
Agents That Talk And Hit Back: Animated Agents in Augmented Reality

István Barakonyi, Thomas Psik, Dieter Schmalstieg
Vienna University of Technology

{ bara | tomp | schmalstieg } @ ims.tuwien.ac.at

Abstract

AR Puppet is a hierarchical animation framework for
Augmented Reality agents, which is a novel research area
combining Augmented Reality (AR), Sentient Computing
and Autonomous Animated Agents into a single coherent
human-computer interface paradigm. While Sentient
Computing systems use the physical environment as an
input channel, AR outputs virtual information superim-
posed on real world objects. To enhance man-machine
communication with more natural and efficient
information presentation, this framework adds animated
agents to AR applications that make autonomous
decisions based on their perception of the real
environment. These agents are able to turn physical
objects into interactive, responsive entities collaborating
with both anthropomorphic and non-anthropomorphic
virtual characters, extending AR with a previously
unexplored output modality. AR Puppet explores the
requirements for context-aware animated agents
concerning visualization, appearance, behavior, in
addition to associated technologies and application
areas. A demo application with a virtual repairman
collaborating with an augmented LEGO® robot
illustrates our concepts.

1. Introduction

Body and facial gestures as well as speech are familiar
and widely accepted means of human communication.
Animated characters, often with autonomous and
affective behavior, have proved to be very useful in man-
machine communication since they are able to exploit and
deliver information through multimodal channels and thus
engage the user in a natural conversation. Autonomous
agents have been actively researched in recent years as an
interface to computerized systems bridging the communi-
cation gap between man and computer, and the real and
virtual world. Augmented Reality (AR) applications share
the same goal through enhancement of the real
environment with useful virtual information, where
virtual objects appear to coexist with the real world.

Software applications utilize various input and output
channels for interaction (see Figure 1). Autonomous

agents are capable of making their own decisions based
on their perception of the environment.

If placed in an AR scenario, these agents form a
Sentient Computing system [1] since they maintain a
model of the real world obtained through sensors, which
influences their behavior. Using physical properties such
as pose, velocity, temperature or light as input interaction
channels, agents are allowed to react to changes in the
environment in accordance with the users’ perception.
Autonomous, emergent behavior is a novel feature in AR,
while awareness of real world attributes is yet unexploited
by autonomous agents.

Virtual animated characters enhance human-computer
interaction with natural communication symbols such as
body and facial gestures. Although AR supports the
collaborative involvement of real humans, “human
agents” are not always available due to spatial, temporal
or financial constraints, therefore synthetic agents must be
used. Anthropomorphic agent representations can be
particularly useful in situations where human assistance
would be normally required.

While traditional desktop agents base their behavior on
virtual inputs from a mouse, keyboard or by speech
recognition, AR applications track and exploit qualities of
the physical environment. The output channel in classic
AR scenarios superimposes virtual information on top of
real world objects.

We argue that real world attributes can become novel
input and output communication modalities and allow
new behavioral patterns for animated agents in AR
environments that were not possible previously with desk-

Figure 1. Input and output methods

top-based agents. By turning physical objects into
interactive, responsive entities collaborating with both
anthropomorphic and non-anthropomorphic virtual
characters, AR can explore output channels hitherto
unexploited. Physical objects become agents that not only
talk back but also “hit back”.

Our research combines the aforementioned domains of
AR, Autonomous Animated Agents and Sentient
Computing, yielding a novel, coherent human-computer
interface paradigm, which we call Augmented Reality
Agents. We explore the implications of AR scenarios on
animated agents concerning their appearance, behavior,
application areas and associated technologies. After
describing related research and our animation framework
AR Puppet, we demonstrate our concepts with a sample
application.

2. Related work

Virtual Reality (VR) is a more mature field than AR
and has consequently already explored new interaction
techniques involving animated agents, therefore it
provides many useful ideas. One of the outstanding VR
examples is the Jack animation system from Noma et al.
[2] that allows animated virtual human figures to be used
in a wide range of situations from military trainings to
virtual presentations. The Improv system [3] creates a
novel interactive theater experience with real-time virtual
actors on a virtual stage. The autonomous pedagogical
agent of Rickel and Johnson [4] called Steve operates as a
virtual trainer in an immersive VR environment
presenting complex interactive, educational machine
maintenance scenarios.

Although users of these VR systems may have a strong
sense of coexistence with virtual objects, they lack a
connection to the real environment, as provided in AR
systems. An early AR application providing character
support is the ALIVE system [5], where a virtual
animated character composited into the user’s real
environment responds to human body gestures on a large
projection screen. This type of display separates the user’s
physical space from the AR environment, which demands
carefully coordinated user behavior. The Welbo project
[6] features an immersive setup, where an animated
virtual robot assists an interior designer wearing an HMD.
However, the character lacks a tangible physical
representation and can only interact with virtual objects.
The idea of the Steve agent recurs in an AR setting in the
EU project, STAR [7], which aims to enhance service and
training in real factory environments using virtual
humans. Their robust machine maintenance scenario is a
similar idea to our demo application, however, their

system acts as an animated guided presentation, not a
responsive interactive system.

AR has started to step beyond the usual instructional
and presentational domain and is now being used to
explore new application fields, for which animated agents
open new perspectives. MacIntyre et al. [8] make the
point that a new media, such as AR, starts to gain wider
public acceptance once it enters the game, art and
entertainment domain. Their interactive theater
experience places prerecorded video-based actors into an
AR environment. The characters do not possess any
autonomy, as their behavior is scripted, and interaction is
limited to changing viewpoints and roles in the story.
Cheok et al. [9] also experiment with Mixed Reality
entertainment with live captured 3D characters, which
enable real persons’ telepresence in a Virtual or
Augmented Reality setting but without any control of the
environment. Cavazza et al. [10] place a live video avatar
of a real person into a Mixed Reality setting, and interact
with a digital storytelling system with body gestures and
language commands.

Balcisoy et al. [11] experiment with interaction
techniques with virtual humans in Mixed Reality
environments, which play the role of a collaborative game
partner and an assistant for prototyping machines.
ARQuake [12] recreates the famous first-person shooting
game in a real campus setting using a mobile AR setup,
where the user has to shoot virtual monsters lying in
ambush behind real buildings, and uses a tangible
interface to fire virtual weapons. All three systems above
exploit real world properties to control the virtual world,
however, physical objects always act as passive
background, rather than active performers.

Animated characters and agents are appearing more
and more frequently on mobile devices. The portability of
a PDA or a mobile phone offers dynamic characteristics
that enable agents to step out from static environments
like a computer screen, and exploit mobile features such
as current location and context. An early appearance of
context-aware interface agents on mobile devices can be
found in the work of Mase et al. [13]. They employed
simple 2D characters as tour guides to deliver location-
based information on portable PCs and PDAs. Gutierrez
et al. [14] use a PocketPC device to control the
appearance and body posture of animated 3D characters
of a large VR framework through standard MPEG-4
parameters. Kruppa et al. [15] introduce a ”multi-device“
presentation agent that is able to “jump” from one device
to another (e.g. from a PDA to a large display) to draw
the attention to a certain feature. As described later, we
use PDAs as multi-purpose interaction devices that serve
simultaneously as platforms for agents to appear and an
interface to dynamically control their behavior.

3. AR implications on animated agents

With the exception of the DART system by MacIntyre
et al. [16], which is an authoring framework for AR
applications enhancing a commercial multimedia
authoring tool, all of the related researches are bound to a
single application and technology, and lack a general
approach to create a reusable framework. Moreover, none
of them consider physical entities as equal, active partners
of virtual characters in dialogs, as they were
predominantly used as passive objects like 3D pointers,
tracking aids or interaction devices.

Our main goal is to create a set of software
components that allow easy enhancement of AR
applications with animated agents. Additionally, we want
to turn physical objects like a robot, a printer or a digital
piano into context-aware, interactive responsive agents
that perform various tasks with digital actors, virtual
presenters and other synthetic visual elements.

Augmented Reality raises new challenges and offers
novel features that can be exploited by animated agents.
These implications can be divided into two categories:
representation and behavior.

3.1. Representation

AR agents are embodied as three-dimensional virtual
or physical objects. They share users’ physical
environment, in which they can freely move using all 6
degrees of freedom. Virtual agents in AR scenarios
appear to have a solid, tangible body that can be observed
from an arbitrary viewpoint, thus becoming integral parts
of the physical environment. Virtual objects are typically
animated characters but are not necessarily anthropo-
morphic. In some AR applications a fully fledged virtual
human can be more distracting than a simple animated
arrow that may communicate more information.
Therefore, we experiment with various character forms.

A novel and exciting new aspect of AR agents is that
physical objects like a printer, a digital piano or an
interactive robot can be turned into intelligent, responsive
entities that collaborate with virtual characters. If we track
and monitor relevant physical attributes and process this
data, attribute changes can generate events that can be
interpreted by other agents and application logic. Using
network packets, infrared messages, MIDI code
sequences or other means of low-level communication,
physical objects can not only be queried for status
information but can also be controlled by external
commands. Therefore physical objects act as input and
output devices in AR spaces.

The combination of the real and virtual representation
results in the augmented representation. This assumes the
presence of a physical representation and only

superimposes necessary virtual information. Virtual agent
representations may have an associated tracked physical
object, which serves as a tangible control interface, while
this is a prerequisite for augmented agent representations.
Screenshots in Figure 2 illustrate three different
representations of a LEGO robot.

The augmented representation also helps overcome the
problem of correct visual occlusion. This means that we
should ensure that physical objects placed between the
user’s viewpoint and virtual agents appear to cover parts
of the virtual objects behind. This issue can be easily
supported by tracking the occluding object’s pose and
associating it with an augmented representation that only
renders an approximate virtual model into the depth
buffer at the right location. Figure 3 provides illustration.

Figure 2. Physical, augmented and virtual
representations of a LEGO® Mindstorms robot

Figure 3. An augmented real LEGO robot detects

collision with a virtual cartoon character (screenshot).
Note the correct occlusion by the physical robot.

Figure 4. Virtual presenter agent appearing on

different displays and devices

In AR scenarios users are mobile, traveling between
different physical locations and hardware setups,
therefore they require cross-platform, mobile assistants.
AR agents can “live” on several devices and displays, like
HMDs, projection screens, PDAs (see the talking head
agent in Figure 4) or more recently mobile phones. Each
has its own local coordinate system placed into the global
coordinate system of the user’s physical environment. AR
agents are able to smoothly travel between devices and
coordinate systems.

3.2. Behavior

An AR agent interacts in real-time with other agents in
the same or remote AR spaces, with users working with
collaborative applications, and the applications they are
embedded into. In addition to their capability of executing
scripts, they possess a certain autonomy, which means
they watch and automatically react to changes in the
properties of AR spatial objects.

The scheme represented in Figure 5 depicts the
interaction flow of autonomous agents within an AR
scenario. The agent monitors the physical and virtual
world, facilitated by physical and virtual sensors. While
processing the information from light, push, angular or
temperature sensors is obvious, implementing a
perception capacity for virtual entities is non-trivial.
Examples of virtual sensors include the following:

Agents can “see” users or other agents when their
bounding box intersects with the viewing volume
associated with the agent’s virtual eyes, which may be a
single frustum or several frustums, a box, or even
unbounded space. Once in the viewport, agents start
observing the position, orientation and hence velocity of
users, interaction devices, agents and other physical and
virtual objects. AR applications are also associated with a
physical position and orientation since their working
volume usually augments only a subspace of the real
environment.

The agent can “hear” a sound object if the sound
source’s propagation volume intersects with the agent’s
hearing volume (typically spheres).

Touching is modeled by collision detection, therefore
we need to properly calculate bounding volumes for both
physical and virtual items. Figure 3 shows the
visualization of a virtual touch sensor for a real object
(see the bounding box of the LEGO robot) and the virtual
eyesight of a virtual cartoon character (see the wireframe
viewing frustum). Some physical entities such as displays
may not make use of a precise bounding box but instead a
predefined “hotspot” area not related to physical bound-
aries, which triggers events once something is inside.

Agents can be equipped with object and application-
specific sensors that examine application attributes, GUI
input, and internal state information of virtual objects
(e.g. the emotional state of a virtual human) and physical
objects (e.g. an error message of a printer).

Perception is followed by processing of incoming
information. With the assistance of an internal simulation
model, the agent performs actions in response to input
events. Traditional multimodal output channels can be
opened between users and agents such as non-verbal
communication (facial and body gestures), speech
synthesis and recognition. However, AR offers novel,
compelling modalities involving pose, velocity and status
information of objects. The physical location agents
inhabit, the direction they are looking into and the object
they control all convey important context. These new
modalities enable a wide range of new behavioral
patterns, such as the following:

1.) The user places a character into the physical
working volume of an application. The character receives
an event with the identity of the user and the application,
and loads the user’s application-specific profile and the
state in which she last left the application. The character
continues to work with this application.

2.) A virtual presenter is working with a user in an
immersive AR setup and wears an HMD. She decides to
work in another room with a projection screen suitable for
a larger audience. She takes a pose-tracked PDA, moves it
close to the character and “picks it up”. The character
continues to “live” on the PDA screen until it is carried
over to the projection screen in the other room. It then
becomes aware of the new environment and jumps to the
projection screen, where the same application is running,
maintaining the state of the user’s work.

3.) A machine in a large PC cluster starts
malfunctioning. Firstly, a virtual repairman character
identifies the computer in the cluster room, then leads the
human operator to the physical location. Once in the
vicinity, the repairman points out the possible sources of
error on the machine itself. An explanation is only begun
once the operator looks at the repairman, in order to
ensure appropriate attention and focus. The machine
sends feedback to the repairman when it is back to its
normal state.

Figure 5. Autonomous behavior scheme

4. AR Puppet framework

One of the authors had the chance to admire the
famous water puppet theater (“mua roi nuoc”) in Hanoi,
Vietnam [17], where exceptionally skilled puppeteers
animated a group of puppets using hidden, underwater
controls while performing Vietnamese legends. Although
the puppeteers focused only on their own controlled
puppets, they always stayed perfectly synchronized since
they followed well-prepared instructions from a
choreographer. The choreographer received instructions
from the director, who actually breathed life into the
legends told by storytellers.

 In digital storytelling it is common to use a
hierarchical structure similar to that used in a theater [18]
since these terms, which often represent complex system
components, are familiar even to non-technical people.
Although the comparison is not novel, we found that tasks
to control AR agents can be divided into discrete groups
which closely match the layers of a puppet theater’s
multilevel structure. We therefore borrowed the stage
metaphor for AR spaces, story metaphor for applications,
puppet metaphor for AR agents and puppeteer,
choreographer and director metaphors for various control
logics. Interaction is performed by the storyteller, who
also assures that the story proceeds in the desired
direction. These components build up our hierarchical
animation framework (see Figure 6), which we call AR
Puppet. Each component’s role in controlling our agents
is now briefly explained.

Figure 6. Overview of the AR Puppet framework

4.1. Puppet

The bottommost component is the puppet level. A
puppet stands for one representation of an AR agent,
which, as described in Section 3.1, can be physical,
virtual or augmented, and may appear on various
platforms ranging from an HMD to a PDA. Although they
all may require different implementation, low-level

communication and visualization (e.g. level of detail),
they belong together since they refer to the same entity,
namely an AR agent.

We created some animated agents to experiment with
the framework including an affective facial agent, a
character based on the Quake2 game’s MD2 format, an
augmented LEGO Mindstorms robot and a skeleton-based
animated character built on the open source library Cal3D
[19]. The latter character is capable of the import and
display of high-quality animation exported from 3D
Studio MAX’s Character Studio, allowing for unlimited
animation possibilities. It also allows direct access to
bones, which permits inverse kinematics and the linking
of objects to joints, for example to pick up and carry an
object.

4.2. Puppeteer

On the next level the puppeteer is the component that
groups puppets together and controls a selected set of
agent representations at the same time. It knows exactly
“which strings to pull”, that is how to implement higher-
level instructions for each puppet to obtain the desired
effect. The puppeteer has the following responsibilities:

• Providing a unified command interface, which

allows scripting of physical and virtual objects. A
default implementation is provided for a predefined
set of commands like go to, turn to, point at, etc.,
which can be overloaded by derived objects.

• Customization of default parameters of virtual
sensors (e.g. viewing frustum parameters, hearing
sphere radius, bounding volume).

• Support for new tracking modalities like pose and
internal status

• Support for idle behavior
• Command adaptation

Command adaptation means that high-level puppeteer
commands need to be tailored to the capabilities of its
puppets. This is necessary in the following cases:

Switching between representations: If one agent
representation becomes unavailable, it needs to be turned
off and another (or several) turned on. If the physical
representation of a machine is broken or malfunctioning,
we can switch to its virtual representation simulating the
appearance and behavior of the real object.

Communication: Commands have to be transmitted
to puppets, which requires low-level communication
management (open/close/recover connection, send/
receive data) with mobile and remote devices using
various protocols (TCP/IP, IrDA, MIDI etc.).

Device adaptation: A character has more freedom to
move around when it appears on an HMD than on the
screen of a mobile device, therefore certain motions
cannot be performed. Instead of moving and pointing to a
3D location, a PDA agent could just give a visual or audio
hint about its whereabouts.

Animation parameter adaptation: A high-level
motion command requires adaptation of animation
parameters. For instance if a character has to move to a
distant location but a walking animation would appear
unnatural within the allowed time interval, a running or
flying animation sequence should be triggered.

Motion constraint adaptation: The puppeteer
facilitates the puppets’ adaptation to motion constraints
like terrain and path following.

4.3. Choreographer

While puppeteers focus only on their respective
puppets, the choreographer has a general overview of all
puppeteers and their attributes. This level does not deal
with character-specific details but uses high-level
commands like “go to my printer and point at the paper
tray that has become empty”. In a highly dynamic
environment such as AR users move around and work
with different applications, objects are displaced and
devices may malfunction, low-level information like
absolute coordinates and internal status constantly
change. Consequently this dynamic information needs to
be hidden from users and applications, as they deal solely
with abstract names and spatial references. The tasks of
the choreographer are centered around resolving these
references:

• Command parsing and substitution: The

component parses object attribute references in an
object.attribute format, which substitutes the current
value in the command sent to puppeteers. For
example: “go near printer.position, point at
printer.lastError.position”

• Motion planning: The choreographer is aware of all
objects between the source and target of a moving
agent, therefore it is able to plan the motion to avoid
these obstacles.

• Feedback for synchronization: If feedback is sent
whenever a group of puppeteers finishes command
execution, multiple agents in the same application
can wait for one another, thus maintaining
synchronization. For example a virtual repairman
stops drawing attention to the printer’s paper tray
once as it is refilled.

4.4. Director

The director represents the level of application logic
and interaction. This component drives the “story”, the
application, forward based on choreographer events and
feedback, user interaction and scripted behavior.
Although all agents can be configured statically before
running an application, in an AR scenario we are aiming
at dynamic configuration.

An innovative way to configure AR agents is using the
Personal Universal Controller (PUC) [20]. All agents
need to provide an XML-based description of their
relevant, configurable attributes and their supported
commands together with the command syntax. All
characters run a PUC service, they are listening to
incoming connections from PUC clients. A PUC client is
able to render a Graphical User Interface (GUI) to control
attributes that are described in the description, and are
implemented on various devices and platforms including
PCs, PDAs and smartphones. Figure 7 shows a control
GUI rendered on a PocketPC. By checking the “skeleton”
control checkbox (marked with an ellipsoid) the user
changes the rendering mode from mesh to skeleton mode
allowing observation of the underlying bone structure.
One PUC service can accept multiple clients, which
allows collaborative, multi-user configuration.

Figure 7. Animated character bound to a tangible
optical marker and controlled by a PUC generated

interface on a PocketPC (monitor + PDA screenshots)

Mobile devices implementing the PUC technology
provide an intuitive way to configure AR agents as the
user can simply walk up to an agent in her physical
environment, and connect to it in order to query its PUC
description, and then tweak attributes using the GUI that
has been generated on the fly. If the character exposes the
commands it understands together with their syntax in the
XML description, a template can be generated with which
the user can directly test the effect of script commands.

4.5. Storyteller / Author

The storywriter is a meta-component representing the
author creating the application or story, and has only an
abstract view of the components and the story flow.

4.6. Integration with applications

It has always been a challenge for interface agents to
monitor the current state of the application in which they
are embedded, and the behavior of the users they are
interacting with, without modifying the application itself.
One of the most powerful aspects of the AR Puppet
framework is the easy way current applications and users
can be monitored, which is grounded in the architecture
of our AR platform Studierstube [21], a middleware
allowing for a wide range of distributed collaborative
multi-user AR applications.

Both Studierstube and AR Puppet have been built on
the multiplatform high-level 3D graphics API Open
Inventor. Inventor is based on a scene graph database,
where all entities are scene graph objects interacting with
one another via input and output attributes or “fields”. AR
applications, users and components of the AR Puppet are
all parts of the same hierarchical scene graph, therefore
they can monitor one another’s fields and immediately
respond to changes. A disadvantage of our AR platform is
the lack of support for legacy applications. Interfaces to
legacy applications must be implemented on a case-by-
case basis.

Users have fixed, standard attributes like current
tracked pose and display type. Their actions can be
monitored through tracked interaction devices. Animated
agents in the AR Puppet framework are thus always
aware of the application users’ pose and behavior.

Applications and agents should be prepared to interact
with one another. If an application is to have the
possibility to host agents, then it must supply them with
functionality to exist:

• Dynamic addition and mobility of agents

A choreographer component has to be added to the
scene graph, which can dynamically add/remove, enable/
disable agent representations supporting mobility.
• Monitoring the application’s current state

Agents need to be aware of the current state of
applications. This internal state has to be mapped to a
vector of attribute values, which can be easily observed
by agents and the director component. Therefore we need
to mark relevant attributes in the application’s scene
graph with a special tag, which is a quick and mechanical
task in Open Inventor. When placed into an application,
the agent can easily retrieve and query the marked
attributes. Figure 8 shows the mark-up of our demo
application for an agent.

5. AR Lego – a pilot application

Our pilot application demonstrates the features of AR
Puppet and implements a traditional AR scenario:

machine maintenance with a remote operator. Two AR
agents are employed to educate an untrained user to
assemble, test and maintain machines composed of active
(engines and sensors) and passive (cogwheels, gears,
frames) parts. The two agents are a real, augmented
LEGO Mindstorms robot and a virtual repairman. An
expert located at a remote site communicates with the
local user and monitors her progress with the help of our
in-house AR videoconferencing system described in [22],
which serves as a remote augmented window onto the
user’s physical environment. This window displays a live
video stream of a tracked camera placed in the user’s
workspace and renders audio captured by a microphone.
Audio and video data are transmitted to the remote expert
via the videoconferencing module. Tracking data used to
render virtual content on the local user’s display is sent
separately, so that the repairman character and virtual
LEGO tiles are correctly superimposed on top of the live
video stream on the remote side as well. The local user
can freely move the camera around, giving different
viewpoints for observation.

The remote operator has no direct control over the
local physical environment, as her presence is only
virtual. This causes difficulties in correctly identifying
and highlighting objects in the local user’s workspace.
Reference to objects in the real environment can be
achieved either by using an awkward 3D pointer or by the
user’s active resolution of ambiguous verbal spatial
references like “mount the large cogwheel on right of the
front axis” or “turn the robot around and trigger the
leftmost push sensor”. As pointed out by Pfeiffer et al.
[23], humans use several competing reference frames in
task-oriented dialogs including a user-oriented,
communication partner-oriented and object feature-
oriented view. This ambiguity imposes undesired and
tedious synchronization between the two users.

5.1. Virtual repairman

Animated AR agents are a good choice for solving this
issue, since they can serve as autonomous telepointers and
explain about other objects with expressive, natural
gestures in the vicinity of significant physical locations.
By monitoring the attributes of the LEGO assembly appli-
cation’s interface object (see Figure 8), the AR Puppet
framework is able to automatically generate behavior for
the animated virtual repairman (see Figure 9).

 The assembly application’s interface object provides
the agent with all the relevant information about the next
building block to be mounted. It outputs the current
construction step so that the agent is aware of the user’s
progress, i.e. what was and needs to be constructed. Based
on relevant information the appropriate LEGO block is
generated, which is then linked to the agent’s hands.

Figure 8. Application attributes controlling

agent behavior

Figure 9. Virtual repairman as an assembly assistant:
a) Introducing the next building block b) Mounting the

next block on the actual physical robot

If the size parameter of the block is below a certain

threshold, the object is linked to and carried in one hand,
otherwise it is held in both hands because the object has
been perceived as “heavy”. The position of the next block
allows the movement from the agent’s current location to
the tile’s target location to be planned without bumping
into the already constructed model. The block’s suggested
orientation instructs the agent to put the block into the
correct pose before mounting.

Finally, the virtual block is added to the real robot
using either a default gesture or special gesture sequences
(e.g. turn around, push in, twist) if an animation hint is
provided. There are steps that do not include any LEGO

blocks, e.g. instructing the user to turn the construction
around if the robot’s relative orientation hides important
details for the next step.

5.2. LEGO robot

Engines and sensors (push, light, rotation, temperature
etc.) are important components of the robot since
misconnection or misconfiguration would lead to
erroneous behavior. It is desirable that the user can
quickly verify whether they are connected and
functioning correctly. By turning our physical robot into
an AR agent, these tests become intuitive. The robot agent
is able to accept commands from the assembly application
and synchronize them with the repairman. This means
that as soon as the user finishes mounting an engine, the
robot attempts to turn the engine on. In case of incorrect
behavior, the current or previous construction steps have
to be repeated. Sensors are equally important entities. As
soon as they are mounted, the user is invited to test them,
for example by pushing, holding a color plate, etc. while
watching the results of the sensor query commands.
Structure and appearance cannot be verified since most
LEGO tiles are passive. However, the current model can
be shown to the expert using the augmented
videoconference window, who can remotely give advice
and hints using natural gestures and voice instructions.

LEGO-like tangible interfaces for real-time interaction
have already inspired researchers [24]. Using a LEGO
Mindstorms robot appears to be an appropriate choice to
build and test machine prototypes for the following
reasons:

• It is easy to build and export a precise virtual

counterpart of new robot models using a free LEGO
CAD editor [25], therefore there is a smooth
modeling pipeline.

• A “central brain” unit, called RCX, is able commu-
nicate with a PC running the AR Puppet framework
with infrared commands using a communication
tower, which makes controlling and monitoring
straightforward. The RCX can set and query engine
parameters like on/off state, voltage and direction,
configure and query various sensors, and send status
information like acknowledgement of a finished
command, battery power and other useful data.

• LEGO is fun to work with and is familiar to many
people.

To correctly overlay virtual information, we need to

track the current construction’s pose in the physical
environment. Mounting the tracking marker structure on
the RCX is an obvious choice since this is the basic
building block present in all interactive robots. It contains

important control buttons and an LCD display, which
should not be covered by tiles, so there is always free
space for the mounting of markers, which are integrated
into LEGO bricks.

5.3. Interaction

Both the local and the remote user are able to interact
with the assembly application and the LEGO robot in
real-time using a tracked PDA, which acts as a multi-
purpose interaction device (see Figure 10). Firstly, it
serves as a tangible, physical interface to move the virtual
repairman and virtual LEGO tiles around in the physical
environment. However, it also renders a PUC-based GUI
on the PDA screen, which can be used to move between
the assembly steps and control the LEGO robot’s engines
and sensors. The brightness of the PocketPC’s display
also allows easy viewing by HMD users. The PDA has a
wireless network card for cable-free interaction and a
tracking marker structure mounted on the back of the
case.

We exploit the fact that we are aware of the current
pose of the PocketPC to create the following gestures in
the application:

1.) The virtual repairman holds the next block in the
construction while standing on the local user’s PDA. The
user can freely observe it from all angles by moving the
device around. As soon as she places the PDA near the
real robot, the character moves from the PDA’s local
coordinate system into the physical LEGO robot’s local
coordinate system and starts explaining where to place the
LEGO tile and how.

2.) After the explanation is finished, the user can pick
up the character again with the PDA, which binds it to the
PDA again and commands it to display the next building
block.

3.) The local user places her PDA with the repairman
near the tracked monitor displaying the videoconferenc-

Figure 10. Tracked PocketPC as a multi-purpose
interaction device: (left) Tangible interface in a

screenshot of the AR LEGO application (right) PDA
screen capture of the LEGO robot’s control GUI

ing window. This serves as an indication to the system
that she wants to “send” the current block over to the
remote user for further observation. The virtual model of
the next block is copied and immediately appears on top
of the remote operator’s PDA, and can be freely moved
around on the operator’s display.

5.4. Work environment and interaction

The local user sits at a table with a box of spare LEGO
bricks. Near the box is the monitor showing the remote
operator’s videoconference window. The local user wears
a tracked helmet equipped with an HMD and a headset
for voice communication, and holds her interaction device
in her hand. The room is equipped with a high-quality
optical tracking system, which tracks the user’s head, her
PocketPC interaction device, the RCX of the LEGO robot
and the camera for videoconferencing.

The remote user has a desktop-based AR setup
consisting of an ordinary monitor and a webcam to
optically track an ARToolKit marker mounted on the
PDA. The monitor displays the local and the remote
user’s videoconference window. Figure 11 shows a
snapshot of the local user’s work environment.

6. Conclusion and future work

We have created a hierarchical animation framework
for Augmented Reality agents called AR Puppet, which
combines several research areas into a single coherent
human-computer interface paradigm. We have made the
following contributions:

1.) AR Puppet is the first general framework for
autonomous animated agents that has been developed
specifically for AR applications. The framework has been
built on a powerful middleware, which allows
experimentation with a wide range of applications,
tracking technology, platforms and displays.

Figure 11. Work environment of local user

2.) The framework has examined agent-specific
aspects of AR. New modalities enabled by the physical
environment have been exploited in animated agent
behavior and autonomous behavior has been added to an
AR application at low cost by marking relevant
attributes of an application scene graph. Agents can
easily monitor and thus react to user interaction and
changes in the application state.

3.) Physical objects can be turned to intelligent,
responsive agents and used as input and output devices
in AR environments. Consequently, the agents of AR
Puppet can not only talk back but “hit back” as well. A
unified command interface allows physical and virtual
objects to be scripted in the same way.

4.) AR Puppets are dynamically configurable, their
attributes and command fields can be intuitively
controlled through mobile devices.

We believe that animated agents bring new challenges
and fresh perspectives for AR. In the near future we plan
detailed evaluation of AR agents examining the following
aspects:

• Psychology: effectiveness of various gestures,

amount of autonomy allowed, amount of
anthropomorphic features in appearance and behavior

• Usability: display and interaction types, user
acceptance

• Interface: size of the character, placement of the
character on the right spot: informative, not obtrusive

Another important aspect is the implementation of

agent memory. This means that relevant samples of
application states and agent decisions can be stored in a
database, and later recalled by a query. Thereby AR
agents become persistent and remember their obtained
knowledge and the users’ latest application profiles.

7. Acknowledgement

This system was sponsored by the Austrian Science
Fund FWF (contract no. Y193) and the European Union
(contract no. IST-2001-34204). Special thanks go to
Joseph Newman for his zero tolerance paper review.

8. References

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A.
Ward, A. Hopper, “Implementing a Sentient Computing System”, IEEE
Computer 34 (8), 2001, pp. 50-56.
[2] T. Noma, L. Zhao, N. Badler, “Design of a Virtual Human
Presenter”, IEEE Comp. Graphics & Applications, 20(4), 2000.
[3] K. Perlin, and A. Goldberg, “Improv. A System for Scripting
Interactive Actors in Virtual Worlds”, Proc. of SIGGRAPH '96, 1996,
pp. 205-216.

[4] J. Rickel, W. Johnson, “Steve: A pedagogical agent for Virtual
Reality”, Proc. of the 2nd International Conference on Autonomous
Agents, 1998, pp. 332-333.
[5] P. Maes, T. Darrell, B. Blumberg, A. Pentland, “The ALIVE
System: Wireless, Full-body Interaction with Autonomous Agents”, in
ACM Multimedia Systems, 5(2), 1997, pp.105-112
[6] M. Anabuki, H. Kakuta, H. Yamamoto, H. Tamura, “Welbo: An
Embodied Conversational Agent Living in Mixed Reality Space”, CHI
2000, Extended Abstracts, 2000, pp. 10-11.
[7] L. Vacchetti, V. Lepetit, G. Papagiannakis, M. Ponder, P. Fu,
“Stable real-time interaction between virtual humans and real scenes”,
3DIM 2003, Banff, AL, Canada, 2003.
[8] B. MacIntyre, J. D. Bolter, J. Vaughan, B. Hannigan, E. Moreno,
M. Haas, M. Gandy, “Three Angry Men: Dramatizing Point-of-View
using Augmented Reality”, SIGGRAPH 2002 Technical Sketches, San
Antonio, TX, 2002.
[9] A. D. Cheok, W. Weihua, X. Yang, S. Prince, F. S. Wan, M.
Billinghurst, H. Kato, “Interactive Theatre Experience in Embodied and
Wearable Mixed Reality Space”, Proc. of International Symposium on
Mixed and Augmented Reality (ISMAR'02), Darmstadt, Germany, 2002.
[10] M. Cavazza, O. Martin, F. Charles, S.J. Mead, X. Marichal,
“Interacting with Virtual Agents in Mixed Reality Interactive
Storytelling”, Proc. of Intelligent Virtual Agents, Kloster Irsee,
Germany, 2003.
[11] S. Balcisoy, M. Kallmann, R. Torre, P. Fua, D. Thalmann,
“Interaction Techniques with Virtual Humans in Mixed Environments”,
Proc. of Intern’tl Symposium on Mixed Reality, Tokyo, Japan, 2001.
[12] W. Piekarski, B. Thomas, “ARQuake: The Outdoor Augmented
Reality Gaming System”, ACM Communications 45(1) 2002, pp. 36-38.
[13] K. Mase, Y. Sumi, R. Kadobayashi, “The Weaved Reality: What
Context-aware Interface Agents Bring About”, Asian Conference on
Computer Vision, Taipei, 2000.
[14] M. Gutierrez, F. Vexo, D. Thalmann, “Controlling Virtual Humans
Using PDAs”, Proc. of the 9th International Conference on Multimedia
Modelling (MMM'03), Taiwan, 2003.
[15] M. Kruppa, A. Krüger, “Concepts for a combined use of Personal
Digital Assistants and large remote displays”, Proc. of Simulation and
Visualization 2003, Magdeburg, Germany, 2003, pp. 349-361.
[16] B. MacIntyre, M. Gandy, “Prototyping Applications with DART,
The Designer’s Augmented Reality Toolkit”, Software Technology for
Augmented Reality Systems Workshop (STARS 2003), Tokyo, Japan,
2003.
[17] M. Florence, R. Storey, “Vietnam”, Lonely Planet Publications,
2001, pp. 216-217.
[18] U. Spierling, D. Grasbon, N. Braun, I. Iurgel, “Setting the scene:
playing digital director in interactive storytelling and creation”,
Computers & Graphics 26(1), 2002, pp. 31-44.
[19] Cal3D project website, http://cal3d.sourceforge.net
[20] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R.
Rosenfeld, M. Pignol, “Generating Remote Control Interfaces for
Complex Appliances”, CHILetters: ACM Symposium on User Interface
Software and Technology, Paris, France, 2002, pp. 161-170.
[21] D. Schmalstieg, A. Fuhrmann, G. Hesina, Zs. Szalavári, M.
Encarnação, M. Gervautz, W. Purgathofer, “The Studierstube
Augmented Reality Project”, PRESENCE -Teleoperators and Virtual
Environments, MIT Press, 2002.
[22] I. Barakonyi, T. Fahmy, D. Schmalstieg, “Remote Collaboration
Using Augmented Reality Videoconferencing”, Proc. of Graphics
Interface 2004, London, ON, Canada, 2004, pp. 89-96.
[23] T. Pfeiffer, M. E. Latoschik, “Resolving object references in
multimodal dialogues for immersive virtual environments”, Proc. of VR
2004, Chicago, IL, USA, 2004, pp. 35-42.
[24] E. Sharlin, Y. Itoh, B. Watson, Y. Kitamura, L. Liu, S. Sutphen,
"Cognitive Cubes: A Tangible User Interface for Cognitive
Assessment", Proc. of CHI 2002, Minneapolis, Minnesota, USA, 2002,
pp. 347-354.
[25] MLCAD website, http://www.lm-software.com/mlcad/

