
Hybrid User Interfaces Using Seamless Tiled Displays

Dieter Schmalstieg and Gottfried Eibner
Vienna University of Technology

Austria

Fig. 1: (left) Hybrid user interface combining tangible objects with monoscopic projector-based graphics for
a geometry education scenario; (middle) same application, but the right hand side user wears a stereo head
mounted display; (right) a 2x2 seamless tiled display configuration

1 Introduction
In 1998, two influential projects made innovative
use of immersive projection technology: The
first, the Office of the Future developed at UNC
[Raskar98] aims at making the use of immersive
projection in conventional, potentially small and
constrained rooms possible. The authors propose
to use image based modeling based on structured
light techniques to rapidly reconstruct irregular
shaped projection surfaces, then use the obtained
models for pre-warping imagery to be projected
using multipass rendering. This approach together
with software-based blending of multiple
overlapping front projections represented a leap
forward in building inexpensive seamless tiled
displays. The initial results were followed by
detailed examination of several aspects of the
involved projection technology, most recently the
notion of iLamps [Raskar03], self-configuring
arrays of projector-camera systems. However, all
work in the project has focused on techniques for
projection technology, leaving the aspect of a
graphics application programmer’s interface out
of scope.

The second influental project, EMMIE, developed
at Columbia University [Butz99] also aimed at
visual instrumentation of an office or conference
environment, but with a focus on ubiquitous
computing rather than spatially immersive
displays. EMMIE is a distributed system for
creating a hybrid user interface, which combines
deskop, projection, and head-mounted augmented
reality (AR) displays. The hybrid user interface
envelopes a group of users with a virtual “ether”,
in which three-dimensional virtual objects can be
placed. By spatially arranging the available

displays in the environment, users can visualize
the virtual objects. Unfortunately, this interesting
approach was not further developed.

In this paper, we will make the attempt to bridge
the gap between these two works. The Office of
the Future did not explore how to use the ample
display space for ubiquitous computing tasks,
often involving collaboration of multiple users. It
also does not consider the desire for using
personal displays such as notebooks, PDAs, or
AR displays. EMMIE demonstrates how to
perform multi-user multi-display visualization,
but relies on conventional projection for creating
larger displays.

The work in this paper presents a hybrid user
interface system, which can also use seamless
tiled displays to provide truly scalable imagery. It
builds on Studierstube, which independently of
EMMIE evolved into a hybrid user interface
system [Schmalstieg00]. Recent versions of
Studierstube [Schmalstieg02] provided a
distributed architecture for managing multiple
displays and interacting with multiple users.

We will show that because of the similarity of
hybrid user interfaces and seamless tiled displays,
only a few key elements have to be added to a
hybrid user interface framework to support
seamless tiled displays, while many aspects of the
system can be re-used. The result is an
architecture for hybrid user interfaces that can use
seamless tiled displays as an additional powerful
display modality. As a consequence, 3D user
interface design greatly benefits from the
generous display space becoming available
without loosing the diversity of the hybrid user
interface approach (see Fig. 1).

2 Related Work
We have already discussed the Office of the
Future and EMMIE. A common denominator of
these projects is Weiser’s idea of ubiquitous
computing [Weiser91] as a future paradigm on
interaction with computers. Computers are
constantly available in our surrounding by
embedding them into everyday items, or by
making them wearable. Ubiquitous computing
introduces two key ideas: (1) The environment
(or the user) is instrumented so that the relevant
display and interaction is transported to the task
location, rather than being tied to a fixed
computer workplace. Displays can include
conventional displays, projection displays, and
augmented reality. (2) All elements of the
instrumented environment are networked so they
can collaborate.
Therefore, ubiquitous computing implies the use
of hybrid user interfaces, which make
comprehensive use of the ubiquitous computing
resources by mixing and matching interaction and
display capabilities dependent on location and
task. Projection-based displays are often a part of
this mix, because they are physically
encompassing the other components and the user.
Besides EMMIE, there are several other
examples of such interfaces. Rekimoto has
presented setups for multi-computer direct
manipulation, such as in [Rekimoto97], where a
stylus is used to drag and drop data across display
boundaries. Later, this idea was picked up in
Active Surfaces [Rekimoto99], where projections
on tables and walls provide a shared space
encompassing other devices such as notebook
computers.
The Tangible Media Group at MIT has developed
a number of heterogeneous user interfaces based
on the theme of tangible user interfaces [Ishii97].
For example, the metaDESK [Ullmer97] is a
back-projection table that presents information
which can be manipulated with tracked props on
its surface. It also offers a combination of
viewing modalities, e. g., a separate hand-held
display used to observe the scene in a different
dimension (3D graphics), and with an
independent viewpoint. The luminous room
[Underkoffler99] is a similar framework where
tangible objects are manipulated on a table
surface to create complex application setups such
as a simulated optical workbench.
In contrast, seamless tiled displays have been
mostly examined as dedicated high-end
visualization environments, designed in particular
for the visual inspection and manipulation of very
large data sets (such as medical or geodesic
models), which can maximally benefit from the
very large resolution. Examples include the
Lawrence Livermore National Lab PowerWall
[Walls00] or Sandia National Lab. The errection

of the Princeton Display Wall [Li00] in a
recreational area and its uses for several non-
scientific purposes already hint at the versatility
of scalable tiled displays for hybrid user
interfaces.

3 Approach

3.1 System design rationale
Our hybrid user interface system already supports
distributed rendering with soft real-time
constraints. Multiple users can experience the
sensation of a shared space, which is populated
by virtual objects. This is done by distributing
and synchronizing instances of the virtual objects
to all hosts in the cluster. Each host is then
responsible for rendering to its locally attached
displays. For example, a tracked HMD allows a
user to independently choose a viewpoint. The
hybrid user interface allows to mix and match a
range of displays from very small (PDA) to very
large (projection screen) depending on
application requirements, choose from
monoscopic and stereoscopic display modes and
so forth.

It is important that changes computed at one host
are propagated to the other hosts immediately, so
that the illusion of a shared virtual space is not
disrupted. However, displays which are typically
observed individually (i. e., users do not normally
look at two such displays at the same time)
allows to relax constraints on the degree of
synchronization. For example, two computers
with unequal graphics power may render the
virtual scene with differences in frame rate,
without adversely affecting the overall joint
experience.

A seamless tiled display driven by a cluster of
hosts has a similar architecture in that multiple
hosts combinations share a common scene, which
is rendered simultaneously. Every host is
connected to a projector (or two projectors in case
of the now-common dual headed graphics
accelerators). We can therefore re-use the general
distributed rendering architecture of the hybrid
user interface platform if we add the necessary
more strict synchronization.

Following the ideas of [Raskar98] that in the
future every office should be equipped with
inexpensive projection, we considered only
commodity hardware. The most demanding level
of synchronization, pixel-accurate genlocking
was ruled out because by the time of equipment
selection, it was limited to very expensive
graphics solutions, and is not generally
compatible with the inexpensive DLP projectors
that we settled for, which introduce their own
pixel timing. We therefore considered application
level and display level (swapbuffer)

synchronization, which are discussed in sections
3.2 and 3.3, respectively.

Finally, a seamless tiled display in an office
environment generally requires front projection
from an oblique angle. Consequently, the images
from multiple projectors will have non-
rectangular shape and will overlap in an irregular
way. We choose to restrict projections to planar
surfaces, because we found that there are plenty
of such surfaces in typical office environments.
Such a setup is much easier to calibrate, and
allows rendering with image warping in a single
rendering pass. Multiple projections can be
blended in software using alpha masks without
loosing rendering speed. Details on the use of
projectors are given in section 3.4.

The approach outlined above allows us to treat
multiple individual displays of a hybrid user
interface and multiple parts of a seamless tiled
display in a uniform way, discriminated only by
the configuration addressing the hardware
specifics, which are part of the rendering engine
and irrelevant to the application programmer.
Seamless tiled displays are designed to be easily
scalable to the maximum available area in an
office environment. Therefore, our architecture is
extremely versatile, allowing to arrange
visualizations in a true ubiquitous computing
style.

3.2 Application synchronization
A popular approach for development of
distributed and parallel graphics application is to
use a distributed shared scene graph. Distribution
is performed implicitly through a mechanism that
keeps multiple local replicas of a scene graph
synchronized without exposing this process to the
application programmer or user. Our own
implementation of this concept, Distributed Open
Inventor (DIV) [Hesina99] is based on the
popular Open Inventor (OIV) toolkit [Strauss92]
and propagates scene graph changes using
reliable multicast.

Extensions in Studierstube are created through
OIV subclassing, and can be loaded and
registered with the system on the fly. Using this
mechanism, we can take the scene graph based
approach that avoids a dual database (graphical +
application data) to its logical consequence by
embedding applications as nodes in the scene
graph. Applications in Studierstube are written as
new application classes that derive from a base
application node. Multiple instances of
application objects can be present in the scene
graph simultaneously for multitasking.

Moreover, a new application node will be added
to all replicas of a scene graph, and will therefore
be distributed. With the application node all data

contained in attributes will be replicated – a scene
subgraph of graphical objects, but also attributes
that are not visible objects but represent other
application data. Non-graphical attributes are
simply added as additional “fields” of the
application node that do not directly contribute to
rendering. We have found this unified treatment
of graphical and non-graphical data to drastically
simplify application development.

Application specific computations, typically
callbacks triggered by events created through user
input, need not be repeated at every host. Instead,
for every application instance, a master host is
determined, which is responsible for performing
all execution of application code. The updates to
the application state resulting from these
computations are then replicated in the slaves’
replicas of the application instance. Using this
scheme, application specific computation is
distributed over the workgroup. At the same time,
the master host can be determined for every
application instance separately. Coarse grained
parallelism is introduced by distributing the
master responsibilities over the hosts.

Running multiple hosts that share a scene graph
as a display cluster is only slightly different to the
above approach. One host is a designated master
and collects user data, like tracking or mouse
motion events, and performs application-specific
computation. The other hosts within the cluster
are display hosts, and are running as slaves. They
execute rendering code and display the scenery
on the tiled display. With this approach, a copy of
our Studierstube framework runs on each display
host concurrently.

While DIV takes care of application level
synchronization, this does not impose any
restrictions regarding image update rate, and is
therefore not acceptable for a seamless tiled
display, which relies on all displays showing
portions of the same image at the same time.

3.3 Display synchronization
We therefore extend the distributed shared scene
graph approach with display synchronization
based on a swap buffer barrier. Rendering halts
just before a buffer switch should occur. When all
display hosts are ready to switch their frame
buffer content, they will be notified to continue
code execution.

Since OIV traverses its scene graph to render the
scene graph, it is the easiest way to do
synchronization within the OIV traversal
philosophy. Therefore, to synchronize frame
buffer swapping, we create a synchronization
node and add it as the last node in the traversal
order of each display host’s scene graph, so that

the host will pause and wait for the
synchronization condition right after finishing the
rendering.

Fig. 2: A time diagram showing application level
synchronization of multiple copies of an single-
threaded application. After each buffer switch the
code’s execution path is synchronized again.

When one of these synchronization nodes is
traversed during rendering, it notifies the master
host that it has finished rendering. After all
display hosts have sent their signals to the master,
it is the master’s turn to notify each node to
proceed and swap buffers (Fig. 2).

Unfortunately, it is not sufficient to just perform
best-effort data distribution and add a barrier for
swap buffer locking, as user interaction,
application behavior, update propagation to the
display hosts, and rendering all happen in parallel
and it is difficult to estimate variations in latency,
responsiveness etc. in a soft real-time
environment such as ours. Care has to be taken,
that each display host’s copy of the scene graph is
in an equivalent state when it is used for
rendering the contribution for a given image.

Consider the update events sent from the master
to the display hosts an ordered sequence. Since
we can not guarantee that events are delivered to
every display hosts at exactly the same time, we
have to divide the sequence of events that occur
between two successive frames into two parts:

(1) All events that occurred before the buffer
switch have to be distributed to all display hosts
before the buffer switch takes place.

(2) All events occurred after the buffer switch
compared to the master’s execution path at that
time must be retarded until the next buffer switch
occurs.

Fig. 3: A time diagram showing event retarding on
each display host. The control host sends events via
multicast (flashes), so that every event is distributed
to all display hosts. After the first display host has
finished rendering (at t0), all subsequent events have
to be stored on each display host until a buffer
switch occurs (at t1).

Retarding the events after finishing rendering can
be done on the master side or the slave side. We
chose to collect the events on the display side
because it minimizes latency after rendering
commences. Fig. 3 shows the scenario where
events are collected on the slave side by the
display hosts and are retarded until the next
buffer switch occurs.

3.4 Projector calibration
Our calibration software is based on the work of
Raskar et al. [Raksar02]. This method calibrates
oblique projectors with image detection
techniques, and computes homographies between
projector space, camera space and display space.
With these homographies it is easy to generate a
projection matrix for each display that
incorporates a pre-warping to compensate for the
oblique projection.

Fig. 4: (left) Detecting feature points of a projected
chessboard pattern during calibration. (right) All
feature points are detected and the convex hull of
each calibrated projector is shown in red.

This calibration technique uses a video camera to
observe checkerboard patterns presented by each
projector to extract feature points and finds the
corresponding collineation between camera and

projector pixels (Fig. 4). With this collineation it
is easy to compute projector-to-projector and
display-to-projector homographies. The
projector-to-projector homographies are used to
compute the needed blending masks for intensity
weighting in overlapping regions.

During rendering the projector-to-display
homographies are used for pre-warping in order
to compensate for the oblique projection.
Blending mask using alpha blending techniques
are used as a post-rendering step to blend
multiple pixels in overlapping regions. The
scenery will be corrected, rendered, and blended
in a single pass, making the overall approach very
efficient.

4 Implementation

4.1 Runtime framework extensions
The following extensions had to be made to the
OIV/Studierstube framework to support the new
display cluster style of operation:

Synchronization node. As mentioned
previously, the barrier for swap buffer
synchronization was implemented as a new OIV
node, which is placed last in the scene graph
traversal. Consequently, the next rendering (but
not the processing of application updates) is
paused until all display hosts are ready to
continue. The synchronization node spawns a
concurrent thread to monitor the communication
even if it is not given control by the rendering
traversal.

The synchronization node is implemented as an
abstract base class, which processes a
synchronization protocol, but leaves the use of a
concrete communication channel as a virtual
function. For our system, we have implemented
UDP based transmission over standard Ethernet.
Each host is equipped with two 100-T Ethernet
cards connected to separate dedicated switches,
so that one network can be dedicated to
synchronization, while the other network is used
for application level synchronization. All network
communication is done using the ACE library
[Schmidt00], including multicast communication
from the master to the slaves.

In our scene-graph based retained mode data
distribution scheme, we found latency to be more
limiting than throughput, and therefore did not
consider upgrading to the now widely available
Gigabit network interface cards. Yet our
implementation is generic in terms of the used
communication technology, so alternative
networking technologies or classic serial/parallel
lines such as used in other parallel rendering
environments like SoftGenLock [Allard03] or

Lightning-2 [Stoll01] is a straight forward
extension.

Event retarding. As mentioned above, the DIV
protocol for application level synchronization had
to be extended to support event retarding. Event
updates are timestamped and buffered at the
receiver, it is therefore straight forward to assign
frame numbers to events and require that the
rendering hosts always render the scene graph in
a specific state after applying the event updates
up to a certain point in the sequence. However,
we have not yet addressed the issue of
concurrently updating and rendering the scene
graph with a finer-grained multithreading
structure.

Alpha blending node: A node for attenuating the
brightness of the final image using an alpha mask
was added to OIV’s collection of nodes. It is used
to seamless blend the output of multiple
projectors. The alpha mask is prepared by the
calibration software described below.

Camera node with collineation: Studierstube
has a quite sophisticated camera mode for off-
axis projection, which allows to independently
assign tracking to the viewpoint and image plane.
While the existing camera code handled all cases
of observers looking at the image plane(s) from
an oblique angle, we had to extend the camera
model with another matrix attribute for
collineation, which handles oblique projection.
All these attributes can be configured
independently, so one can easily combine
different modes such as straight/oblique
projection and on-axis/off-axis viewing.

4.2 Calibration software
Multi-projector systems are complex assemblies
which require frequent and careful calibration, in
particular in the ever-changing environment of
instrumented office spaces. Therefore, ease of use
and flexibility are key requirements for such
systems. To address these concerns, we based the
design of our calibration tool on a client-server
model of communicating components running on
our display cluster.

A server process handles all clients that registers
at it, directing messages to the right clients. Each
client represents a user, a projector, or a camera.
The user client processes user inputs and invokes
the different calibration steps on the user’s
demand. A projector client represents a display
within the render cluster. The camera client
handles the video stream from a camera and
computes homographies and blending masks

The homographies are extracted using pattern
recognition techniques of OpenCV [Intel04]. A
simple chessboard pattern is projected for each

display and captured by the camera. The feature
points of the pattern are extracted using the
FindChessBoardCornerGuesses() function and
the homographies are compute with the
FindHomography() function.

These homographies are extended to 4x4 matrices
to be usable in a common graphics pipeline. After
the extension the matrices have to be corrected to
approximate depth buffer values as described in
[Raskar00] due to depth value distortion when the
homographies are applied to common view
frustum or projection matrices. The results from
this calibration process, which is triggered by the
user, but is otherwise designed to run fully
automated, are written to configuration files used
as input for the Studierstube display cluster.

The most common alteration of a display cluster,
namely moving one of the projectors or camera(s)
is thus easily handled by simply running the
calibration software again. If the topology of the
system is modified, such as adding or removing a
projector, re-arranging the hosts or host-projector
assignments or changing from monoscopic to
stereoscopic (our system can also support passive
stereo), a simple configuration file for the
calibration software must be updated.

5 Results
To verify our hypothesis that a hybrid user
interface system can be upgraded to a seamless
tiled display, we let existing Studierstube
applications run on the seamless tiled display.
The application programmer’s interface of
Studierstube was not modified, so all demo
applications worked well except for those cases
where a specific multi-user network configuration
was assumed for advanced collaboration
functions.

Fig. 5: A mono tiled display on the right and a
stereo tiled display on the left. Note the overlap of
two projectors at a time from the left eye group
(red) and the right eye group (green).

The applications themselves did not have to be
altered, only the configuration of the Studierstube
runtime system for the hosts had to be matched to
the new cluster system. Fig. 1 shows some
examples of a hybrid user interface involving
projection in action. Two users are collaborating
in a geometry education session [Kaufmann03]
involving tangible objects as input devices.

Fig. 6: In this 2x2 front projection setup at
1024x768 resolution, a casual observer cannot
observe seams between individual projected images.

We have set up a 2x2 array of Sharp DLP
projectors at 1024x768 resolution, which can also
be re-arranged as a 2x1 passive stereo display,
using polarization filters, glasses, and a
polarization retaining silver screen (Fig. 5).
Changing from the mono to the stereo
configuration just requires re-adjusting the
projectors in their mounts, attaching the filters,
and re-running the calibration software, and can
be done in under 10 minutes. Fig. 6 demonstrates
the quality of registration and blending in 2x2
projectors monoscopic mode showing several
visualization objects.

The oblique front projection from ceiling
mounted projectors allows a user to approach the
projection as near as ~1m without casting a
shadow at the screen. All this is possible in a
floor space of about 4x3m. The 2x2 display is
driven by a cluster of 3 PCs (2.4GHz, Quadro4
graphics), one of which is designated as the
master, the other two work as slaves each driving
two projectors using the dual headed graphics
card.

Initial examination of the performance confirmed
our expectation that the system is reasonably
scalable for an office-type environment.
Remember that our system was not designed for
highest scalability of very large visualization
projects, but rather for bringing extensible display
space to instrumented environments.

Naïve distribution of the overall scene graph to
all nodes without any rendering optimizations
naturally does only increase the display area, but
not speed up rendering because a non-modified
renderer does not make efficient use of the fact
that it is only responsible for a tile.

We therefore developed a simple terrain renderer
with view frustum culling and resolution-
dependent level of detail (ROAM) rendering, and
examined the frame rates in different cluster
configurations.

Fig. 7: Schematic view of the two and three
projector arrangements.

The first configuration uses a single host and a
single projectors. The second configuration uses
one host as the master, and two display hosts
driving two projectors each (Fig. 7). The third
configuration uses three host and three projectors,
one host assuming a double role of display host
and master. We rendered a terrain with about
500.000 polygons.

Display

hosts
Projectors Avg. fps Polygons

per host
1 1 12 25%
2 4 15 50%
3 3 20 25%

Table 1: Performance figures for the Terrain
renderer in various cluster configurations

As can be seen from Table 1, we always achieve
a speedup over the single host case even if one of
the display hosts has to perform extra work as the
master. However, these initial results only show
the feasibility of our approach to cluster
rendering, and are neither general (because of the
small cluster) nor do they represent a carefully
optimized result. They simply demonstrate that a
scene graph based environment originally
designed for hybrid user interface experiments
with little focus on efficiency also performs
reasonably when converted to a quasi parallel
rendering mode.

6 Conclusions and Future Work
The system presented in this paper works well as
a seamless tiled display, while simultaneously
allowing the whole range of hybrid user
interfaces to be deployed. Yet we are just starting
to exploit the potential of our instrumented office
environment to identify the potential advantages
for novel user interface ideas. Future work will
therefore primarily involve user interface and
application experiments.

However, there are a number of technical
limitations that we hope to address as well. One
important aspect is the introduction of a more
fine-grained multi-threading approach of scene
graph traversal, in particular for better
synchronization support. In addition, we would
like to develop heuristics that can address
rendering load balancing in the cluster in a more
automated way.

Finally, while our calibration algorithm is
scalable, the presented implementation only
supports one camera. While this was not a
limitation in practice for us, it restricts the
physical scalability of the seamless tiled display.
Therefore, we plan to extend our system to use
multiple simultaneous cameras covering a larger
display area.

Acknowledgements. This work was sponsored
by the Austrian Science Foundation FWF under
contract no. Y193, and Vienna University of
Technology by Forschungsinfrastrukturvorhaben
TUWP16/2002. We would like to thank Ramesh
Raskar from MERL for the code sample for
homography computation, and Alex Bornik from
TU-Graz for the Linux version of the swapbuffer
synchronization code.

7 References
[Allard03] J. Allard, V. Gouranton, G. Lamarque, E.

Melin and B. Raffin: Softgenlock: Active Stereo
and Genlock for PC Cluster. Proc. IPT/EGVE'03
Workshop, May 2003, Zurich, Switzerland

[Butz99] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre,
C. Beshers. Enveloping Computers and Users in a
Collaborative 3D Augmented Reality, Proc. IWAR
‘99, pp. 1999.

[Hesina99] G. Hesina, D. Schmalstieg, A. Fuhrmann,
W. Purgathofer: Distributed Open Inventor: A
Practical Approach to Distributed 3D Graphics.
Proceedings of ACM Virtual Reality Software &
Technology '99 (VRST'99), pp. 74-81, London,
December 20-22, 1999.

[Intel04] Intel Research: OpenCV web page, visited
Jan. 2004. http://www.intel.com/research/mrl/
research/ opencv/

[Ishii97] Ishii H., B. Ulmer. Tangible Bits: Towards
Seamless Interfaces between People, Bits and
Atoms, Proc. CHI ‘97, pp. 234-241, 1997.

[Kaufmann03] H. Kaufmann, D. Schmalstieg:
Mathematics And Geometry Education With
Collaborative Augmented Reality. computers &
graphics, Vol. 27, No. 3, pp. 339-345, 2003.

[Li00] K. Li, H. Chen, Y. Chen, D. Clark, P. Cook, S.
Damianakis, G. Essl, A. Finkelstein, T. Funkhouser,
T. Housel, A. Klein, Z. Liu, E. Praun, R. Samanta,
B. Shedd, J. Singh, G. Tzanetakis, J. Zheng:
Building and Using A Scalable Display Wall
System, IEEE Computer Graphics and Applications
25(4), 2000.

[Raskar98] R. Raskar, Greg Welch, Matt Cutts, Adam
Lake, Lev Stesin and Henry Fuchs. The Office of
the Future : A Unified Approach to Image-Based
Modeling and Spatially Immersive Displays,
SIGGRAPH 1998.

[Raskar99] Ramesh Raskar, Oblique Projector
Rendering on Planar Surfaces for a Tracked User,
SIGGRAPH 1999 (1999), Sketches and
applications.

[Raskar00] Ramesh Raskar, Immersive Planar Display
using Roughly Aligned Projectors, In IEEE Virtual
Reality (March 2000).

[Raskar02] Ramesh Raskar, Jeroen van Baar, Jin Xiang
Chai A Low-Cost Projector Mosaic with Fast
Registration, In Proceedings of Fifth Asian
Conference on Computer Vision (January 2002).

[Raskar03] R. Raskar, J. van Baar, P. Beardsley, T.
Willwacher, S. Rao, C. Forlines: iLamps:
Geometrically Aware and Self-Configuring
Projectors, SIGGRAPH 2003 (2003).

[Rekimoto97] J. Rekimoto. Pick-and-Drop: A Direct
Manipulation Technique for Multiple Computer
Environments, Proc. UIST ‘97, pp. 31-39, 1997.

[Rekimoto99] J. Rekimoto, M. Saitoh. Augmented
Surfaces: A Spatially Continuous Workspace for
Hybrid Computing Environments, Proceedings of
CHI'99, pp.378-385, 1999.

[Schmalstieg00] D. Schmalstieg, A. Fuhrmann, G.
Hesina. Bridging Multiple User Interface
Dimensions with Augmented Reality. Proceedings
of the 3rd International Symposium on Augmented
Reality (ISAR 2000), pp. 20-30, Munich, Germany,
Oct. 5-6, 2000.

[Schmalstieg02] D. Schmalstieg, A. Fuhrmann, G.
Hesina, Zs. Szalavari, L. M. Encarnação, M.
Gervautz, W. Purgathofer: The Studierstube
Augmented Reality Project PRESENCE -

Teleoperators and Virtual Environments, Vol. 11,
No. 1, pp. 32-54, MIT Press.

[Schmidt00] D. Schmidt, M. Stal, H. Rohnert, F.
Buschmann: Pattern-Oriented Software
Architecture: Patterns for Concurrent and
Networked Objects. Wiley & Sons, 2000.

[Stoll01]G. Stoll, M. Eldridge, D. Patterson, A. Webb,
S. Berman, R. Levy, C. Caywood, M. Taveira, S.
Hunt, and P. Hanrahan. Lightning-2: A High-
Performance Display Subsystem for PC Clusters.
Proceedings of SIGGRAPH ’01.

[Strauss92] P. Strauss, R. Carey: An object oriented 3D
graphics toolkit, Proceedings SIGGRAPH '92, pp.
341-347, 1992.

[Ullmer97] B. Ullmer, H. Ishii. The metaDESK:
Models and Prototypes for Tangible User Interfaces.
In Proceedings of ACM UIST'97, Banff, Alberta,
Canada, pp. 223-232, 1997.

[Underkoffler99] J. Underkoffler, B. Ullmer, H. Ishii.
Emancipated Pixels: Real-World Graphics in the
Luminous Room. Proc. SIGGRAPH 1999, pp. 385-
392, 1999.

[Walls00] D. Walls, R. Schikore, R. Fischer, R. Frank,
R. Gaunt, J. Hobson, B. Whitlock: High-Resolution
Multiprojector Display, IEEE Computer Graphics
and Applications 25(4), 2000.

[Weiser91] M. Weiser. The Computer for the twenty-
first century. Scientific American, pp. 94-104, 1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

