indirect surface deformationmethod
based on the idea of specifying a three-dimensional correction sur-
face, thetemplate shape tool. The idea is to interactively specify a
correct surface patch for a single erroneous region of the object sur-
face. First, the desired region is specified using the marking tool.
Next, a small number of contour polylines are drawn by the user.
Each polyline is drawn on the cutting plane after positioning the
cutting plane appropriately in 3D. The template shape is then com-
puted by interpolating the polylines. If the user is satisfied with
the template shape, the mesh deformation can be triggered tolo-
cally approximate the template shape. A segmentation refinement
example using the template shape tool is given in Figure 7(b). For
technical details on template shapes refer to Section 6.5.

The task of specifying contours for the template shape refine-
ment tool shows the potential of the hybrid setup. The specification

of the cutting plane is far more easily performed in the VR part of
the system [5], while contour drawing is easy using the Tablet PC.
The Eye of Ra allows to seamlessly switch between both 2D and
3D, so that they are perceived as a single integrated user interface.

5. VISUALIZATION TOOLS

5.1 Context Data Rendering
When performing segmentation refinement, the most important

information to be presented to the user is context data from the
original volumetric dataset. We have experimented with theuse of
texture-based direct volume rendering, but the results were visually
confusing and did not turn out to be useful. Instead, we founda
clearer way of presenting context data as a textured cuttingplane.
Radiologists are used to 2D high resolution views and are pleased
by the prospect of being able to interactively inspect arbitrary 2D
views on such a cutting plane.

Due to graphics memory constraints on the Tablet PC, a two level
approach was chosen. A downsampled volumetric dataset is loaded
into the graphics memory and used to render a 3D textured polygon
at interactive rates, while the user is moving the cutting plane. A
background thread creates a high quality 2D texture by sampling
the dataset with tri-cubic interpolation as soon as the userreleases
the cutting plane positioning tool. Once the 2D texture becomes
available (typically after 500 ms), the visualization switches to the
high resolution texture.

Besides the cutting plane, texturing the segmented surfacedi-
rectly with the 3D volumetric texture was also found to be useful.
The user can switch the rendering style of the segmented surface
between wireframe mode, smooth shading showing the local cur-
vature, and 3D textured shading showing the correspondencebe-
tween volumetric data and segmented surface. All of these render-
ing modes are frequently used. Figure 8 gives an overview. All
texture data is stored in graphics memory at full 16 bit radiomet-
ric resolution, thus no time-critical data downloads to thegraphics
memory are necessary when the transfer function affecting the vis-
ible range of values is changed. Transfer functions are evaluated on
the fly with a Cg fragment shader program.

(a) (b) (c)
Figure 5: Segmentation refinement using the chunk selectiontool: (a) Segmentation error caused by a tumor at the liver boundary.
(b) Adding a chunk using 3D interaction solves the problem. (c) Chunk selection with clipping enabled. – All interaction could
alternatively be performed on the Tablet PC.

(a) (b) (c) (d)
Figure 6: Segmentation refinement using the plane tool: (a) Model inspection in the VR environment. (b) Marking the erroneous
region by painting it red. (c) Interactive model correction using the plane tool. (d) Resulting model. The cutting planeis used for a
final inspection.

5.2 Contour Rendering
An essential tool for the verification of the segmented modelis

the 2D contour resulting from the intersection of the segmented
model with a textured cutting plane showing an oriented slice from
the volume dataset, as explained in Section 5.1. Rendering the tex-
tured cutting plane together with a shaded or wireframe model of
the segmented surface is inadequate for inspecting the exact local
approximation of the desired structure by the segmented surface
(see Figure 8, especially the magnified detail).

Since both clipping plane and geometry of the segmented model
are subject to frequent changes, the conventional strategyof cal-
culating the contour explicitly becomes expensive. We developed a
two-pass image based approach towards rendering the contour. The
algorithm utilizes the OpenGL framebuffer object (FBO) extension
to render the contour information directly to a texture in the first
pass, and a Cg fragment program to superimpose the final contour
on top of the volume texture slice in the second pass.

In the first pass, the object is rendered into the FBO with light-
ing turned off. Black color is assigned to all front-facing fragments,
while backfacing fragments are rendered white. The z-buffer and
the z-test work normally using the renderbuffer extension.A clip-
ping plane coincident with the cutting plane is turned on. The re-
sulting image in the FBO shows all inner parts of the model, as
visible through the clipping plane.

In the second pass, the cutting plane is rendered using a frag-
ment program that evaluates an edge detection filter over theFBO,
which is now used as texture source, accessed using screen coor-
dinates. Fragments located on the boundary of the object’s image
in the FBO are highlighted. Moreover, since it is an image space
method integrated into the graphics pipeline, the contour cannot de-
viate from its correct location due to numerical inaccuracies. The
additional computations to be performed on the GPU depend onthe
screen size of the cutting plane polygon. For performance details
refer to Section 7.1.

5.3 Rendering of the Deformable Mesh
Editing of three-dimensional models in Virtual Reality requires

high frame rates, but the constantly deforming nature of theseg-
mented mesh defeats conventional real-time rendering optimization
techniques. Simple techniques typically used for animatedgeom-
etry – immediate mode rendering or vertex arrays – are precluded,
since an accurately segmented model can become too large forcon-
tinuous retransmission from CPU to GPU in every frame. Display
lists are not helpful either, because they would have to be frequently
re-generated as well.

We have therefore adopted a combination of an OpenGL vertex
buffer object (VBO) and locally bound display elements to render
the mesh structure efficiently. The deformable mesh is stored in
main memory, and only incremental updates to the actually mod-
ified portions of the mesh are transmitted to the GPU as needed.
We further exploit the fact that modifications are typicallylocal,
and mostly modify only vertex geometry, but not mesh topology.
The mesh topology is only modified when extreme deformation
demands adaptive generation of new vertices.

On the GPU we maintain a single vertex buffer for all vertices
and a list of element buffers, each storing the polygon indices for
a small number of facets. On the CPU, we store the deformable
mesh data structure itself together with a change history: The in-
valid vertex set (IVS) contains the indices of all vertices changed
since the last update from CPU and GPU. The invalid polygon set
(IPS) contains indices of all polygons with modified topology.

The update routine maps the VBO to main memory and updates
the GPU’s copy of all vertex data listed in the IVS. In the rarecase
that too many new vertices have been added and the VBO’s capac-
ity is exceeded, the VBO must be re-allocated.

Element buffers containing polygons referenced in the IPS are
rebuilt in graphics memory. Since local modifications of mesh
topology occur with low frequency and affect only a few poly-
gons, the number of updated element buffers is small. The element
buffers contain only a small fixed number ofn polygons, and are
initialized with locally coherent polygon data. The mesh type used
in our application has an average of six vertices per polygon, but
often the element buffer will not be completely filled withn poly-
gons, and can accept a few extra polygons after splits without the

(a) (b) (c) (d)

Figure 7: Segmentation refinement using the template shape tool: (a) Contour drawing on the Tablet PC in the erroneous region of
the model. (b) The contours define a template shape (blue). Usually a small number of contours is sufficient. (c) The model deforms
towards the template shape. (d) After some seconds the modelmatches the template shape.

Figure 8: Rendering modes: The segmented object can be dis-
played as a colored surface, a 3D textured surface, in wire
frame model or clipped above the cutting plane showing CT
data plus the automatic segmentation result (reddish). In the
lower right the object contour is highlighted using a Cg frag-
ment program. Note: Small difference between the voxel-based
initial segmentation and the surface model contour are due to
the different model nature.

overhead of re-allocation.
Once all buffers have been updated, rendering is done issuing

glMultiDrawElement calls. Mesh deformation happens at a
lower frame rate than rendering, sometimes requiring a few hun-
dred milliseconds, and consequently these two task are decoupled
into two separate threads. Mutually exclusive access to vertex data
is granted through the use of locking mechanisms.

Updating the data on the GPU is the responsibility of the render-
ing task. In order to avoid stalling the rendering while waiting for
access to the deformed mesh data locked by the deformation tasks,
the rendering thread only waits for a maximum of half the target
frame time. After this timeout, which was empirically determined,
the unmodified data on the GPU is rendered again until the lockcan
be obtained.

6. DEFORMATION TOOLS

6.1 Simplex Meshes
Segmentation refinement is based on simplex meshes, a deformable

model based on a discrete mesh and a force framework based on a
Newtonian law of motion involving internal forcesFint and exter-
nal forcesFext [8]. Internal forcesFint regularize the mesh. Exter-
nal forcesFext are the most important parameter for obtaining an
initial simplex mesh based on a binary segmentation of the original
volumetric dataset, and they also form the basis for all segmenta-
tion refinement tools. More details on external force calculation are
given in Section 6.3.

6.2 Real-time Deformation
When interactively editing the mesh, immediate feedback ises-

sential. The initial deformation of a detailed mesh with around
100K vertices to fit the automatically pre-computed binary seg-
mentation of the volumetric dataset requires in the order ofone
second to compute. After the initial deformation, we achieve real-
time editing performance by exploiting local coherence. A set of
active vertices is kept throughout all iterations, and force calcula-
tion is limited to this set. Vertices enter the active set if they are not
classified as final (red or yellow code in the error marking proce-
dure) and come under the influence of an error correction tool, or
if a large force exceeding a certain threshold affects a neighboring
vertex. When using the template shape based refinement tool,all
vertices marked red or yellow are activated. Removal from the ac-
tive set occurs, when the forces calculated for a particularvertex are
negligible in magnitude over several iterations, or on userrequest
(e. g., the user paints the vertex green).

6.3 External Force Formulation
Forces for initial deformationare determined by geometric con-

straints. Assuming a generic deformable mesh is available (for ex-
ample, starting with a tessellated sphere or extracting a coarse iso-
surface from the volumetric data directly), the purpose of the initial
deformation is to approximate a shape given by the binary segmen-
tations obtained through automatic segmentation of the volumetric.
The binary segmentation can later be altered using chunk selection
requiring updates of the surface model, which are performedsimi-
larly.

For every vertex of the deformable mesh, a force vector towards
a corresponding target point on the surface of the segmentedvol-
umetric dataset needs to be computed. We use the normal vectors
of the deformable and search for the segmentation boundary in its
direction using a 3D Bresenham algorithm in order to determine
the force vectors.

Forces for sphere refinement toolare directed towards the sphere
boundary on the shortest path, for all vertices located within the

tool.
Forces for plane deformation toolare calculated for all vertices

within a cylinder built on top of the tool center. All affected vertices
are pushed to the bottom of the cylinder, actually representing the
deformation plane.

When individual vertices are altered directly, besides moving to
their new location, they are removed from the active set and there-
fore colored green. This prevents them from moving further.

Forces for the template shape refinement toolare calculated us-
ing the location of each affected simplex mesh vertex in the param-
eter space of the template shape. The actual force target point is the
mesh surface point corresponding to the parameter value.

6.4 Mesh Restructuring
During refinement, the mesh surface may become subject to sub-

stantial changes, which cannot be expressed by just altering vertex
positions. To avoid strongly varying polygon distributionor even
self intersection due to welding, the mesh structure must beadapted
to the shape.

Restructuring simplex meshes has been studied in great depth by
Delingette et al.[8], who proposeface mergeand face splitoper-
ations conceptually similar to edge collapse/vertex splitoperations
known from mesh simplification [18]. These operations are used to
simplify or refine the mesh. Anedge swappingoperation is used
to equalize the vertex count of all polygons adjoining an edge. The
proposed system relies on these operations.

The criteria we employ to control mesh restructuring are both
global – enforce roughly uniform polygon area, suppress degen-
erate triangles via a maximum elongation measure – and basedon
local curvature. These criteria are recalculated every fewiterations.

Real-time performance of the mesh editing demands to use large
iterations steps (β 0.45), which often leads to welding and self-
intersections despite these mesh restructuring efforts. An additional
welding criterionavoids problem, while still allowing for aggres-
sive iteration steps. It is calculated by least squares fitting a plane
through each non-planar polygon. If the normal vector dot product
of two adjacent polygons is negative, they are joined.

6.5 Thin Plate Spline Template Shapes
The template shape based refinement tool was already introduced

in Section 4.4. It uses thin plate splines (TPS), a popular tool for all
kinds of interpolation purposes in computer vision [4]. We employ
thin plate splines to create an interpolating surface through all con-
tour polygon support points and all vertices adjoining the region
(border points) marked red using the error marking tools.

TPS template shapes fit the problem of segmentation refinement
well. They are interpolating splines, thus control points are located
on the surface and can be directly put in place by the user. An-
other advantage of TPS is the fact that the control points need not
be specified over a regular control grids. Points can be specified
where needed, minimizing their overall number, and along with
that, the amount of user interaction required. The fact thatthe con-
trol points have global impact always leads to smooth solution as
well as computational costs for large numbers of points. In practice
the number of points is small (below100), since complex deforma-
tions are better addressed using direct deformation tools,so that
approaches with finite support or faster approximation techniques
as for example described in [9] need not be applied.

7. RESULTS

7.1 Rendering Visualization

Overall frame rates were always greater than 50 Hz on the VR
setup, even during model refinement and with features such asclip-
ping contour rendering turned on. Rendering times for the de-
formable simplex meshes were below 1 ms in the VR system, only
rendering of the cutting plane covering almost the whole screen
with contour highlighting turned on took 2 ms. On the Tablet PC
the overall frame rates were clearly lower, but still interactive (> 5
fps). Rendering times for the simplex mesh from the liver dataset
ranged from 1 ms to 5 ms, depending on the size on the projected
screen size. Texture mapping and the fragment program used for
contour highlighting were costly on the GeForce Go 5200 of the
Tablet PC. We recorded rendering times of 2 to 42 ms for the cut-
ting plane without contour highlighting, which doubles theframe
times, then ranging from 4 to 98 ms. The times correlate with the
number of visible fragments of the cutting plane. The numberof
active vertices in the deformation process did not impact the ren-
dering performance in the VR system. Due to the proposed vertex
buffer object based rendering technique, the impact of meshitera-
tions was hardly noticeable on the single CPU tablet PC.

7.2 Segmentation Refinement Performance
The number of iterations per second depends on the number of

active vertices and type of force calculations used. Duringinitial-
ization, when the mesh is deforming towards the initial segmenta-
tion by looking for target points using the ray casting approach,
we measured 92 ms for the large liver dataset containing about
12, 000 vertices on the VR system’s workstation, and 180 ms on
the Tablet PC. For the smaller spleen model of around5, 000 ver-
tices the numbers are 47 ms versus 80 ms. If smaller portions of
the mesh were active, iteration time decreased accordingly.

7.3 Segmentation Refinement Results
The performance of the system has been studied on seven test

cases, based on a CT scan of the abdominal region. For the dataset
under investigation, manual reference segmentations of different
structures generated by an expert radiologist were given. Then
the datasets were automatically segmented using differentmethods.
We collected a set of erroneous segmentations showing errors in a
variety of surface regions with different shape. Some datasets suf-
fer from undersegmentation, others from oversegmentation(leak-
ing).

In order to avoid including the surface reconstruction errors in-
troduced during mesh fitting to the manual segmentation, theinitial
meshes were voxelized using the technique described in [29]. The
resulting binary volumetric datasets were used as reference datasets
for the comparison with resulting meshes of the refinement process,
which also is voxelized.

For performance measurement the error measure calculated was
the relative volume error (rVE). It is based on the number of voxels
in the refined dataset differing from the reference dataset.In order
to obtain rVE we compare the number of differing voxels with the
number of voxels representing the structure under investigation in
the reference dataset.

The three test subjects participating in the study consisted of an
experienced radiologist, an experienced surgeon and a student of
radiology. All of them had used a VR system before, though not
very often. Before working on the test cases the functionality of the
system was explained to them by the instructor, who also solved
a refinement task while explaining all the tools to them. After-
wards, each subject was asked to try out the system by refiningan
erroneous segmentation result outside the seven cases usedfor the
study. During this process the subjects were explicitly taught how
to solve the task efficiently.

dataset error location rV E1 rV E2 µ(t)

1a liver left lobe; overseg. 15.3% 2.7% 10.3’
1b right lobe; underseg. 15.3% 2.7% 12.0’
2 liver leakage into heart 6.7% 2.5% 13.7’
3 liver leakage into stomach 9.2% 2.6% 11.3’
4 liver lower right lobe 4.1% 2.7% 11.7’
5 spleen leakage into kidney 64.2% 1.9% 10.0’
6 kidney undersegmentation 8.4% 0.5 % 8.7’
7 lung leakage into stomach 38.9% 1.8% 10.0’

Table 1: Dataset overview and evaluation results:relativevol-
ume error in percent relative to object volume before (rV E1)
and after refinement(rV E2); average timings for the refine-
ment task.

After the introduction the users were given unlimited time to
solve the seven refinement problems as accurately as possible. Dur-
ing the test they were allowed to ask questions, in case of problems,
which were answered by the instructor. The time needed for each
individual dataset was recorded in addition to the resulting segmen-
tation. Figure 1 shows an example from the study. Other examples
from the study are shown in Figure 6 (case 2) and Figure 9 (case
7).

Table 1 gives an overview of the datasets used, the prominenter-
rors and the results obtained in the user study. The relativevolume
error could be significantly decreased to a level around2.5 percent,
which seems to be a limit imposed by the conversion from the sur-
face model to a volumetric dataset matching the low resolution of
the reference dataset. Timings obtained from the rather inexperi-
enced test users are ranging from around eight to fifteen minutes
per problem - about eleven minutes on average. For comparison,
live-wire based semiautomatic segmentation of the liver CTdataset
by experts radiologists took about 40 to 60 minutes. Using a fully
automated segmentation method in combination with our segmen-
tation refinement approach reduces the time needed for user inter-
action significantly. Thus, our approach can make segmentation of
medical volumetric data feasible in clinical routine. There was no
significant difference in the performance of the users. However, we
observed, that the radiologist used the Tablet PC more often, while
the surgeon and the students performed all tasks except for contour
drawing in the VR system.

(a) (b)
Figure 9: Segmentation refinement of a lung dataset: (a) Lung
model before refinement – The region marked red indicates,
where severe leakage into the stomach happens. (b) The same
model after approximately 10 minutes of interactive editing us-
ing the presented tool set – The error is largely resolved.

Results of a study focussing on the usability of the proposedsys-
tem, based of a small subset of tools but a significantly larger num-
ber of users can be found in [5].

8. CONCLUSIONS AND FUTURE WORK
The novel segmentation refinement system presented in this pa-

per combines automatic and user-guided methods for producing
high quality three-dimensional models of structures present in vol-
umetric datasets. It aims to strike a useful compromise between
the high quality results demanded in medical applications,and the
time available for segmentation tasks from expert radiologist. By
providing the user with a toolset specifically designed to optimally
exploit the data obtained from the automated segmentation and cor-
recting remaining errors, high quality results with a very low error
can be created in a fraction of the time required for manual seg-
mentation. The proposed system enables physicians to unleash the
full potential of 3D imaging facilities like CT or MRI for surgical
planning. Our evaluations with physicians confirm this hypothesis,
and informal feedback is also very encouraging in terms of user
satisfaction.

Although the tools works quite well in practice, there are sev-
eral limitations. The used TPS interpolation limits singletem-
plate shapes to 2.5D shapes. Consequently refinement tasks requir-
ing more complex template shapes have to be broken down into
multiple sub-problems. Template shape modeling based on radial
basis functions with finite support similar to [26] can be used to
overcome this limitation, although requiring to extract iso-surfaces
from the volumetric result. In the current implementation self-
intersections can occur temporarily. Techniques to guarantee arti-
fact free surface evolution as proposed in [31] for triangular meshes
are subject to future work. Beyond numerous other technicalen-
hancements, a more complete clinical study of the overall system,
involving data acquisition, segmentation and refinement, as well as
the actual surgery planning, is scheduled for the near future.

9. REFERENCES
[1] W. A. Barret and E. N. Mortensen. Interactive live-wire boundary extraction.

Medical Image Analysis, 1(4):331–341, 1997.
[2] R. Beichel.Virtual Liver Surgery Planning: Segmentation of CT Data. PhD

thesis, Graz University of Technology, 2005.
[3] R. Beichel, S. Mitchell, E. Sorantin, F. Leberl, A. Goshtasby, and M. Sonka.

Shape- and appearance-based segmentation of volumetric medical images. In
Proc. of ICIP 2001, volume 2, pages 589–592.

[4] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of
deformations.IEEE Trans. Pattern Anal. Mach. Intell., 11(6):567–585, 1989.

[5] A. Bornik, R. Beichel, and et al. A hybrid user interface for manipulation of
volumetric medical data. InProc. of IEEE Symposium on 3D User Interfaces
2006, pages 29–36.

[6] A. Bornik, R. Beichel, B. Reitinger, G. Gotschuli, E. Sorantin, F. Leberl, and
M. Sonka. Computer aided liver surgery planning: An augmented reality
approach. InProc. of SPIE 2003, volume 5029.

[7] Y. Boykov and M.-P. Jolly. Interactive organ segmentation using graph cuts. In
Proc. of MICCAI 2000, pages 276–286.

[8] H. Delingette. General object reconstruction based on simplex meshes.
International Journal of Computer Vision, 32(2):111–146.

[9] G. Donato and S. Belongie. Approximation methods for thin plate spline
mappings and principal warps. InProc. of ECCV 2002, pages 21–31.

[10] T. Emerson, J. Prothero, and S. Weghorst. Medicine and virtual reality: A guide
to the the literature (MedVR). Technical Report B-94-1, HITLab, University of
Washington, USA, 2001.

[11] A. X. Falçao and J. K. Udupa. A 3D generalization of user-steered live-wire
segmentation.Medical Image Analysis, 4:389–402, 2000.

[12] J. L. Foo. A survey of user interaction and automation inmedical image
segmentation methods. Technical Report ISU-HCI-2006-2, Iowa State
Universtity - Human Computer Interaction, 2006.

[13] H. K. Hahn, B. Preim, D. Selle, and H. O. Peitgen. Visualization and interaction
techniques for the exploration of vascular structures. InProc. of IEEE
Visualization 2001, pages 395–402.

[14] M. Harders, S. Wildermuth, and G. Székely. New paradigms for interactive 3D
volume segmentation.Visualization and Computer Animation, 13:85–95, 2002.

[15] T. Heiman, M. Kunert, and H.-P. Meinzer. New methods forleak detection and
contour correction in seeded region growing segmentation.In International
Archives of Photogrammetry and Remote Sensing, volume XXXV, 2004.

[16] G. Hesina, D. Schmalstieg, A. Fuhrmann, and W. Purgathofer. Distributed Open
Inventor: a practical approach to distributed 3D graphics.In Proc. of VRST ’99,

pages 74–81.
[17] H. Hoppe. Optimization of mesh locality for transparent vertex caching. In

Proc. of SIGGRAPH ’99, pages 269–276.
[18] H. Hoppe. Progressive meshes.Computer Graphics, 30(Annual Conference

Series):99–108, 1996.
[19] M. Jackowski, A. Goshtasby, and M. Satter. Interactivetools for image

segmentation. InIn. Proc. of SPIE ’99, volume 3661.
[20] Y. Kang, K. Engelke, and W. A. Kalender. Interactive 3D editing tools for

image segmentation.Medical Image Analysis, 8:35–46, 2004.
[21] P. Kry, D. James, and D. Pai. Eigenskin: Real time large deformation character

skinning in hardware. InProc. of SIGGRAPH ’02.
[22] H. Lamecker, T. Lange, and M. Seeba. A statistical shapemodel for the liver. In

Proc. of MICCAI 2002, pages 422–427.
[23] A. E. Lefohn, J. E. Cates, and R. T. Whitaker. Interactive, GPU-based level sets

for 3D segmentation. InProc. of MICCAI ’03.
[24] H.-P. Meinzer, P. Schemmer, and et al. Computer-based surgery planning for

living liver donation. InInternational Archives of Photogrammetry and Remote
Sensing, volume XXXV, pages 291–295, 2004.

[25] J. Montagnat, H. Delingette, and N. Ayache. A review of deformable surfaces:
topology, geometry and deformation.Image and Vision Computing,
19(14):1023–1040.

[26] B. S. Morse, T. S. Yoo, and et al. Interpolating implicitsurfaces from scattered
surface data using compactly supported radial basis functions. InProc. of SMI
’01, pages 89–98.

[27] M. Nienhaus and J. Döllner. Blueprints: illustratingarchitecture and technical
parts using hardware-accelerated non-photorealistic rendering. InProc. of GI
’04, pages 49–56.

[28] M. Nienhaus and J. Döllner. Sketchy drawings: a hardware-accelerated
approach for real-time non-photorealistic rendering. InProc. of SIGGRAPH
’03.

[29] B. Reitinger, A. Bornik, and R. Beichel. Efficient volume measurement using
voxelization. InProc. of SCCG ’03, pages 47–54.

[30] S. Senger. Visualizing and segmenting large volumetric data sets.IEEE
Computer Graphics and Applications, pages 32–37, 1999.

[31] A. Sharf, T. Lewiner, A. Shamir, L. Kobbelt, and D. Cohen-Or. Competing
fronts for coarse-to-fine surface reconstruction. InProc. of Eurographics 2006,
volume 25. in print.

[32] L. Soler, H. Delingette, and et al. Fully automatic anatomical, pathological, and
functional segmentation from CT scans for hepatic surgery.Computer Aided
Surgery, 6(3):131–42.

[33] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic finite elements
and flesh simulation.ACM Transaction on Graphics, 2005.

[34] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable
models. InProc. of SIGGRAPH ’87, pages 205–214.

[35] I. Wolf, M. Hasenteufel, and et al. ROPES: a semiautomated segmentation
method for accelerated analysis of three-dimensional echocardiographic data.
IEEE Transactions on Medical Imaging, 21(9):1091–1104, 2002.

