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Abstract 
 

AR Puppet is a hierarchical animation framework for 
Augmented Reality agents, which is a novel research area 
combining Augmented Reality (AR), Sentient Computing 
and Autonomous Animated Agents into a single coherent 
human-computer interface paradigm. While Sentient 
Computing systems use the physical environment as an 
input channel, AR outputs virtual information superim-
posed on real world objects. To enhance man-machine 
communication with more natural and efficient 
information presentation, this framework adds animated 
agents to AR applications that make autonomous 
decisions based on their perception of the real 
environment. These agents are able to turn physical 
objects into interactive, responsive entities collaborating 
with both anthropomorphic and non-anthropomorphic 
virtual characters, extending AR with a previously 
unexplored output modality. AR Puppet explores the 
requirements for context-aware animated agents 
concerning visualization, appearance, behavior, in 
addition to associated technologies and application 
areas. A demo application with a virtual repairman 
collaborating with an augmented LEGO® robot 
illustrates our concepts.  
 
1. Introduction 
 

Body and facial gestures as well as speech are familiar 
and widely accepted means of human communication. 
Animated characters, often with autonomous and 
affective behavior, have proved to be very useful in man-
machine communication since they are able to exploit and 
deliver information through multimodal channels and thus 
engage the user in a natural conversation. Autonomous 
agents have been actively researched in recent years as an 
interface to computerized systems bridging the communi-
cation gap between man and computer, and the real and 
virtual world. Augmented Reality (AR) applications share 
the same goal through enhancement of the real 
environment with useful virtual information, where 
virtual objects appear to coexist with the real world. 

Software applications utilize various input and output 
channels for interaction (see Figure 1). Autonomous 

agents are capable of making their own decisions based 
on their perception of the environment. 

If placed in an AR scenario, these agents form a 
Sentient Computing system [1] since they maintain a 
model of the real world obtained through sensors, which 
influences their behavior. Using physical properties such 
as pose, velocity, temperature or light as input interaction 
channels, agents are allowed to react to changes in the 
environment in accordance with the users’ perception. 
Autonomous, emergent behavior is a novel feature in AR, 
while awareness of real world attributes is yet unexploited 
by autonomous agents. 

Virtual animated characters enhance human-computer 
interaction with natural communication symbols such as 
body and facial gestures. Although AR supports the 
collaborative involvement of real humans, “human 
agents” are not always available due to spatial, temporal 
or financial constraints, therefore synthetic agents must be 
used. Anthropomorphic agent representations can be 
particularly useful in situations where human assistance 
would be normally required. 

While traditional desktop agents base their behavior on 
virtual inputs from a mouse, keyboard or by speech 
recognition, AR applications track and exploit qualities of 
the physical environment. The output channel in classic 
AR scenarios superimposes virtual information on top of 
real world objects.  

We argue that real world attributes can become novel 
input and output communication modalities and allow 
new behavioral patterns for animated agents in AR 
environments that were not possible previously with desk- 

 

 
 

Figure 1. Input and output methods 



top-based agents. By turning physical objects into 
interactive, responsive entities collaborating with both 
anthropomorphic and non-anthropomorphic virtual 
characters, AR can explore output channels hitherto 
unexploited. Physical objects become agents that not only 
talk back but also “hit back”. 

Our research combines the aforementioned domains of 
AR, Autonomous Animated Agents and Sentient 
Computing, yielding a novel, coherent human-computer 
interface paradigm, which we call Augmented Reality 
Agents. We explore the implications of AR scenarios on 
animated agents concerning their appearance, behavior, 
application areas and associated technologies. After 
describing related research and our animation framework 
AR Puppet, we demonstrate our concepts with a sample 
application. 
 
2. Related work 
 

Virtual Reality (VR) is a more mature field than AR 
and has consequently already explored new interaction 
techniques involving animated agents, therefore it 
provides many useful ideas. One of the outstanding VR 
examples is the Jack animation system from Noma et al. 
[2] that allows animated virtual human figures to be used 
in a wide range of situations from military trainings to 
virtual presentations. The Improv system [3] creates a 
novel interactive theater experience with real-time virtual 
actors on a virtual stage. The autonomous pedagogical 
agent of Rickel and Johnson [4] called Steve operates as a 
virtual trainer in an immersive VR environment 
presenting complex interactive, educational machine 
maintenance scenarios.  

Although users of these VR systems may have a strong 
sense of coexistence with virtual objects, they lack a 
connection to the real environment, as provided in AR 
systems. An early AR application providing character 
support is the ALIVE system [5], where a virtual 
animated character composited into the user’s real 
environment responds to human body gestures on a large 
projection screen. This type of display separates the user’s 
physical space from the AR environment, which demands 
carefully coordinated user behavior. The Welbo project 
[6] features an immersive setup, where an animated 
virtual robot assists an interior designer wearing an HMD. 
However, the character lacks a tangible physical 
representation and can only interact with virtual objects. 
The idea of the Steve agent recurs in an AR setting in the 
EU project, STAR [7], which aims to enhance service and 
training in real factory environments using virtual 
humans. Their robust machine maintenance scenario is a 
similar idea to our demo application, however, their 

system acts as an animated guided presentation, not a 
responsive interactive system. 

AR has started to step beyond the usual instructional 
and presentational domain and is now being used to 
explore new application fields, for which animated agents 
open new perspectives. MacIntyre et al. [8] make the 
point that a new media, such as AR, starts to gain wider 
public acceptance once it enters the game, art and 
entertainment domain. Their interactive theater 
experience places prerecorded video-based actors into an 
AR environment. The characters do not possess any 
autonomy, as their behavior is scripted, and interaction is 
limited to changing viewpoints and roles in the story.  
Cheok et al. [9] also experiment with Mixed Reality 
entertainment with live captured 3D characters, which 
enable real persons’ telepresence in a Virtual or 
Augmented Reality setting but without any control of the 
environment. Cavazza et al. [10] place a live video avatar 
of a real person into a Mixed Reality setting, and interact 
with a digital storytelling system with body gestures and 
language commands.  

Balcisoy et al. [11] experiment with interaction 
techniques with virtual humans in Mixed Reality 
environments, which play the role of a collaborative game 
partner and an assistant for prototyping machines. 
ARQuake [12] recreates the famous first-person shooting 
game in a real campus setting using a mobile AR setup, 
where the user has to shoot virtual monsters lying in 
ambush behind real buildings, and uses a tangible 
interface to fire virtual weapons. All three systems above 
exploit real world properties to control the virtual world, 
however, physical objects always act as passive 
background, rather than active performers. 

Animated characters and agents are appearing more 
and more frequently on mobile devices. The portability of 
a PDA or a mobile phone offers dynamic characteristics 
that enable agents to step out from static environments 
like a computer screen, and exploit mobile features such 
as current location and context. An early appearance of 
context-aware interface agents on mobile devices can be 
found in the work of Mase et al. [13]. They employed 
simple 2D characters as tour guides to deliver location-
based information on portable PCs and PDAs. Gutierrez 
et al. [14] use a PocketPC device to control the 
appearance and body posture of animated 3D characters 
of a large VR framework through standard MPEG-4 
parameters. Kruppa et al. [15] introduce a ”multi-device“ 
presentation agent that is able to “jump” from one device 
to another (e.g. from a PDA to a large display) to draw 
the attention to a certain feature. As described later, we 
use PDAs as multi-purpose interaction devices that serve 
simultaneously as platforms for agents to appear and an 
interface to dynamically control their behavior. 
 



3. AR implications on animated agents 
 

With the exception of the DART system by MacIntyre 
et al. [16], which is an authoring framework for AR 
applications enhancing a commercial multimedia 
authoring tool, all of the related researches are bound to a 
single application and technology, and lack a general 
approach to create a reusable framework. Moreover, none 
of them consider physical entities as equal, active partners 
of virtual characters in dialogs, as they were 
predominantly used as passive objects like 3D pointers, 
tracking aids or interaction devices. 

Our main goal is to create a set of software 
components that allow easy enhancement of AR 
applications with animated agents. Additionally, we want 
to turn physical objects like a robot, a printer or a digital 
piano into context-aware, interactive responsive agents 
that perform various tasks with digital actors, virtual 
presenters and other synthetic visual elements.  

Augmented Reality raises new challenges and offers 
novel features that can be exploited by animated agents. 
These implications can be divided into two categories: 
representation and behavior. 
 
3.1. Representation 
 

AR agents are embodied as three-dimensional virtual 
or physical objects. They share users’ physical 
environment, in which they can freely move using all 6 
degrees of freedom. Virtual agents in AR scenarios 
appear to have a solid, tangible body that can be observed 
from an arbitrary viewpoint, thus becoming integral parts 
of the physical environment. Virtual objects are typically 
animated characters but are not necessarily anthropo-
morphic. In some AR applications a fully fledged virtual 
human can be more distracting than a simple animated 
arrow that may communicate more information. 
Therefore, we experiment with various character forms. 

A novel and exciting new aspect of AR agents is that 
physical objects like a printer, a digital piano or an 
interactive robot can be turned into intelligent, responsive 
entities that collaborate with virtual characters. If we track 
and monitor relevant physical attributes and process this 
data, attribute changes can generate events that can be 
interpreted by other agents and application logic. Using 
network packets, infrared messages, MIDI code 
sequences or other means of low-level communication, 
physical objects can not only be queried for status 
information but can also be controlled by external 
commands. Therefore physical objects act as input and 
output devices in AR spaces. 

The combination of the real and virtual representation 
results in the augmented representation. This assumes the 
presence of a physical representation and only 

superimposes necessary virtual information. Virtual agent 
representations may have an associated tracked physical 
object, which serves as a tangible control interface, while 
this is a prerequisite for augmented agent representations. 
Screenshots in Figure 2 illustrate three different 
representations of a LEGO robot. 

The augmented representation also helps overcome the 
problem of correct visual occlusion. This means that we 
should ensure that physical objects placed between the 
user’s viewpoint and virtual agents appear to cover parts 
of the virtual objects behind. This issue can be easily 
supported by tracking the occluding object’s pose and 
associating it with an augmented representation that only 
renders an approximate virtual model into the depth 
buffer at the right location. Figure 3 provides illustration. 
 

 

Figure 2. Physical, augmented and virtual 
representations of a LEGO® Mindstorms robot 

 

 
Figure 3. An augmented real LEGO robot detects 

collision with a virtual cartoon character (screenshot).  
Note the correct occlusion by the physical robot. 

 

 
Figure 4. Virtual presenter agent appearing on 

different displays and devices 



In AR scenarios users are mobile, traveling between 
different physical locations and hardware setups, 
therefore they require cross-platform, mobile assistants. 
AR agents can “live” on several devices and displays, like 
HMDs, projection screens, PDAs (see the talking head 
agent in Figure 4) or more recently mobile phones. Each 
has its own local coordinate system placed into the global 
coordinate system of the user’s physical environment. AR 
agents are able to smoothly travel between devices and 
coordinate systems. 
 
3.2. Behavior 
 

An AR agent interacts in real-time with other agents in 
the same or remote AR spaces, with users working with 
collaborative applications, and the applications they are 
embedded into. In addition to their capability of executing 
scripts, they possess a certain autonomy, which means 
they watch and automatically react to changes in the 
properties of AR spatial objects.  

The scheme represented in Figure 5 depicts the 
interaction flow of autonomous agents within an AR 
scenario. The agent monitors the physical and virtual 
world, facilitated by physical and virtual sensors. While 
processing the information from light, push, angular or 
temperature sensors is obvious, implementing a 
perception capacity for virtual entities is non-trivial. 
Examples of virtual sensors include the following: 
 

Agents can “see” users or other agents when their 
bounding box intersects with the viewing volume 
associated with the agent’s virtual eyes, which may be a 
single frustum or several frustums, a box, or even 
unbounded space. Once in the viewport, agents start 
observing the position, orientation and hence velocity of 
users, interaction devices, agents and other physical and 
virtual objects.  AR applications are also associated with a 
physical position and orientation since their working 
volume usually augments only a subspace of the real 
environment.  

The agent can “hear” a sound object if the sound 
source’s propagation volume intersects with the agent’s 
hearing volume (typically spheres).  

Touching is modeled by collision detection, therefore 
we need to properly calculate bounding volumes for both 
physical and virtual items. Figure 3 shows the 
visualization of a virtual touch sensor for a real object 
(see the bounding box of the LEGO robot) and the virtual 
eyesight of a virtual cartoon character (see the wireframe 
viewing frustum). Some physical entities such as displays 
may not make use of a precise bounding box but instead a 
predefined “hotspot” area not related to physical bound-
aries, which triggers events once something is inside. 

Agents can be equipped with object and application-
specific sensors that examine application attributes, GUI 
input, and internal state information of virtual objects 
(e.g. the emotional state of a virtual human) and physical 
objects (e.g. an error message of a printer). 
 

Perception is followed by processing of incoming 
information. With the assistance of an internal simulation 
model, the agent performs actions in response to input 
events. Traditional multimodal output channels can be 
opened between users and agents such as non-verbal 
communication (facial and body gestures), speech 
synthesis and recognition. However, AR offers novel, 
compelling modalities involving pose, velocity and status 
information of objects. The physical location agents 
inhabit, the direction they are looking into and the object 
they control all convey important context. These new 
modalities enable a wide range of new behavioral 
patterns, such as the following: 
 

1.) The user places a character into the physical 
working volume of an application. The character receives 
an event with the identity of the user and the application, 
and loads the user’s application-specific profile and the 
state in which she last left the application. The character 
continues to work with this application. 

2.) A virtual presenter is working with a user in an 
immersive AR setup and wears an HMD. She decides to 
work in another room with a projection screen suitable for 
a larger audience. She takes a pose-tracked PDA, moves it 
close to the character and “picks it up”. The character 
continues to “live” on the PDA screen until it is carried 
over to the projection screen in the other room. It then 
becomes aware of the new environment and jumps to the 
projection screen, where the same application is running, 
maintaining the state of the user’s work.  

3.) A machine in a large PC cluster starts 
malfunctioning. Firstly, a virtual repairman character 
identifies the computer in the cluster room, then leads the 
human operator to the physical location. Once in the 
vicinity, the repairman points out the possible sources of 
error on the machine itself. An explanation is only begun 
once the operator looks at the repairman, in order to 
ensure appropriate attention and focus. The machine 
sends feedback to the repairman when it is back to its 
normal state. 
 
 

 

Figure 5. Autonomous behavior scheme 



4. AR Puppet framework 
 

One of the authors had the chance to admire the 
famous water puppet theater (“mua roi nuoc”) in Hanoi, 
Vietnam [17], where exceptionally skilled puppeteers 
animated a group of puppets using hidden, underwater 
controls while performing Vietnamese legends. Although 
the puppeteers focused only on their own controlled 
puppets, they always stayed perfectly synchronized since 
they followed well-prepared instructions from a 
choreographer. The choreographer received instructions 
from the director, who actually breathed life into the 
legends told by storytellers. 

 In digital storytelling it is common to use a 
hierarchical structure similar to that used in a theater [18] 
since these terms, which often represent complex system 
components, are familiar even to non-technical people. 
Although the comparison is not novel, we found that tasks 
to control AR agents can be divided into discrete groups 
which closely match the layers of a puppet theater’s 
multilevel structure. We therefore borrowed the stage 
metaphor for AR spaces, story metaphor for applications, 
puppet metaphor for AR agents and puppeteer, 
choreographer and director metaphors for various control 
logics. Interaction is performed by the storyteller, who 
also assures that the story proceeds in the desired 
direction. These components build up our hierarchical 
animation framework (see Figure 6), which we call AR 
Puppet. Each component’s role in controlling our agents 
is now briefly explained. 
 

 
 

Figure 6. Overview of the AR Puppet framework 

 
4.1. Puppet 
 

The bottommost component is the puppet level. A 
puppet stands for one representation of an AR agent, 
which, as described in Section 3.1, can be physical, 
virtual or augmented, and may appear on various 
platforms ranging from an HMD to a PDA. Although they 
all may require different implementation, low-level 

communication and visualization (e.g. level of detail), 
they belong together since they refer to the same entity, 
namely an AR agent. 

We created some animated agents to experiment with 
the framework including an affective facial agent, a 
character based on the Quake2 game’s MD2 format, an 
augmented LEGO Mindstorms robot and a skeleton-based 
animated character built on the open source library Cal3D 
[19]. The latter character is capable of the import and 
display of high-quality animation exported from 3D 
Studio MAX’s Character Studio, allowing for unlimited 
animation possibilities. It also allows direct access to 
bones, which permits inverse kinematics and the linking 
of objects to joints, for example to pick up and carry an 
object. 
 
4.2. Puppeteer 
 

On the next level the puppeteer is the component that 
groups puppets together and controls a selected set of 
agent representations at the same time. It knows exactly 
“which strings to pull”, that is how to implement higher-
level instructions for each puppet to obtain the desired 
effect. The puppeteer has the following responsibilities: 
 
• Providing a unified command interface, which 

allows scripting of physical and virtual objects. A 
default implementation is provided for a predefined 
set of commands like go to, turn to, point at, etc., 
which can be overloaded by derived objects. 

• Customization of default parameters of virtual 
sensors (e.g. viewing frustum parameters, hearing 
sphere radius, bounding volume). 

• Support for new tracking modalities like pose and 
internal status 

• Support for idle behavior 
• Command adaptation 
 

Command adaptation means that high-level puppeteer 
commands need to be tailored to the capabilities of its 
puppets. This is necessary in the following cases: 
 

Switching between representations: If one agent 
representation becomes unavailable, it needs to be turned 
off and another (or several) turned on. If the physical 
representation of a machine is broken or malfunctioning, 
we can switch to its virtual representation simulating the 
appearance and behavior of the real object. 

Communication: Commands have to be transmitted 
to puppets, which requires low-level communication 
management (open/close/recover connection, send/ 
receive data) with mobile and remote devices using 
various protocols (TCP/IP, IrDA, MIDI etc.). 



Device adaptation: A character has more freedom to 
move around when it appears on an HMD than on the 
screen of a mobile device, therefore certain motions 
cannot be performed. Instead of moving and pointing to a 
3D location, a PDA agent could just give a visual or audio 
hint about its whereabouts. 

Animation parameter adaptation: A high-level 
motion command requires adaptation of animation 
parameters. For instance if a character has to move to a 
distant location but a walking animation would appear 
unnatural within the allowed time interval, a running or 
flying animation sequence should be triggered.  

Motion constraint adaptation: The puppeteer 
facilitates the puppets’ adaptation to motion constraints 
like terrain and path following. 
 
4.3. Choreographer 
 

While puppeteers focus only on their respective 
puppets, the choreographer has a general overview of all 
puppeteers and their attributes. This level does not deal 
with character-specific details but uses high-level 
commands like “go to my printer and point at the paper 
tray that has become empty”. In a highly dynamic 
environment such as AR users move around and work 
with different applications, objects are displaced and 
devices may malfunction, low-level information like 
absolute coordinates and internal status constantly 
change. Consequently this dynamic information needs to 
be hidden from users and applications, as they deal solely 
with abstract names and spatial references. The tasks of 
the choreographer are centered around resolving these 
references: 
 
• Command parsing and substitution: The 

component parses object attribute references in an 
object.attribute format, which substitutes the current 
value in the command sent to puppeteers. For 
example: “go near printer.position, point at 
printer.lastError.position” 

• Motion planning: The choreographer is aware of all 
objects between the source and target of a moving 
agent, therefore it is able to plan the motion to avoid 
these obstacles. 

• Feedback for synchronization: If feedback is sent 
whenever a group of puppeteers finishes command 
execution, multiple agents in the same application 
can wait for one another, thus maintaining 
synchronization. For example a virtual repairman 
stops drawing attention to the printer’s paper tray 
once as it is refilled. 

  
 

4.4. Director 
 

The director represents the level of application logic 
and interaction. This component drives the “story”, the 
application, forward based on choreographer events and 
feedback, user interaction and scripted behavior. 
Although all agents can be configured statically before 
running an application, in an AR scenario we are aiming 
at dynamic configuration. 

An innovative way to configure AR agents is using the 
Personal Universal Controller (PUC) [20]. All agents 
need to provide an XML-based description of their 
relevant, configurable attributes and their supported 
commands together with the command syntax. All 
characters run a PUC service, they are listening to 
incoming connections from PUC clients. A PUC client is 
able to render a Graphical User Interface (GUI) to control 
attributes that are described in the description, and are 
implemented on various devices and platforms including 
PCs, PDAs and smartphones. Figure 7 shows a control 
GUI rendered on a PocketPC. By checking the “skeleton” 
control checkbox (marked with an ellipsoid) the user 
changes the rendering mode from mesh to skeleton mode 
allowing observation of the underlying bone structure. 
One PUC service can accept multiple clients, which 
allows collaborative, multi-user configuration. 
 

 
Figure 7. Animated character bound to a tangible 
optical marker and controlled by a PUC generated 

interface on a PocketPC (monitor + PDA screenshots) 

Mobile devices implementing the PUC technology 
provide an intuitive way to configure AR agents as the 
user can simply walk up to an agent in her physical 
environment, and connect to it in order to query its PUC 
description, and then tweak attributes using the GUI that 
has been generated on the fly. If the character exposes the 
commands it understands together with their syntax in the 
XML description, a template can be generated with which 
the user can directly test the effect of script commands. 
 
4.5. Storyteller / Author 
 

The storywriter is a meta-component representing the 
author creating the application or story, and has only an 
abstract view of the components and the story flow.  
 



4.6. Integration with applications 
 

It has always been a challenge for interface agents to 
monitor the current state of the application in which they 
are embedded, and the behavior of the users they are 
interacting with, without modifying the application itself. 
One of the most powerful aspects of the AR Puppet 
framework is the easy way current applications and users 
can be monitored, which is grounded in the architecture 
of our AR platform Studierstube [21], a middleware 
allowing for a wide range of distributed collaborative 
multi-user AR applications.  

Both Studierstube and AR Puppet have been built on 
the multiplatform high-level 3D graphics API Open 
Inventor. Inventor is based on a scene graph database, 
where all entities are scene graph objects interacting with 
one another via input and output attributes or “fields”. AR 
applications, users and components of the AR Puppet are 
all parts of the same hierarchical scene graph, therefore 
they can monitor one another’s fields and immediately 
respond to changes. A disadvantage of our AR platform is 
the lack of support for legacy applications. Interfaces to 
legacy applications must be implemented on a case-by-
case basis. 

Users have fixed, standard attributes like current 
tracked pose and display type. Their actions can be 
monitored through tracked interaction devices. Animated 
agents in the AR Puppet framework are thus always 
aware of the application users’ pose and behavior. 

Applications and agents should be prepared to interact 
with one another. If an application is to have the 
possibility to host agents, then it must supply them with 
functionality to exist: 
 
• Dynamic addition and mobility of agents 

A choreographer component has to be added to the 
scene graph, which can dynamically add/remove, enable/ 
disable agent representations supporting mobility. 
• Monitoring the application’s current state 

Agents need to be aware of the current state of 
applications. This internal state has to be mapped to a 
vector of attribute values, which can be easily observed 
by agents and the director component. Therefore we need 
to mark relevant attributes in the application’s scene 
graph with a special tag, which is a quick and mechanical 
task in Open Inventor. When placed into an application, 
the agent can easily retrieve and query the marked 
attributes. Figure 8 shows the mark-up of our demo 
application for an agent.  
 
5. AR Lego – a pilot application 
 

Our pilot application demonstrates the features of AR 
Puppet and implements a traditional AR scenario: 

machine maintenance with a remote operator. Two AR 
agents are employed to educate an untrained user to 
assemble, test and maintain machines composed of active 
(engines and sensors) and passive (cogwheels, gears, 
frames) parts. The two agents are a real, augmented 
LEGO Mindstorms robot and a virtual repairman.  An 
expert located at a remote site communicates with the 
local user and monitors her progress with the help of our 
in-house AR videoconferencing system described in [22], 
which serves as a remote augmented window onto the 
user’s physical environment. This window displays a live 
video stream of a tracked camera placed in the user’s 
workspace and renders audio captured by a microphone. 
Audio and video data are transmitted to the remote expert 
via the videoconferencing module. Tracking data used to 
render virtual content on the local user’s display is sent 
separately, so that the repairman character and virtual 
LEGO tiles are correctly superimposed on top of the live 
video stream on the remote side as well. The local user 
can freely move the camera around, giving different 
viewpoints for observation. 

The remote operator has no direct control over the 
local physical environment, as her presence is only 
virtual. This causes difficulties in correctly identifying 
and highlighting objects in the local user’s workspace. 
Reference to objects in the real environment can be 
achieved either by using an awkward 3D pointer or by the 
user’s active resolution of ambiguous verbal spatial 
references like “mount the large cogwheel on right of the 
front axis” or “turn the robot around and trigger the 
leftmost push sensor”. As pointed out by Pfeiffer et al. 
[23], humans use several competing reference frames in 
task-oriented dialogs including a user-oriented, 
communication partner-oriented and object feature-
oriented view. This ambiguity imposes undesired and 
tedious synchronization between the two users. 
 
5.1. Virtual repairman 
 

Animated AR agents are a good choice for solving this 
issue, since they can serve as autonomous telepointers and 
explain about other objects with expressive, natural 
gestures in the vicinity of significant physical locations. 
By monitoring the attributes of the LEGO assembly appli-
cation’s interface object (see Figure 8), the AR Puppet 
framework is able to automatically generate behavior for 
the animated virtual repairman (see Figure 9). 

 The assembly application’s interface object provides 
the agent with all the relevant information about the next 
building block to be mounted. It outputs the current 
construction step so that the agent is aware of the user’s 
progress, i.e. what was and needs to be constructed. Based 
on relevant information the appropriate LEGO block is 
generated, which is then linked to the agent’s hands. 



 
Figure 8. Application attributes controlling            

agent behavior 
 

 
 

 
Figure 9. Virtual repairman as an assembly assistant: 
a) Introducing the next building block b) Mounting the 

next block on the actual physical robot 

 
If the size parameter of the block is below a certain 

threshold, the object is linked to and carried in one hand, 
otherwise it is held in both hands because the object has 
been perceived as “heavy”. The position of the next block 
allows the movement from the agent’s current location to 
the tile’s target location to be planned without bumping 
into the already constructed model. The block’s suggested 
orientation instructs the agent to put the block into the 
correct pose before mounting.  

Finally, the virtual block is added to the real robot 
using either a default gesture or special gesture sequences 
(e.g. turn around, push in, twist) if an animation hint is 
provided. There are steps that do not include any LEGO 

blocks, e.g. instructing the user to turn the construction 
around if the robot’s relative orientation hides important 
details for the next step. 
 
5.2. LEGO robot 
 

Engines and sensors (push, light, rotation, temperature 
etc.) are important components of the robot since 
misconnection or misconfiguration would lead to 
erroneous behavior. It is desirable that the user can 
quickly verify whether they are connected and 
functioning correctly. By turning our physical robot into 
an AR agent, these tests become intuitive. The robot agent 
is able to accept commands from the assembly application 
and synchronize them with the repairman. This means 
that as soon as the user finishes mounting an engine, the 
robot attempts to turn the engine on. In case of incorrect 
behavior, the current or previous construction steps have 
to be repeated. Sensors are equally important entities. As 
soon as they are mounted, the user is invited to test them, 
for example by pushing, holding a color plate, etc. while 
watching the results of the sensor query commands. 
Structure and appearance cannot be verified since most 
LEGO tiles are passive. However, the current model can 
be shown to the expert using the augmented 
videoconference window, who can remotely give advice 
and hints using natural gestures and voice instructions.  

LEGO-like tangible interfaces for real-time interaction 
have already inspired researchers [24]. Using a LEGO 
Mindstorms robot appears to be an appropriate choice to 
build and test machine prototypes for the following 
reasons: 
 
• It is easy to build and export a precise virtual 

counterpart of new robot models using a free LEGO 
CAD editor [25], therefore there is a smooth 
modeling pipeline. 

• A “central brain” unit, called RCX, is able commu-
nicate with a PC running the AR Puppet framework 
with infrared commands using a communication 
tower, which makes controlling and monitoring 
straightforward. The RCX can set and query engine 
parameters like on/off state, voltage and direction, 
configure and query various sensors, and send status 
information like acknowledgement of a finished 
command, battery power and other useful data.  

• LEGO is fun to work with and is familiar to many 
people. 

 
To correctly overlay virtual information, we need to 

track the current construction’s pose in the physical 
environment. Mounting the tracking marker structure on 
the RCX is an obvious choice since this is the basic 
building block present in all interactive robots. It contains 



important control buttons and an LCD display, which 
should not be covered by tiles, so there is always free 
space for the mounting of markers, which are integrated 
into LEGO bricks. 
 
5.3. Interaction 
 

Both the local and the remote user are able to interact 
with the assembly application and the LEGO robot in 
real-time using a tracked PDA, which acts as a multi-
purpose interaction device (see Figure 10). Firstly, it 
serves as a tangible, physical interface to move the virtual 
repairman and virtual LEGO tiles around in the physical 
environment. However, it also renders a PUC-based GUI 
on the PDA screen, which can be used to move between 
the assembly steps and control the LEGO robot’s engines 
and sensors. The brightness of the PocketPC’s display 
also allows easy viewing by HMD users. The PDA has a 
wireless network card for cable-free interaction and a 
tracking marker structure mounted on the back of the 
case. 

We exploit the fact that we are aware of the current 
pose of the PocketPC to create the following gestures in 
the application: 

1.) The virtual repairman holds the next block in the 
construction while standing on the local user’s PDA. The 
user can freely observe it from all angles by moving the 
device around. As soon as she places the PDA near the 
real robot, the character moves from the PDA’s local 
coordinate system into the physical LEGO robot’s local 
coordinate system and starts explaining where to place the 
LEGO tile and how.  

2.) After the explanation is finished, the user can pick 
up the character again with the PDA, which binds it to the 
PDA again and commands it to display the next building 
block. 

3.) The local user places her PDA with the repairman 
near  the  tracked monitor displaying  the  videoconferenc- 
 

 
Figure 10. Tracked PocketPC as a multi-purpose 
interaction device:  (left) Tangible interface in a 

screenshot of the AR LEGO application (right) PDA 
screen capture of the LEGO robot’s control GUI 

 

ing window. This serves as an indication to the system 
that she wants to “send” the current block over to the 
remote user for further observation. The virtual model of 
the next block is copied and immediately appears on top 
of the remote operator’s PDA, and can be freely moved 
around on the operator’s display. 
 
 

5.4. Work environment and interaction 
 

The local user sits at a table with a box of spare LEGO 
bricks. Near the box is the monitor showing the remote 
operator’s videoconference window. The local user wears 
a tracked helmet equipped with an HMD and a headset 
for voice communication, and holds her interaction device 
in her hand. The room is equipped with a high-quality 
optical tracking system, which tracks the user’s head, her 
PocketPC interaction device, the RCX of the LEGO robot 
and the camera for videoconferencing.  

The remote user has a desktop-based AR setup 
consisting of an ordinary monitor and a webcam to 
optically track an ARToolKit marker mounted on the 
PDA. The monitor displays the local and the remote 
user’s videoconference window. Figure 11 shows a 
snapshot of the local user’s work environment. 
 
 

6. Conclusion and future work 
 

We have created a hierarchical animation framework 
for Augmented Reality agents called AR Puppet, which 
combines several research areas into a single coherent 
human-computer interface paradigm. We have made the 
following contributions: 
 

1.) AR Puppet is the first general framework for 
autonomous animated agents that has been developed 
specifically for AR applications. The framework has been 
built on a powerful middleware, which allows 
experimentation with a wide range of applications, 
tracking technology, platforms and displays. 
 

 
Figure 11. Work environment of local user 



2.) The framework has examined agent-specific 
aspects of AR. New modalities enabled by the physical 
environment have been exploited in animated agent 
behavior and autonomous behavior has been added to an 
AR application at low cost by marking relevant 
attributes of an application scene graph. Agents can 
easily monitor and thus react to user interaction and 
changes in the application state. 

3.) Physical objects can be turned to intelligent, 
responsive agents and used as input and output devices 
in AR environments. Consequently, the agents of AR 
Puppet can not only talk back but “hit back” as well. A 
unified command interface allows physical and virtual 
objects to be scripted in the same way. 

4.) AR Puppets are dynamically configurable, their 
attributes and command fields can be intuitively 
controlled through mobile devices. 
 

We believe that animated agents bring new challenges 
and fresh perspectives for AR. In the near future we plan 
detailed evaluation of AR agents examining the following 
aspects: 
 
• Psychology: effectiveness of various gestures, 

amount of autonomy allowed, amount of 
anthropomorphic features in appearance and behavior 

• Usability: display and interaction types, user 
acceptance 

• Interface: size of the character, placement of the 
character on the right spot: informative, not obtrusive 

 
Another important aspect is the implementation of 

agent memory. This means that relevant samples of 
application states and agent decisions can be stored in a 
database, and later recalled by a query. Thereby AR 
agents become persistent and remember their obtained 
knowledge and the users’ latest application profiles. 
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