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Abstract: Augmented Reality (AR) provides a natural interface to the “calm” pervasive 
applications anticipated in large-scale Ubiquitous Computing environments. Such 
applications require detailed, coherent and up-to-date spatial models of the world. Most effort 
within the Ubicomp community has gone into maintaining the dynamic components of 
environmental state using sensors. Within the context of AR, these sensors have traditionally 
been precise, accurate, costly and short-range trackers. However, the modelling of seemingly 
static structures such as walls and doors is nevertheless important as the semantic significance 
of spatial events exploited by applications depends on these details. Rich environments, like 
office buildings, are subject to redevelopment and redeployment such that walls and other 
partitions are not permanent features that can be surveyed a single time. It is not sufficient for 
a model merely to be straightforward and cheap to build, it must also be maintainable at a 
reasonable cost. Each application may also demand a different model, especially as the 
perception of any given user of their environment depends on their point of view and the task 
in hand. Consequently, an AR application attempting to enhance or alter this perception must 
take these two factors into account. This paper presents an approach that combines manual 
and automated approaches to creating and maintaining an environment of AR and Ubicomp 
applications. 

1. Introduction and Motivation  
Augmented Reality (AR) has the potential to provide a natural interface to the “calm” 
pervasive technology anticipated in large-scale Ubiquitous Computing [9] environments. 
However, most AR applications have hitherto been constrained, by the working volumes of 
tracking technologies, to static spaces of a few cubic metres. Furthermore, an assumption has 
been made that sensors are deployed homogeneously and statically throughout the area of 
interest, resulting in a single one-off tedious off-line calibration. 

An approach called Ubiquitous Tracking [10] attempts to automate the process of 
dynamically integrating arbitrary sensors in distributed sensor networks. Whilst focussing on 
the dynamic spatial relationships in a given environment. The semantic depth of events like 
“person A is in room W” depend not only on the concept of a person that can move, but also 
on the concept of a room that cannot. Nevertheless the room must nevertheless be measured, 
and meaning assigned to these measurements. Changes in building use, and even routine 



  
 
 
 
maintenance, mean that that new measurements may need to be made displacing or 
augmenting old ones. The integrity of the spatial model depends on the complete history of 
measurements, and care must be taken in the assumptions that are made. 

Due to the expense and limited range of current commercial trackers designed for use by the 
Virtual and Augmented Reality communities, visual tracking of fiducial markers has become 
very popular. Attempts have been made at deploying markers over a wide area in order to 
extend tracking range. It is necessary to know the position and orientation of the markers as 
accurately as possible. Earlier surveying techniques involved the use of reflectorless Total 
stations to survey the positions of the markers. This manual approach is time-consuming, and 
presents a serious barrier to the introduction of AR to new environments. Therefore automatic 
methods are necessary to speed up the process. In this paper we propose the use of an 
autonomously navigating mobile robot to detect and localise the fiducial markers and build a 
model that can be used by existing AR systems. The mobile robot is equipped with a laser 
range finder to localise the robot as well as with a digital camera. The images taken from the 
camera are used to detect the fiducial markers. By fusing the 3D position of the markers with 
the laser based position of the robot the absolute pose of the fiducial markers can be 
calculated. The effectiveness of this new approach can be assessed by comparing the model 
obtained from the Total station with that obtained using the robot. Furthermore, a hybrid 
approach in which measurements from both the robot and the Total station is presented.  

2. Related Work  
In [7] techniques for rapidly and accurately surveying the locations of widely distributed 
markers with the theodolite-based measurement system Leica TPS 700 Total Station [8], 
whilst simultaneously building a model of the environment were described. To implement a 
wide area indoor tracking solution used a set of known markers that were distributed 
throughout the environment. Together with a geometric model of the building that includes 
the location of the well-known markers we can compute the user’s location as soon as a 
marker is tracked by the optical tracking system. 

The tracking library we used is called ARToolkit [6] but any vision-based fiducial tracker 
would be sufficient. ARToolkit markers (shown in Figure 1) are black and white patterns 
printed on paper and attached to marker templates. Each marker shows a different digital 
decoded pattern on it, so that unique marker identification is possible. These markers have 
very high contrast corners that are very useful features for calibration. 

 



  
 
 
 

 

Figure 1: Fiducial Marker 

 

 

3. Experiments 

3.1. Autonomous measurement of fiducial markers 
Our goal is to automatically create a map of deployed fiducial markers. A mobile robot 
capable of exploring unknown environments should detect fiducial markers and measure their 
position in a single coordinate system. Our PeopleBot (ActivMedia) robot is equipped with a 
laser range finder (LRF) (Sick LMS 200) and a 2MP digital color camera equipped with a 
wide-angle lense. The data from the LRF can be used to create a floor plan of the explored 
area. Laser readings are taken every 5cm and after a final registration of all the readings floor 
plan and robot positions (including orientation) are available with high accuracy. The map 
creation is done with the “ScanStudio” [1] software. 

The detection of the fiducial markers is performed using the images acquired by the digital 
camera. After detection the 3D coordinates of the marker’s 4 corner points are computed 
using stereo reconstruction. The reconstructed marker points are transformed into the overall 
coordinate system determined using the LRF by fusing the camera coordinate system with 
that of the laser pose. 

3.2. Marker detection 
The images captured from the camera have a resolution of 1600x1200 pixels. Color 
information is discarded and all subsequent steps work exclusively on grayscale images. The 
lense has a field of view of 90°. The camera is calibrated; interior orientation as well as lense 
distortion is known. In a first step the images are resampled to compensate for the lens 
distortion, as the wide angle lense results in high radial distortion. To detect the markers in the 
images we extract Maximally Stable Extremal Regions (MSER) [2]. This local detector is 
threshold-based and is well suited to finding the deployed markers. However, this is a general 
approach and the detector also returns other stable image regions, which can be used as 
natural landmarks. The subsequent methods are applied to all detected landmarks. The 
classification of a detected landmark as a fiducial marker or a natural landmark is performed 
at the end of the mapping workflow. Figure 2(a) shows that three landmarks have been 
detected by the algorithm. 



  
 
 
 
3.3. Marker reconstruction 
3D reconstruction of the landmarks is done using a shape-from-motion approach (the markers 
are viewed from two or more different viewpoints which allows the calculation of the 3D 
position). Two nearby frames from the image sequence are selected and the essential matrix is 
calculated for the image pair. The estimation is done automatically. Harris corners are 
detected in both images and matched using normalized cross-correlation (see Figure 2(b)). 
The essential matrix is calculated on an inlier set obtained from RANSAC using the 5-point 
algorithm proposed by Nister [3]. 

The next step is the reconstruction of the detected landmarks. As depicted in Figure 2(b) 
corresponding landmarks in both images are matched using SIFT descriptors [5] with a 
method proposed in [4]. The matching method returns a logical matching of the landmarks as 
well as accurate point matches within the landmarks. For every landmark we create a 3D 
reconstruction using the appropriate point matches. We assume that the landmarks are planar 
and do a robust plane fitting in 3D.  

In the next step we now use our knowledge of the deployed fiducial markers to extract them 
from the set of all detected landmarks. This is done using basic image processing techniques, 
the markers in question consist of a black square surrounded by a white border. If we identify 
a landmark as fiducial marker we extract the 4 corner points in one image and project it onto 
the plane of the landmark in 3D to obtain the 3D coordinates of the corner points. We 
determine the scale factor of the metric reconstruction by our knowledge of the real size of the 
markers (153mm x153mm). The reconstruction is now in a canonical coordinate system. 

The final step is to transform the single reconstructions into the overall coordinate system 
established from the laser scanning. For that the 3D points of the markers are rotated and 
translated pnew = Rp + T . R  is the rotation matrix describing the orientation of the robot and 
thus the camera and T = [x, y, z]T  is the position of the robot for the frame of the image 
sequence used for the reconstruction. The final result can be seen in Figure 2(d), where the 
path the robot drove and the detected and reconstructed markers are drawn. 

(a) 
  

(b) 



  
 
 
 

(c) (d) 

Figure 2: (a) Image with 3 visible and detected markers. (b) Detected corresponding markers 
(c) Marker reconstruction in canonical coordinate system. (d) Map of the markers detected 

and reconstructed from the robot. 

 

The accuracy of the results from the robot´s measurements is limited because of the use of 
COTS components (commercial off-the-shelf). 

 

 

Figure 3: Superimposed map of the markers reconstructed from the robot and the map of 
markers measured with the Total Station 

 

Figure 3 depicts a superimposed image of the map of markers reconstructed from the robot 
(shown in Figure 2 (d)) and the map obtained by the Total station including the floor plan and 
markers drawn as cones. In the zoomed-in area one can observe the superimposition of the 
markers. 

 

 

 

 



  
 
 
 

 

Figure 4: Two-dimensional floor plan measured by the robot 

 

 

Figure 4 shows the floor plan of the part of the building that was measured with the laser 
range scanner mounted on the robot. 

4. Surveying Strategy 
Spatial relationships can, in general, be represented by a graph [11], in which objects are 
nodes, and spatial relationships between objects are directed edges. Each edge can represent 
either a measurement, or an estimate derived from other measurements. A complete spatial 
relationship (SR) graph would represent environmental state in its entirety and could be used 
to query relationships between two arbitrary objects. However, depending on the application 
in question the SR graph would be formed in different ways. As an illustration imagine two 
people, A and B, and two applications: a command-and-control view of a 2D map, and an AR 
application in which A and B are presented with an augmented view of one another. In the 
first case the viewer will want a globally optimised view of the locations of A and B, whilst 
the AR application will seek to minimise the registration error between A and B and their 
augmentations. 

Figure 5(a) shows the spatial relationship graph of some of the measurements that were made 
in the course of surveying our lab in Graz. It has been pruned to reduce its size and 
complexity, and although still very large some structure is discernible with clusters of four 
nodes corresponding to the corners of the markers. The ellipse in this figure highlights a 
cluster that corresponds to the marker M30 with points {robot_49, robot_50, robot_51, 
robot_52} being measured in the coordinate frame of the robot, that can be seen in Figure 
5(b). A search throughout the entire graph in Figure 5(a) yields a set of similar subgraphs that 
corresponds to pairs of coordinate frames and common point features. A 4x4 homogeneous 
transformation matrix, and its inverse, is then calculated for each pair using a linear least 
squares solution. These transformations then paramaterise directed edges in a new graph seen 
in Figure 6. A choice can then be made as to which coordinate frame should form the root of 
model. A breadth-first-search starting at the root node in question, in the case of the graph in 
Figure 6 this root node is LABOR, and the transformation matrices parameterising each edge 
are concatenated by multiplication during the traversal. This yields yet another graph seen in 
Figure 7. The breadth-first-search does not result in an optimal solution, as there is no attempt 
to choose a well-conditioned set of common points for the least-squares solution. However, it 



  
 
 
 
can be used as the initial estimate in a non-linear optimisation, in which appropriate 
weightings are applied to each measurement. 
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Figure 6: Graphs of spatial measurement 

 

Figure 7: Graph of spatial relationships of coordinate systems 



  
 
 
 

 

Figure 8: Graph of estimated spatial relationships with edges emanating from given root 

This approach is applied to both measurements obtained by the robot and the Total station. 
This points to a composite strategy in which, the Total station can be used to survey important 
rooms with significant resources and equipment that needs to be surveyed and calibrated. 
These rooms are often cluttered and do not lend themselves to automatic surveying. However, 
these manually surveyed “islands” can be chained together using the robot that can easily 
navigate between rooms through corridors. Manually replicating this chaining process is 
extremely tedious as it requires multiple hops with point correspondences. 

5. Future Work 
The process of doing the non-linear optimisation described in the previous section is still 
being developed. Also, in order to be of practical use in real AR applications, the spatial 
relationship graphs will have to be mapped into a usable form (e.g. geometry) at interactive 
rates. This need not occur on a frame-by-frame basis on the client-side, but can take place as a 
background activity on a powerful server, or cluster of servers.  

6. Conclusions 
Ubicomp and AR applications require access to environmental state, namely spatial state. 
This state can be encapsulated in a model that must be kept up-to-date. Models cannot be 
created on a one-off basis, but must be capable of construction, augmentation and partial 
destruction in a way that is not just affordable, but also maintainable. A single model is not 
sufficient to cover the full spectrum of applications, and must be created on the fly according 
the unique needs of each application. We have demonstrated techniques whereby 
measurements from multiple sources can be easily combined to create bespoke models on a 
just-in-time basis. 
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