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Abstract

While Mixed Reality (MR) technology is steadily matur-
ing, application development is still lacking advanced au-
thoring tools – even the simple presentation of information,
which should not require any programming, is not system-
atically addressed by development tools. Moreover, there
is also a severe lack of agreed techniques or best practices
for the structuring of MR content. In this paper we present
APRIL, the Augmented Presentation and Interaction Lan-
guge, an authoring platform for MR presentations which
provides tools and techniques that are independent of spe-
cific applications or target hardware platforms, and should
be suitable to raise the level of abstraction on which MR
content creators can operate.

1. Introduction

For Augmented Reality (AR) and Mixed Reality (MR)
technologies to become exposed to a larger audience, we do
not only need to build systems that can be used intuitively
by untrained people, but also have to provide content that
makes use of the special features this new media provides.
Without elaborating on possible or sensible usage scenarios
of MR systems, it can be said that the huge potential of these
systems lies in thepresentationof information: be it an out-
door tourist guide, a novel navigation system, a museum
installation or an educational setting (to mention a few of
the more common MR scenarios). The focus of these appli-
cations is on the presentation of information in a temporally
and spatially structured manner, and on allowing the user to
interact with this presentation in order to browse, filter and
search according to her needs and interests. Obviously, the
user interfaces to support these tasks should be as simple
and intuitive as possible.

However, we want to make use of the full range of de-
vices, tools and paradigms that MR research has produced
and is continuing to produce, to support these presenta-
tions. Presentations should be able to address the full range
of Mixed Reality technologies, including classical AR dis-

Figure 1. Two users with different AR plat-
forms using the same application, a “Magic
Book” created with the APRIL authoring
toolkit.

plays, but also electronically enhanced physical objects, im-
mersive projection technology or portable devices. Con-
sequently, we are dealing with complex hardware setups,
using nonstandard displays, multi-modal input devices and
customized interaction tools in networked multi-host se-
tups, incorporating personal computers running different
operating systems, but also handheld devices and even cell-
phones. And while part of this heterogeneity can be ac-
counted to the transient nature of research prototypes, the
increased efforts to provide ubiquitous Mixed Reality ser-
vices and applications indicates that these hybrid systems
will soon be more common that any controlled, single-user
single-host setups.

Providing facilities for non-programmers to create pre-
sentations for such systems is a challenging task. The com-
plexity of the underlying system should be hidden from the
author, while at the same time allowing her to make use of
the unique properties of such a system. Therefore, the first
goal in the process of designing an authoring framework
was to identify the key concepts that are needed by authors
to create compelling MR presentations. These concepts had
then to be implemented on top of our existing systems to



make use of the technology already available.
The key contribution of this work is a set of high-level,

MR specific concepts for authoring on hybrid, distributed
MR systems, and a working implementation of these con-
cepts. We did not concentrate on end-user support for a
specific application (as by providing a GUI for a specific
authoring scenario), but on raising the level of abstraction
for MR presentations. Our approach (1) allows a descrip-
tion of content independent of a specific target hardware
platform, and (2) provides templates and best practices that
are independent of the actual presentation domain.

2. Related work and current state of the art

The first attempts to support authoring on early Vir-
tual Reality systems were to provide ASCII-based file and
scripting formats such as OpenInventor [17], VRML [19] or
X3D [20]. While scriptable frameworks work well for pro-
grammers, who can create application prototypes without
the need to compile code, they do not offer the necessary
concepts and abstractions for controlling a presentation’s
temporal structure and interactive behaviour, and provide
no built-in support for Augmented or Mixed Reality setups.
Platforms like Avango [18] or Studierstube [15] add the nec-
essary classes to such frameworks to support the creation
of Augmented Reality applications, potentially distributed
across several computers, but from the perspective of a pre-
sentation author this complicates matters further rather than
providing the level of abstraction needed.

An early system for the creation of presentations, the Vir-
tual Reality Slide Show system (VRSS) [4], provides a set
of high-level concepts for presentation authoring through a
collection of Python macros. VRSS draws inspiration from
conventional slide shows, and offers the necessary concepts
to the user to create such slide shows for a VR environment.
While VRSS seems to be a feasible solution for creating
slide-show-like presentations, it was not developed further
to allow a more complex structure of the presentation or so-
phisticated user interaction.

The increasing awareness of researchers of the problem
of structuring narrative content led to more research activi-
ties that looked at literature and drama theory and conven-
tional storytelling techniques to derive concepts suited for
the creation of interactive and spatially structured presenta-
tions. The Geist project [7] incorporates a detailed anal-
ysis of classical and interactive storytelling and provides
several runtime modules to support presentations based on
these concepts. Using Prolog, authors can create semiotic
functions that drive the story, and the virtual characters that
appear are connected to an expert system to provide com-
pelling conversational behaviour and emotional status.

Although the Geist project uses a mobile AR system as
its output media, the focus lies clearly on the underlying

storytelling framework. Generally, Geist and similar ap-
proaches can only unfold their potential in complex presen-
tations, incorporating multiple real and virtual actors, and
hence require a correspondingly high effort in content cre-
ation. At the same time, the possibilities of running the
Geist system on different or hybrid Mixed Reality setups
remain unclear.

More pragmatic approaches have focussed on thetools
used by authors to create the content of their presentations.
Powerspace [6] allows users to use Microsoft Powerpoint
to create conventional 2D slides, which are then converted
to 3D presentations by a converter script. These slide shows
can be further refined in an editor that allows the adjustment
of the spatial arrangement of the objects of the presentation,
as well as the import of 3D models into the slides. Clearly,
the Powerspace system is limited by the capabilities of the
Powerpoint software and the slideshow concept, but it of-
fers an interesting perspective on integrating already exist-
ing content into the Augmented Reality domain.

A more recent project, the Designers Augmented Real-
ity Toolkit (DART) [9] is also built on top of existing soft-
ware: DART extends Macromedia Director, an authoring
tool for creating classical screen-based multimedia presen-
tations and desktop VR presentations. DART allows design
students who are already familiar with director to quickly
create compelling AR presentations, often using sketches
and video-based content rather than 3D models as a start-
ing point. Typical DART presentations are run in single-
user video-see-through setups, and to our knowledge there
is no or very limited support of distributed setups or non-
standard display hardware. Supporting these systems often
requires concepts that are difficult or impossible to imple-
ment as single extension classes, but require a modification
of the underlying model or paradigm.

The Mobile Augmented Reality System (MARS) [5], de-
veloped at Columbia University, has also been extended by
a visual editor for creatingsituated documentaries. These
hypermedia narratives, located in outdoor environments,
can be browsed by the user by roaming the environment,
wearing the MARS system. In contrast to the projects men-
tioned so far, the MARS team has developed their own vi-
sual editor for presentations from scratch, allowing them to
implement an authoring paradigm tailored to the needs of
their system. While the visual editor of MARS looks very
promising, the underlying hypermedia system is not suffi-
ciently flexible to suit our content creation needs and the
support of non-standard MR setups.

The need for an additional abstraction layer to support
hybrid setups and MR-specific features has been recognized
by some researchers. AMIRE [21] provides a component
model for authoring and playback of AR applications. On
top of the AMIRE system, an authoring tool for AR assem-
bly instructions has been created, which is limited to the do-



main of step-by-step instructions for assembly tasks. Sauer
and Engels [14] propose to model multimedia presentations
using UML [10]. They use statecharts and sequence dia-
grams to create a model of a (conventional) presentation’s
behaviour, which can then be used as a basis for the imple-
mentation of the presentation. The spatial arrangement of
content or any special aspects of VR or MR presentations
are not considered in their work.

The alVRed project [1] picks up these ideas and uses
UML statecharts to model the temporal structure of VR pre-
sentations. However, aspects of MR authoring are not con-
sidered in the alVRed project.

Recently, a discussion aboutdesign patternsfor Aug-
mented Reality has been started [11]. Design patterns try to
grasp concepts that can not be easily modelled as entities or
classes, but are rather a careful arrangement of such entities
and their concerted behaviour. Up to now, this discussion
has been a purely theoretical one, although some existing
AR systems already make use of some of the patterns that
have been discussed.

3. Our Approach

The first question we asked ourselves when designing
our authoring solution was nothow to author such presen-
tations, butwhat we want to allow users to author. This
implies that we had to identify the key concepts and pro-
cesses that presentation authors would like to work with.
The discussion about design patterns is a first step towards
the identification of such key concepts, but no implementa-
tion of an authoring system using these concepts exists. We
believe that high-level patterns should be made available to
presentation authors, relieving them of the burden of coping
with the (often non-trivial) implementation details, while at
the same time allowing them to use the very features that
make Augmented Reality a unique media form.

3.1. Requirements

From our own experience with students and external col-
laborators, we could identify a set of requirements for our
authoring solution. The primary requirement is that the
framework should support the manifold combination possi-
bilities of input and output peripherals found in the hybrid,
distributed MR systems we are developing in our research.
Presentations and their components should be reusable in
different setups, and a presentation developed for one sys-
tem should run on another setup, with little or no modifica-
tion.

This also opens up the possibility of cross-platform de-
velopment. As most MR systems are prototypes, they are
usually also a scarce resource. It should therefore be possi-
ble to develop presentations in a (desktop-based) simulation

environment, without having to occupy the target system for
the whole time of the development process. In some cases,
such as when working with mobile systems or handheld de-
vices, it is also much more convenient to develop the appli-
cation on a desktop PC and then run it on the target system
only for fine-tuning.

Concerning content-creation, our goal was to support in-
dustry standards that are used by professionals, instead of
providing our own tools and file formats. Generally, we
tried to follow the policy to integrate available tools and
practices wherever possible, instead of re-inventing existing
solutions. By doing so, we could focus on the MR-specific
aspects of the framework.

Finally, we did not want to start a new platform from
scratch, but build the authoring and playback facilities on
top of our existingStudierstuberuntime system. However,
it should be possible to use other runtime platforms for play-
ing back presentations created with our framework.

3.2. Practical Considerations

We decided to create an XML-based language for ex-
pressing all aspects needed to create compelling interactive
MR content. This language acts as the “glue-code” between
those parts where we could use existing content formats.

XML was chosen for three reasons: First of all, it is
a widely used standard for describing structural data, and
new dialects can be standardized with DTDs and Schemas,
which are also widely used and understood. Second, XML
allows the incorporation of any other ASCII-based file for-
mats (by simply including the data inside an elements
CDATA section) or other XML-based formats (through the
concept of namespaces) into documents. This allows inte-
gration of various existing formats for describing content
and configuration aspects into our framework. Finally, a
lot of tools are available that operate on XML data, such
as parsers, validators or XSLT, a technology to transform
XML data into other document formats. As we will show
in Section 5, we use XSLT to transform the configuration
files into executable script code for running a presentation.

With the choice for XML as the base technology for our
content format, the next step was to design the vocabulary
of our intended MR authoring language.

4. The APRIL language

APRIL, the Augmented Reality Presentation and Inter-
action Language, covers all aspects of MR authoring de-
fined in the requirements analysis. APRIL provides XML
elements to describe the hardware setup, including displays
and tracking devices, as well as the content of the presenta-
tion and its temporal organisation and interactive capabili-
ties.



Enumerating all elements and features that APRIL pro-
vides is beyond the scope of this paper. Interested read-
ers are referred to [8], where detailed information and the
APRIL schema specification can be found. In this paper,
we focus on the illustration of the main concepts of the
APRIL language and an analysis of the implications of our
approach. Whenever references to concrete APRIL element
names are made, these will be set intypewriter letters.

4.1. Overview

The five main aspects that contribute to a presentation –
hardware description, content description, temporal struc-
ture, dynamic behaviour and interaction – are encapsu-
lated in four top-level elements –setup , cast , story ,
behaviors 1 and interactions – that can be easily
exchanged, allowing for the customization of the presenta-
tion for various purposes.

The story is an explicit representation of the tempo-
ral structure of the presentation, composed of individual
scenes. In each scene, a predefined sequence ofbehaviours
is executed by members of thecast(actors), which are in-
stances of reusablecomponentswhich expose certainfields
for input and output. The transitions that advance the story
from one scene to the next are triggered by userinteraction,
possibly provided by interaction components.

Interactions Behaviors

Story

Setup

Target Platform

Cast

Figure 2. The main components of APRIL.

The decision to have a central storyboard controlling the
presentation was made well aware of other, agent-centric
approaches, where the overall behaviour of an application is
the result of the individual behaviours of more autonomous
agents. In contrast to other applications, for our MR pre-
sentations we want the results to be predictable and easily
controllable by a human author, therefore having a single,
central instance of a storyboard seemed best suited to model
such an application.

1Note that in this paper, we use the British spelling (behaviour), while
in the APRIL Schema defining the names of the XML elements, the Amer-
ican English spelling (behavior) is used.

The hardware description provides a layer of abstraction
that hides away details of the underlying hardware setup
from the user. Using different hardware description files,
presentations can be run on different hardware setups with-
out changing their content.

4.2. Of Stages, Scenes and Actors

The two fundamental dimensions along which a presen-
tation is organized have already been mentioned: the tem-
poral organization, determining the visibility and behaviour
of the objects of the presentation over time, and the spa-
tial organization, determining the location and size of these
objects in relation to the viewer.

We call all objects that are subject to this organization,
and therefore make up a presentation’s content,actors. An
actor may have a geometric representation, like a virtual
object or a character that interacts with the user, but it could
also be a sound or video clip or even some abstract entity
that controls the behaviour of other actors. APRIL allows
the nesting of actors, so one actor can represent a group
of other actors, that can be moved or otherwise controlled
simultaneously. Each actor is an instance of acomponent
that has a collection of input and outputfields, which allow
reading and writing of typed values. Details of the APRIL
component model will be explained in section 4.4.

By behaviourof an actor we mean the change of the
fields of the actor over time. Parts of the behaviour can
be defined by the author beforehand, by arranging field
changes on a timeline, and parts of it will be dynamic, de-
termined by user interaction at runtime.

We decided to use UML statecharts to model presen-
tations, a tool that has been used successfully by other
projects like alVRed. UML statecharts can be hierarchical
and concurrent, meaning that a state can contain substates,
and there might be several states active at the same time.
Each state represents ascenein the APRIL model, and has
three timelines associated with it: Theenter timeline is
guaranteed to execute when the scene is entered, another
one (thedo timeline) is executed as long as the scene re-
mains active (this means that behaviours on that timeline
are not guaranteed to be executed and can be interrupted
when the scene is left), and theexit timeline, which is ex-
ecuted as soon as a transition to the next scene is triggered.
On each of the timelines, field changes of actors can be ar-
ranged by setting or animating the field to a new value.

While for the temporal organization of presentations we
could borrow an already existing concept previously used
for virtual reality content, the spatial organization of content
in an AR application differs from the approaches known so
far. In VR applications, typically a single scene is rendered
for all users, while one of the specific strengths of Aug-
mented Reality systems is to provide multiple users with
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Figure 3. The storyboard of a simple APRIL
presentation, modelled as a UML state dia-
gram. For the “introduction” scene, the three
timelines enter , do and exit are empha-
sized.

different views on the world. Even for a single user of
an MR system, there may be several “realities” that are si-
multaneously viewed and used: besides the real world and
the corresponding registered computer generated overlays,
there are several ways to display user interface elements,
like head up displays (HUDs) or interaction panels, and
there are possibilities to display worlds within worlds like
the world in miniature approach [16] for navigation or the
possibility of rendering a complete scene to a texture to be
used as a 2D information display.

In APRIL, the top-level spatial containers for the content
of a presentation are calledstages. For each stage, authors
can not only define the spatial relationship to the world and
to other stages, but also the rendering technique used (e.g.
three-dimensional or as a texture on a flat surface) and the
association of stages with certain displays (to provide “pri-
vate” content for particular users). Per default, actors ap-
pear on the main stage, the area that is aligned with and
equally scaled as the real world. Interaction objects can be
placed on interaction stages, where they will, depending on
the setup the presentation is run, be rendered as a HUD or
interaction panel.

Stages are one example of the concepts that require a
coupling between the individual hardware setup and the pre-
sentation – the available stages are different for each setup,
and therefore have to be defined in the hardware description
section (which will be described in section 4.3). If these
stages would simply be referenced in the presentation (e.g.
by name), the portability of the presentation would be re-
duced, because the presentation could then only be run on
similar setups, that provide the same number of stages with
equal names. To overcome this problem, the concept of
roles has been introduced: Each stage is assigned one (or
multiple) out of a predefined set of roles, that describe the
function of this stage. These roles are tokens, like, for ex-
ampleMAINwould identify the world stage that is visible to
all users,UI ALL the user interface stage for all users,UI1

the user interface of the primary user and so on. Actors can
then be assigned to a list of stages, and the runtime system
would look for the first stage on the list that is available on
the target platform. If none of the substitution possibilities
is available, a warning message is generated and the corre-
sponding content is not displayed.

Another type of content specific to MR presentations is
the real world. Usually, for more advanced presentations,
some sort of world model is required, for calculating occlu-
sions between real objects and virtual ones, or to be able to
render content that is projected onto real world objects cor-
rectly. APRIL provides theworld element as a container
for geometry of the real world. The geometry can be ob-
tained by careful modelling or by scanning the objects with
a 3D-scanner.

4.3. Hardware abstraction

An important consequence of the requirements that have
been analyzed is to separate the content of the presentation
from all aspects that depend on the actual system that the
presentation will run on. At the same time, a powerful yet
flexible coupling mechanism between the hardware depen-
dent layer and the presentation had to be found, to allow
the presentation to make use of the individual features of a
hardware setup, like tracking devices or displays.

APRIL allows to put all hardware description aspects
into a separate file, and therefore supports running a pre-
sentation on different setups with different setup description
files. Each of these files contains XML code that describes
the arrangement of computers, displays, pointing- and other
interaction devices that the system is composed of, and the
definition of stages and tracking devices that will be avail-
able in the presentation.

Each computer that is part of the setup is represented by a
correspondinghost element, that defines the name and IP-
address of that host, and the operating system and MR plat-
form that runs on that machine. Inside thehost element,
the displays and tracking devices that are connected to that
host are specified by corresponding elements. For each dis-
play, adisplay element carries information about its size
and the geometry of the virtual camera generating the im-
age, amongst others. For configuring tracking devices, we
use the already existing OpenTracker XML-based configu-
ration language [12], that is simply included in the APRIL
file by using a namespace for OpenTracker elements. Open-
Tracker allows the definition of tracking sources and a fil-
ter graph for transforming and filtering tracking data, and
instead of reinventing a similar technology, we decided to
directly include the OpenTracker elements into the APRIL
setup description files.

OpenTracker only defines tracking devices and their re-
lations, but not themeaningof the tracking data for the ap-



plication. In APRIL, OpenTracker elements are used in-
side appropriate APRIL elements to add semantics to the
tracking data:headtracking or displaytracking
elements inside adisplay element contain OpenTracker
elements that define the tracking of the user’s head or the
display surface for the given display,pointer elements
define pointing devices that are driven by the tracking data,
andstation elements define general-purpose tracking in-
put that can be used by the presentation.

Pointing at objects and regions in space plays a central
role in Augmented Reality applications, and several tech-
niques have been developed to allow users to perform point-
ing tasks under various constraints. APRIL provides the
pointer element to define a pointing device, allowing the
author to choose from several pointing techniques. The sim-
plest case would be a pointing device that operates in world
space. Other applications have used a technique called ray-
picking, using a “virtual laserpointer” to select objects at a
distance. Some techniques work only in combination with a
display, such as performing ray-picking that originates from
the eye point of the user, effectively allowing her to use 2D
input to select objects in space. These pointers can only be
used in conjunction with a specific display and are placed
inside the correspondingdisplay element.

Stages, the top-level spatial containers for the presenta-
tion’s content, are also defined in the setup description file.
A stage can be defined inside adisplay element, in
which case the content of the stage will only be visible on
that specific display. Content placed in stages that are de-
fined at the top level of the configuration file is publicly vis-
ible for all users. As already mentioned, a stage can be as-
signed one or multiplerolesto determine the type of content
it is intended for – currently, supported roles includeMAIN
for the main content of the presentation,UI for user inter-
face stages andWIMfor world-in-miniature style overviews.
In addition to assigning roles, for each stage it is possible to
choose whether the content should be rendered in 3D or as a
2-dimensional texture, and whether it should be positioned
relative to the global world coordinate system or located at
a fixed offset from the display surface.

Figure 4 lists an example hardware configuration file for
a single-host setup using a pointer and four stages.

4.4. Component model

As stated in the requirements section, the content of
APRIL presentations should be assembled from reusable
components. Components should be defined outside the
presentation, in individual files, to allow for re-use across
presentations and setups.

As these components constitute the content of our pre-
sentations, sophisticated means to express geometry and
multimedia content will be needed. Instead of creating a

<april xmlns="http://www.studierstube.org/april"
       xmlns:ot="http://www.studierstube.org/opentracker">
  <setup>
    <host name="mobile" ip="10.0.0.77" hwPlatform="Linux">
      <screen resolution="1280 1024"/>
      <screen resolution="1024 768"/>
      <display screen="1" screenSize="fullscreen" stereo="true"
        worldSize="-0.4 0.3" worldPosition="0.098 0.162 0"
        worldOrientation="-0.1856 0.9649 0.1857 1.6057" mode="AR">
          <headtracking>
            <ot:EventVirtualTransform translation="0.00 0.20 0.01">
              <ot:NetworkSource number="1" multicast-address="10.0.0.7"
                port="12345"/>
            </ot:EventVirtualTransform>
          </headtracking>
        <stage role="WIM1" type="3D" location="DISPLAY" scaleToFit="true"
               translation="0 -0.5 0" scale="0.5 0.5 0.5"/>
        <stage role="UI1" type="2D" location="DISPLAY" scaleToFit="true"/>
        <pointer mode="2D-RAY"/>
      </display>
      <station id="tool">
        <ot:NetworkSource number="2" multicast-address="10.0.0.7"
            port="12345"/>
      </station>
    </host>
    <stage role="WIM_COMMON" type="3D" location="WORLD" scaleToFit="true"
           translation="1.3 2.9 0.75" size="0.5 0.5 0.5"/>
    <stage role="MAIN" type="3D" location="WORLD"/>
  </setup>
</april>

Figure 4. Example hardware description file.

new XML-based syntax for defining these objects, another
approach has been chosen. An APRIL-component is ba-
sically a template, usingany existing, ASCII-based “host
language” to express the intended content, plus additional
XML-markup to define theinterfaceof the component, a
collection of inputs and outputs that will be accessible from
the APRIL presentation. The chosen content format has to
be supported by the target runtime platform, therefore it is
possible to provide multiple implementations, sharing the
same interface, in different formats to support different run-
time platforms. The APRIL component mechanism itself
is platform independent and can make use of any host lan-
guage.

Using a platform specific language for content definition
reduces portability of components, but makes all features
and optimizations of a given platform available to develop-
ers. The alternative would have been to create a platform-
neutral content definition language, that could only use a
set of features supported by all platforms, which would pre-
clude the creation of sophisticated content that uses state-
of-the-art real time rendering features.

An APRIL component definition file contains two main
parts: the componentsinterface definition, and one or mul-
tiple implementations. A components interface is composed
of the available input and output fields, and the specification
of possible sub-components (calledparts) that can be added
to the component.

A component can have multiple implementations in dif-
ferent host languages – the software used for playing the
APRIL presentation will choose the implementation that is
best suited. Each implementation contains the code to im-
plement the component’s behaviour in the chosen host lan-
guage, where the inputs and outputs used in the interface
definition are marked with special XML marker elements,
to indicate the (language-specific) entry points for setting
and retrieving values from the component’s fields. As the



usage of these marker elements depends on the runtime plat-
form that the presentation will be executed on, no general
rules can be given for using them.

4.5. Presentation Control and Interaction

As explained previously, each scene of the storyboard
contains three timelines, that are executed upon entering,
execution and leaving the scene, respectively. On these
timelines, commands can be arranged to change the inputs
of the presentation’s actors. The two fundamental com-
mands to change a field value areset andanimate , that
allow the author to set a field to a predefined value or to
interpolate the value of the field over a given timespan.

For more dynamic behaviour of the presentation, the in-
put of an actor can be connected to the output of another
actor, or the control over a field value can be given to the
user. In this case, either astation can be referenced to
provide the input, or a suitable user interface element is gen-
erated to control the value of the field. The connection or
control possibility lasts as long as the state in which these
behaviours are specified is active.

The transitionsbetween scenes can be mapped to user
interactions. APRIL provides built-in high-level user in-
teractions, such as displaying a button on user interaction
stages, that triggers a transition when clicked (defined by
the buttonaction element), or detecting the intersec-
tion of a pointer with the geometry of an actor (by using
the touch element). APRIL also provides the “pseudo-
interactions”timeout , always anddisabled , to au-
tomatically trigger or disable certain transitions.

Customized user interaction can be realized by defining
a condition that must be met to trigger the transition with
theevaluator element. For these conditions, an output
field of an actor can be compared to a constant value, or
to another output. With this element, it is possible to re-
alize complex user interactions by providing a component
that encapsulates the user interface and the necessary calcu-
lations to trigger a transition.

Since all interactions are defined within the
interactions top-level element, they can be eas-
ily exchanged. This process, calledinteraction mapping,
can be used to derive different versions of the same
presentation, suiting different needs. For example, a non-
interactive version of a presentation, using onlytimeout
transitions to linearly step through the presentation, can
be provided for demo purposes, while a fully interactive
version of the same presentation is run in user sessions.

5. Implementation

While it would theoretically be possible to implement a
runtime platform that reads APRIL files directly and sup-

ports the APRIL concepts by a corresponding architecture,
our goal was to make use of our existing systems and trans-
form the APRIL presentation files into the necessary config-
uration files for the two frameworks we currently use: the
StudierstubeAugmented Reality system, and a lightweight
AR system that runs on PDAs, calledStbLight. From this
approach, we get support for the high-level concepts of
APRIL for both of our platforms, with very little need to
actually implement these features natively in C++.

In some areas the two runtime systems, which are both
based on Open Inventor, had to be extended to support
APRIL presentations. An implementation of a generic
state-engine that controls the presentation at runtime ac-
cording to the storyboard was implemented as an extension
node, and a few utility classes were added to theStudier-
stubeAPI. Most of the high-level concepts where however
implemented by introducing a pre-processing step of the
APRIL files, implemented in XSLT [3].

Configuration

Device Drivers

Studierstube API

Studierstube Runtime Environment

APRIL Extensions

APRIL

Open Inventor

OpenGL

OpenTracker

I/O

Figure 5. The overall architecture of the
Studierstube system, using APRIL as a high-
level authoring language.
XSLT is a template-based language for transforming

XML documents into other, ASCII-based document types.
One or multiple input files can be processed in a non-linear
fashion, generating arbitrary numbers of output files. XSLT
is used most often to generate HTML pages from XML
specification documents, or to transform and aggregate a
collection of XML documents into other XML documents.

A typical Studierstubeapplication consists of a number
of input files – the application’s content, tracking config-
uration, display configuration and user information are all
stored in separate files, even for single user setups. One
of the motivations that led to the development of APRIL
is that, even in moderately complex setups, these files get
quite large, and it is increasingly hard for the application de-
veloper to keep the information in the files consistent. In the
APRIL preprocessing step, these files are generated by the
XSLT transformation, using the information that is stored
in the APRIL file in a well-designed and consistent manner.

A schematic overview of this transformation process is



shown in figure 6. The story specification together with the
corresponding interaction and behaviour definitions consti-
tutes the core of the APRIL presentation. Components, de-
fined in separate files for reusability, are included in the
presentation, and content like geometry or sound samples
are included in their native file formats. At the time of the
XSLT processing, the setup description file of the target
platform is loaded, and the set of associated files is trans-
formed into the necessary Open Inventor and OpenTracker
files that serve as input for theStudierstuberuntime.

Figure 6 also shows the places of human intervention in
the APRIL authoring process. APRIL transforms the view
on MR application authoring from a technology-oriented
workflow that can only be performed by programmers – im-
plementing extensions in C++ and scripting the application
logic on a low level of abstraction – to an authoring-centric
view, allowing a smooth workflow and the distribution of
tasks between different domain experts contributing to the
presentation. This workflow is also much more scalable
from single individuals who create a whole presentation to
entire teams of collaborating professionals, using the story-
board as a central artifact for communication to contribute
at different levels to the final result.
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Figure 6. Schematic view of the APRIL trans-
formation process.

6. Results

An early version of APRIL was used by the students
of our Augmented Reality lab lecture to create different
presentations for a broad spectrum of AR setups. There
were 25 undergraduate students participating, organized in
9 groups, each assigned a different task. The setups for pre-
sentations included a virtual showcase system [2], a mobile
AR backpack system for indoor and outdoor use [13] and
desktop-based AR setups. The setup description files were

<display
screenSize="800 600“
stereo="false“
mode="VR“
worldSize="0.4 0.3“
worldPosition="0 0.3 0.5“
debug="true">
<headtracking otsource="head1"/>

</display>

SoStereoCameraKit {
eyeOffsetLeft 0 0 0 eyeOffsetRight 0 0 

0
camLeft SoOffAxisCamera {
viewportMapping LEAVE_ALONE
position 0 0.3 0.5
size 0.4 0.3

}
[…]

display SoDisplayKit {
[…]

decoration FALSE windowBorder FALSE
xoffset 0 yoffset 0
width 800 height 600
stereoCameraKit File { name 

"../setups/aprildemo/config/user1Camera.iv" }
cameraControl SoTrackedViewpointControlMode {} 
station 2  # head1
displayMode SoMonoDisplayMode {}                    

}
DEF HUD1 Separator {
Transform {
translation 0 0.3 0.5
rotation 0 0 1 0
scaleFactor 0.4 0.3 0.4

} 
Separator {
Transform {

[…]

<StbSink station="2"><Ref USE="head1"/></StbSink>

Tracker.xml

Demo_stb.iv

user1Camera.iv

Userkits.iv

Figure 7. This figure illustrates which files in
the output are affected by a single element in
the hardware description file. Using conven-
tional tools, authors would have to keep the
information of these files in sync manually.

provided by the lecturers, and for the virtual showcase and
mobile AR setups an additional desktop emulation setup file
was provided, to allow students to develop their presenta-
tions on a desktop computer. For the mobile AR setups,
this simulation environment contained a component to sim-
ulate tracking data, so that walk through scenarios could be
tested without the need for physical roaming.

Following the APRIL workflow, students first had to
come up with a storyboard for their presentation, accom-
panied by research concerning the subject of their presenta-
tion and the gathering of raw and inspirational content. This
encouraged the participants to think about the intended pre-
sentation early and come up with a proposal of its temporal
structure in the form of a storyboard. For modelling the sto-
ryboard, a third party UML tool was used, which could save
the diagrams in an XML format that would later be con-
verted automatically to the APRIL syntax. Mapping all in-
teractions tobuttonaction interactions, the storyboard
immediately gave students an executable prototype of their
presentation, that could be used for testing the consistency
of the story.

The raw content found in the research phase was then
added to the presentation to give a first impression of the
content of the individual scenes. MacIntyre et. al. [9] un-
derline the important role of informal, “sketchy” content for
exploring a design space, which allowed our students to ex-
periment with variations of the storyboard and different in-
teractions to trigger the transitions. From then on, students
would also specialize to be able to make use of their indi-
vidual skills – some students focusing on implementing new
components, while others specialized in content modelling
or the scripting of animations and interactions.

The results of the students work was impressive. In pre-
vious years, students would typically implement small, usu-
ally stateless applications with little content, whereas with
APRIL they could implement much more complex appli-
cation logic, while at the same time focussing more on



content creation to fill their application with life. Results
ranged from AR-enhanced Lego-robots and interactive fur-
niture assembly instructors over multimedia presentations
for the virtual showcase to indoor and outdoor tourist guide
applications of near-professional quality. Some images of
the students results are presented in Figures 8-10.

From the experience of these early application results,
some of the concepts of APRIL were refined. Originally,
we planned more “built-in” interaction techniques (similar
to thebuttonaction element), but in practice we dis-
covered that a lot of the requirements for interactive pre-
sentations could be fulfilled with the very simple basic in-
teractions APRIL provides. More sophisticated interaction
techniques can always be added by implementing or reusing
a custom component, and the attempt to categorize these in-
teractions in advance and attempting to provide a generic set
of hardcoded interactions needlessly limits creativity.

Another improvement that emerged from our initial ex-
periences was the concept of stages to structure the spatial
arrangement of actors. Originally, the only alternatives pro-
vided were the insertion of content in the world or in the
HUD of all users. The demands of the users soon indicated
that a more flexible concept for spatial structuring of the
presentation was needed.

During the development and refinement of APRIL, we
also verified the feature set that we developed against ex-
isting projects that were scripted manually, to see if similar
things could be implemented with APRIL. It was interest-
ing to observe that, especially in museum applications and
other scenarios involving public exposure of MR technol-
ogy, most discussions and prototyping sessions focussed on
details that are supported by and much easier to realize and
change with APRIL (“Instead of making the user click on
this object, we want a timeout to trigger the animation”). In
these scenarios, APRIL can support the rapid prototyping
of different ideas, shortening the delay between conception
and implementation, hence allowing more user study to take
place.

7. Conclusions and Future Work

With our work on APRIL we hope to have provided
a starting point for identifying key concepts, patterns and
techniques for Mixed Reality authoring. By focussing on
the requirements of authors and developers and the proper-
ties of the target systems rather than starting with the cre-
ation of a GUI for specific authoring tasks, we could conse-
quently introduce and refine the features needed for sophis-
ticated applications, without being constrained by an exist-
ing framework or practice.

The XSLT-based reference implementation, based on our
Studierstuberuntime system, provides templates for the im-
plementation of the APRIL features on top of the widely

Figure 8. An archaeological ruin inside the
Virtual Showcase. In this setup, a raypicker
is used to select parts of the real object for
retrieving further information. A projector is
used to cast shadows onto the object.

used Open Inventor scripting API. These templates do not
only provide a working implementation of APRIL, but im-
plicitly documentbest practicesfor implementing common
MR patterns on top of that framework.

Having developed the set of features to cover our author-
ing needs, we will now focus on providing tools for the
interactive visual creation of presentations. Such a visual
authoring tool would provide the user with an intuitive in-
terface to the APRIL concepts, without limiting the possi-
bilities for collaborative work and distribution of authoring
tasks that are the key features of the workflow developed.

Another interesting perspective is the automatic gener-
ation of APRIL files for automated presentation creation.
While this would previously require detailed knowledge of
the target application framework to be able to create the
complex, interdependent files for a presentation, APRIL
provides the high level of abstraction that allows the content
for a presentation to be auto-generated by software. This
would open up possibilities to use large amounts of existing
content (e.g. in museums) in a Mixed Reality context with
little manual effort.
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Figure 9. An indoor tour guide application,
running on the desktop developer setup. A
world-in-miniature view on the model of the
building is shown in the background, and
location-dependent HUD overlay graphics is
presented to the user as she roams the build-
ing.
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