
Priority Round-Robin Scheduling for Very Large Virtual
Environments and Networked Games

Chris Faisstnauer, Dieter Schmalstieg, Werner Purgathofer
Vienna University of Technology

faisst@cg.tuwien.ac.at

Abstract. The problem of resource bottlenecks is
encountered in almost any distributed virtual environment
or networked game. In a typical client-server setup, where
the virtual world is managed by a server and replicated
by connected clients which visualize the scene, the server
must repeatedly transmit update messages to the clients.
The computational power needed to select the messages
to transmit to each client, or the network bandwidth
limitations often allow only a subset of the update
messages to be transmitted to the clients; this leads to a
performance degradation and an accumulation of errors,
e.g. a visual error based on the positional displacement of
moving objects.

This paper presents a scheduling algorithm that
enforces priorities based on a freely definable error
metric, trying to minimize the overall error. It is able to
achieve a graceful degradation of the system's
performance and to minimize the risc of starvation, while
retaining an output sensitive behavior. This makes it
suitable not only to schedule the update messages to
transmit to the various clients, but it also allows to
employ filtering techniques at a constant effort.

1 Introduction
In the simulation of large virtual environments,

contention for limited resources such as CPU, rendering
pipeline, or network bandwidth frequently causes a
degradation of the system's performance. Whenever there
is such a competition and not all elements that require the
resource can be serviced, an approximation must be made
in order not to compromise interactive performance. The
techniques employed to deal with such a situation can be
divided in two groups:
1. 'Filtering' techniques which reduce the absolute

number of elements that require the resource and are
thus competing for it. Examples include level of
detail rendering (see e.g. [Funk93]), dead reckoning
([Sing95], [Mace94]) and visibility culling
([Suda96], [Funk95]).

2. Traditional scheduling algorithms such as known
from operating systems theory deal with the issue of
selecting items that are granted resources ([Silb88],
[Tane92]).

A popular approach to build virtual environments and
networked games is to use a client-server architecture: the
virtual world is managed by the server and (partially)
replicated by connected clients, which visualize the scene
and/or navigate an avatar through the environment. All
updates from the clients are routed via the server (often
also responsible for the simulation of autonomous
entities), which can perform arbitrary filtering functions;
some systems employ visibility information in order to
decrease the network load, by transmitting to each client
only updates for those objects visible to it. Timely
delivery of update messages to clients is essential to avoid
visual errors (e.g. different positions of the same object on
server and client). However these approaches cause a
substantial overhead to the server, as it is often required to
examine all objects in the environments for each client.
For example, to transmit only the visible object updates to
a client, it is necessary for the server to keep track of the
point of view for all clients, and continously select the
corresponding visible objects. Assume n = number of
clients = number of objects. This means examining all
objects for all clients leads to an effort of O(n2), which
substantially affects the scalability. Furthermore these
filtering techniques do not deal with the issue of
scheduling the remaining objects. If the number of
messages to be transmitted still exceeds the network
bandwidth, the bottleneck problem may persist.

In this case, or if no filtering is employed at all (as in
many peer-to-peer systems), we face a scheduling
problem similar to those found in operating systems
research. However, scheduling in operating systems is not
identical to scheduling in VEs. In particular, VEs can host
a very large number of elements, so that the examination
of every element in every turn is too computationally
expensive. Instead, application in a VE requires an output
sensitive algorithm that operates with constant effort
independent of the number of elements. The simple
Round-Robin (RR) approach to scheduling has this
property and is therefore often used for such scheduling
problems. But the RR strategy - simply selecting every
element in turn - cannot accommodate dynamically
changing simulations. For example, if the server has to
distribute updates of entities moving with variable speed,
for increased realism in the behavior, fast entities will

require more frequent updates than slower ones. Such
priorities cannot be achieved with plain RR.

In this paper, we propose an enhancement to RR called
Priority Round-Robin scheduling (PRR). This algorithm
enforces priorities, while retaining the output sensitivity
and starvation-free performance of RR. Priorities are set
by a user-defined error metric (e.g. visual error), which
the algorithm attempts to minimize. This allows not only
to schedule the entites competing for a resource, e.g.
updates competing for the network, but also to fill the gap
between 'filtering' and 'scheduling' techniques: it allows to
perform both filtering and scheduling of the elements at a
constant effort. The freely definable error metric allows to
include the filtering technique - e.g. visibility culling - in
the determinition of the elements' priorities, which
influences the time to wait between two consecutive
schedulings; the PRR in turn selects the elements upon
which the filter is applied.

We will evaluate our algorithm in the aforementioned
client-server system; PRR is used to schedule the update
messages at a constant effort of O(k) per client, where k is
the number of updates that can be transmitted by the
network (and thus have to be selected); the priority of the
elements is determined by the visual error, e.g. the
position displacement. By applying visibility culling
(determining whether an object is visible) when it is
selected by PRR, the resulting effort is still O(k). Hence
we have an overall effort of O(k*n)=O(n) for n connected
clients, an output sensitive behavior which is crucial for
scalable environments. Other than client-server oriented
virtual environments and typical current online games
(such as Ultima Online, Everquest, Asheron's Call, Half-
Life, Quake III Arena, Unreal Tournament etc.), PRR
scheduling is also applicable to peer-to-peer systems
(with the known difficulties of emplyong filtering
techniques in serverless systems).

2 Related Work
Most virtual environments employ strategies to deal

with the network bandwidth restrictions that limit the
number of possible update messages. Many of them are
filtering techniques which reduce the number of elements
competing for the resource. They can roughly be
categorized into the following groups:

Several systems exploit the fact that a client is
typically interested only in a small subsection – an area of
interest - of the virtual world, which has local scope.
Often the clients perception is limited to what can be seen
from the current viewpoint. Objects that are occluded or
too far away are not considered. Updates can be
propagated on a “need to know” basis, greatly reducing
the amount of messages that must be considered. The
regions for which communication locality is exploited can
either be given by the application designer, such as in
SPLINE [Barr96], based on a regular (e.g. hexagonal)
subdivision such as in NPSNET-IV [Mace95], by the

viewing frustum/view cone such as in AVIARY
[Snow94], or by visibility culling [Funk95, Makb99].
Visibility culling is often carried out with potentially
visible sets (PVS) first introduced by Airey [Aire90]: An
environment is first decomposed into cells, for which
inter-cell visibility is pre-computed and used at runtime to
identify visible objects for a given viewpoint. A simple
PVS algorithm [Schm96] was also used for our test
system.

A related concept is that of temporal bounding
volumes (TBV) [Suda96, Suda97] and update free regions
(UFR) [Makb99]. A TBV is a region of space which
completely contains an object for a determined period of
time. For an object in a completely hidden TBV, no
update must be considered during the validity interval of
the TBV. UFR implement a similar concept for mutual
visibility of objects. In this paper, we construct and use
TBVs to enhance message scheduling.

Communication filtering can also be performed based
on proximity such as in DIVE [Benf93], or by explicitely
registering interest in particular objects or events such as
exemplified by NPSNET-IV or AVIARY.

A scalable distributed virtual environment requires
also some care in the choice of network topology, which
is often considered together with a message filtering
mechanism. Several systems use multicasting instead of
or together with client-server schemes to achieve better
scalability. Multicast groups are often associated with a
particular location or message type for implicit message
filtering by multicast subscriptions. Examples for such
methods can be found in NPSNET-IV, DIVE, SPLINE,
and RING [Funk96]. It should be noted that although it
was tested in a client-server environment, the scheduling
algorithm presented in this paper is independent of
network topology and can be used in any network setup.

Finally, dead reckoning is a networking enhancement
technique used in physically based simulations where the
motion of the objects is computed from linear velocity
vectors. Each host stores a local copy of a remote object
and predicts movements of the objects based on the
current velocity. An update gets sent only when the
difference between actual movement of the object at the
remote host and the local copy exceeds a certain treshold.
Several forms of dead reckoning have been developed,
including prediction based on first-order derivatives such
as in NPSNET [Mace94], position history such as in
PARADISE [Sing95], or group dead reckoning such as in
NetEffect [Das97].

Although all these techniques may reduce the number
of messages to be transmitted by a considerable amount,
they usually require a separate examination of all objects
for each connected client (e.g. in visibility culling each
client can have a different viewpoint), leading to a
considerable effort. Furthermore, if the number of
remaining messages still exceeds the network bandwidth,
they must be scheduled or sorted in some way.

The scheduling algorithm presented in this paper fills
in this gap. While the factors used in the algorithm are
limited to a few (visual error, visibility), its freely
definable metric makes it principially suitable to
accommodate any of the above filtering techniques, and
work together with other networking techniques.

3 The Priority Round-Robin Algorithm

3.1 Overview

The inspiration of the Priority Round-Robin (PRR)
algorithm can be found in the short-term process
scheduling known from operating system's research,
where a set of independent processes is given processor
time in order to optimize determined system's parameters
[Deit90, Silb88, Stal95, Tane92]. Two of the most widely
used algorithms are Round-Robin (or First Come-First
Served, which is the non-preemptive version of Round-
Robin), and the Multilevel Feedback Queue (MLFQ).
Round-Robin (RR) is widely used due to its simplicity,
output sensitivity and starvation-free performance, but
prevents the use of priorities. The MLFQ does enforce
priorities (it consists of a set of levels with decreasing
priorities), but has either to deal with the risk of
starvation, or must constantly monitor all processes and
thus renounce to a constant overhead.

The scheduling of processes in operating systems and
the scheduling of objects in virtual environments bears
some substantial differences: in virtual environments for
example – as opposed to process scheduling - the objects
usually need be scheduled repeatedly, and their high
number prevents an examination or sorting of all objects
(for more details refer [Fais00]). However, by combining
the basic properties of RR and MLFQ, the PRR algorithm
inherits the advantages of both, providing an output
sensitive and starvation free performance, and being able
to enforce priorities. It is therefore a valid replacement for
RR in most circumstances. We will employ PRR in our
client-server testbed to schedule position update
messages, a task which is usually handled by a simple RR
queue.

The priority management of PRR is based on the
assumption that if an object is not granted the resource
requested, it accumulates error, e.g. visual error. To be
useful for scheduling, this error must be modeled as an
appropriate error metric (such as deviation in position);
the goal of the PRR algorithm is thus to minimize the
cumulative error over all objects in the environment,
called the 'overall error'.

Each object in the algorithm is assigned a so called
'Error Per Unit' (EPU), which is a prediction of how
much the error will increase in a determined time unit1. If

1 The time unit chosen for the Error Per Unit does not

affect the performance of the algorithm.

the error is a deviation in position, then the velocity of an
object is a suitable EPU.

While the levels are processed in RR order, each level
is assigned a priority, which must reflect the frequency
with which the elements in the different levels are
selected. Basically, elements with higher EPU must be
scheduled more often than elements with lower EPU. The
combination of traversing each level using RR, but with a
different priority, gives our algorithm its name - Priority
Round Robin scheduling.

We call the waiting time wait between two consecutive
schedulings the repetition count (rc); it is a measure of the
time an element has to wait between two selections and
thus for the cumulative error generated by the element
until the next scheduling. All elements in level i have the
same repetition count rci, which determines the
scheduling frequency and hence the priority of a level.

Let lev denote the number of levels and nei denote the
number of elements in level i. If we repeatedly take one
element from each level (we traverse all levels at an equal
speed of one), the repetition count is simply

levnerc ii *

In the example shown in Figure 1, the elements of the
first level (A and B) must wait 6 times between two
consecutive schedulings, those of the second level have a
repetition count of 12, and element G is scheduled every 3
elements.

Figure 1: Scheduling order of the elements if all levels

are traversed at an equal speed of one.

The more elements in a level, the longer they must wait
between two consecutive schedulings. If all levels are of
equal length, the Repetition Count of the elements is the
same as if they were scheduled by the RR algorithm
(rc = number of elements).

We also see that in the time interval the largest level m
is traversed exactly once, the other levels i (of equal or
smaller size) are traversed at least once. We thus define
thelLevel frequency lfi of level i as

i

m
i ne

ne
lf 

(1)

(2)

Whenever the largest level is traversed exactly once,
all elements have been scheduled at least once; those of
the largest level one time, and those of the other levels
one or more times. The Turnaround Time TT in which all
elements have been scheduled at least once is simply

levnett m *

If the EPU of an element can be assumed to be
constant (such as for entities travelling at constant speed),
a predicted error pe for that element can be calculated
from

rcepupe *

Furthermore, an estimate of the total error per level
and the total error of the environment can be computed
from the EPU of each element and the repetition count of
the levels. Keeping score of these total error measures is
done incrementally with negligible overhead.

3.2 Scheduling for static error distributions

So far the issue of how elements are assigned to levels
has not been discussed. Also, it has not been mentioned
whether the number of elements in a level is constant or
variable. Assuming a constant number of elements for
each level, elements in smaller levels get scheduled more
often. To fulfill the requirement mentioned in the
introduction that elements with a large EPU should get
scheduled more often in order to minimize overall error,
these elements should be inserted into smaller levels.

If the error distribution of the objects is known a priori,
it is possible to fix the number and size of the levels a
priori. If we define a set of levels with increasing size and
insert the elements with decreasing EPU into the levels,
then the larger the EPU of the element, the smaller is the
level (and thus the repetition count) the element is
assigned to. After having determined the optimal number
and size of the levels from the error distribution of the
elements (based on a prediction of the error), we can
determine the level to which to assign an element. Each
successive level covers a range of possible errors - an
error interval - corresponding to the elements it contains.
If the error values associated with the elements are
completely static, elements will stay in the level they are
assigned to.

Unfortunately, dynamic virtual environments do not
have a static error distribution. An element’s EPU will
almost certainly change each time it is inspected. Not only
must the element then be inserted into another level, but
also the error intervals associated with the levels must be
adjusted, if the size of the levels is to be kept constant.
However, we have found that for large numbers of
elements, the systems response to these adjustments is
slow, and the overall error is often larger than plain RR
when element behavior is dynamically changing.

3.3 Scheduling for dynamic error distributions

In order to overcome the aforementioned problem, the
size of the levels must be variable. Therefore, the error
interval covered by a level is no longer an indicator of
where an element should be inserted. We considered two
alternative variants of how to assign an element to a level:

1. Minimization of overall error: The most suitable
level for each element is chosen by estimating for the
element’s current EPU of how the overall error is
affected if the element is inserted into each level. The
algorithm then selects that level which leads to the
lowest overall error. Unfortunately, while this
strategy automatically finds the best number of
elements for each level, it is not superior to RR: as
the assignment to a level is only dependent on global
error minimization rather than directly on the EPU of
the element, this algorithm tends to distribute
elements with high and low errors equally on all
levels. This leads to levels of equal length and equal
average error, with a performance equivalent to RR
scheduling. Therefore the size of the levels must be
variable, and the assignment of an element to a level
must directly depend on its EPU.

2. Average Error Per Unit: This approach uses an
average EPU associated with each level to determine
the most suitable level for an element. The average
EPU is computed using a moving average. An
element is then assigned (according to its EPU) to the
level with the 'closest' EPU average. This does not
produce a perfect grouping of the elements according
to their error, but does quickly adapt to changing
error distributions with no additional overhead.

After some experimentation, the second approach -
based on average EPU - was chosen as the most efficient
strategy.

3.4 Optimum traversal rate

In Section 3.1 we have introduced a scheduling
strategy that consists of repeatedly picking one element
from each level. In this case the average contribution of
an element to the overall error is determined by the
number of elements in each level, other that the EPU of
the element (Equations 1 and 2).

But by assigning an element to a level according to the
EPU of both element and level, the length of the level is
fixed by the error distribution of the elements. This retains
from minimizing the overall error produced by the
elements by determining an appropriate repetition count
for each level. This would in turn require all levels to
have a given length (in order to achieve a determined
repetition count, if all levels are traversed at an equal
speed of one).

(2)

(
3)

Therefore we need to detemine for each level a
different 'speed' with which it is traversed (calculated
from the error generated by the level), rather than
constantly picking one element from each level. This
traversal rate tri describes for each level i the number of
elements that are selected from that level each time it is
visited (all levels are accessed in turn, as in Figure 1).
This makes the repetition count not depend only on the
number of elements in each level (other than the number
of levels), but allows it to be varied by modifying the tri.

Using a determined traversal rate tri, the repetition count
rci for level i is now given by





lev

k
k

i

i
i tr

tr

ne
rc

1

*

where nei is the number of elements in a level and lev the
total number of levels. If avi is the average2 EPU of
level i, we can furthermore calculate a predicted error pli

for level i.







lev

k
k

i

ii
i

iiii

tr
tr

avne
pl

rcavnepl

1

2

*
*

**

By summing up the errors predicted for each level, we
can derive a formula for the overall error (err).













lev

i
i

lev

i i

ii

lev

i
i

tr
tr

avne
err

plerr

11

2

1

*
*

Our goal is to minimize the overall error err by selecting
the optimum traversal rate tri for each level i. Hence we
can build a cost-function err to minimize, with tri being
the variables of the function. The number of elements nei
and the average error avi of each level i can be treated as
constant; hence we can ignore the sum of the tri in
Equation 6, and use sui to substitute for

iii avnesu *2

 This allows us to construct the following cost-function
err from Equation 6:





lev

i i
ilev tr

sutrtrerr
1

1

1
*),...,(

This optimization problem is best solved with the help of
Lagrange Multipliers: Equation 9 allows us to find the
extrema of function f, with g being a constraint function
for the variables of f:

grad f =  * grad g

2 As an element is assigned to a level according to its EPU, the

average EPU of a level is the moving average of the elements’ EPU
contained in that level. Simplifying, we can assume that all elements in a
level have the same (average) EPU.

Hence we use err as function to minimize (substitute for
f) and introduce a constraint function cons (Equation 10)
given by the sum of all traversal rates, which is assumed
to be equal to one3.

1
1




lev

i
itrcons

Substituting for function f and g in Equation 9 yields
Equation 11, which allows us to find the values for the
variables tri where err is a minimum:

)(*)
1

*(
11




lev

i
i

i

lev

i
i trgrad

tr
sugrad 

To do so, we have to build for all variables tri the partial

derivatives
itrF

i

lev

k
k

i

lev

k k
k

tr tr

tr

tr

tr
su

F
i 






 
 11

)(
*

)
1

*(

: 

Solving the partial derivatives
itrF we get

1*:
2


i

i

tr tr

su
F

i

and from this we can solve for tri:


i

i

su
tr 

Now, by plugging Equation 13 into the constraint
function (Equation 10, Equation 14)

1...1  levtrtr

we can solve for 





lev

i
isu

1



After substituting for  into Equation 13 we get a
formula for tri:





lev

k
k

i
i

su

su
tr

1

Resolving for sui (Equation 7) we finally get the optimum
value for the traversal rate tri, in order to minimze the
overall error err.





lev

k
kk

ii
i

avne

avne
tr

1

2

2

*

*

3 The value of one is arbitrary and only chosen for convenience

(4)

(5)

(8)

(11)

(16)

(6)

(10)

(12)

(13)

(14)

(7)

(15)

(9)

The main loop of the PRR algorithm hence consists in
simultaneously traversing all levels according to their
'speed' tri. Every time an object is selected, it is granted
the resource requested (e.g. transmitting a position
update), after which the object is re-evaluated: first a new
EPU is determined (we base it on the actual velocity),
then the object is reassigned to one of the levels according
to its EPU. Assigning the object to the level whose
average EPU is most close to the EPU of the object yields
an simple yet effective adaptation to even rapidly
changing error distributions. Afterwards the traversal rate
of the levels is modified so to account for the new error
distribution.

By assuming a fixed number of levels, the effort
needed to schedule an object is constant; hence the PRR
algorithm can achieve an output-sensitive behavior. The
freely definable EPU allows us to include visibility
information in the determination of an object's priority.

4 Using visibility information

4.1 Overview

Visibility information is already available in many
existing virtual environments and networked games,
usually employed to limit the amount of data transmitted
over the network. In indoor scenes, rooms and building
occlude most parts of the environment; in outdoor scenes
the visibility is often limited by a radius around the user,
e.g. the so called 'fog of war' in strategy games.

Visibility culling of objects in a virtual environment
can be accomplished by first determining the visible area
that can be seen from the viewpoint, and then checking
which objects are inside and outside that area. Figure 2
depicts the visible area for a client, with object A and B
being visible, and object C being invisible.

Usually visibility culling is first used to reduce the
number of objects, then a plain FIFO or Round-Robin
(RR) queue is used to schedule the remaining objects;
hence the visibility information is employed to insert or
remove objects from the queue.

Figure 2: Visible area and visible objects for a given viewpoint
of the client.

In contrast, we replace RR with a Priority Round-
Robin (PRR) scheduler and include visibility information
in the priority of the objects. This allows us to reduce the
effort for the server to determine which updates should be
sent to each client. As each client has its own field of

view, the server must usually examine all objects for each
client. Assuming the number of clients approaching the
number of objects, it is an effort of O(n2).

By employing the PRR algorithm it is possible to shift
part of this effort the scheduler; we let PRR repeatedly
schedule as many objects (k) as the network permits,
achieving an overall effort of O(k*n)=O(n) for n
connected clients. Whenever an object is selected, PRR
checks whether it is visible or not. For a visible object the
update is transmitted, otherwise the algorithm continues
its selection, looking for visible objects, with the highest
speed permitted by the computing power and the network
bandwidth. The visibility information affects how the
objects' priority is determined: visible objects get a
priority equal to their velocity (their EPU); if an object is
invisible, the priority is chosen such as to let the object be
rescheduled when it is expected to become visible again.
In our implementation we base the prediction of when an
object will be visible again on the shortest path from the
actual position to the next visible area (and the actual
velocity of the object).

4.2 Temporal bounding volumes

The determination of the time interval an object is
supposed to remain invisible is based on a technique
called 'temporal bounding volumes' (TBV). A TBV is a
region of space (for simplicity often a circle or sphere)
which completely contains an object for a specific period
of time (called the validity interval). The TBV becomes
invalid if the object leaves the volume. Hence its
'expiration date' is determined by the movement of the
object (e.g. rotating around a fixed point, traveling along a
track, or translating freely in space) and by the size the
TBV can have. In the extreme, a TBV encompassing the
whole area of movement of the object will always be
valid.

Figure 3: Temporal bounding volume for an invisible object

based on the shortest path to the next visible area.

For objects with unconstrained translational
movement, the expiration date of the TBV is directly
related to its size. The validity interval of a TBV could be
calculated by dividing the size of the TBV by the velocity
of the object. However, in large virtual environments the
entities are usually avatars with an unpredictable
behavior.

Our application of the TBV consists in using them to
determine the priority of objects in the PRR algorithm:
every time an object is scheduled, PRR determines
whether it is visible or not. In the latter case, a TBV is
constructed, based on the time the object is supposed to
become visible again (thus, the size of the TBV
determines its validity interval). Given the fact that the
scheduling frequency of an object is reflected by its
priority, we assign the object a priority such as to become
scheduled again at the same moment the TBV expires
(and the object is supposed to become visible again); this
provides kind of an automated 'wake-up' function. Figure
3 shows the TBV for an object with unbound translation,
calculated from the shortest path to the next visible area
(hatched area).

4.3 Integrating visibility information in PRR

In order to be usable by the PRR algorithm, we
express the time interval an object has to wait (given by
the TBV) in number of scheduling actions4. Hence we can
directly compare the waiting time of an object - given by
a number of scheduling actions - to the scheduling
frequency of each level (given by the repetition count, as
calculated using Equation 1). An object is then assigned
to that level whose scheduling frequency best matches its
required waiting time.

This causes a difference in how an object is assigned
to a level, depending whether it is visible or not: if an
object is visible, it is assigned to that level whose average
EPU best matches the EPU of the object (given by its
velocity). If it is invisible, that level is chosen whose
scheduling frequency best matches the waiting time
determined by the TBV. In the latter case, the EPU of the
object is not determined by its velocity; rather it
temporarily assumes the average EPU of the assigned
level. This allows the PRR algorithm to simultaneously
process visible and invisible objects.

5 Testbed implementation

Our testbed consists of a server which moves a
determined number of objects through an environment,
generated from a floor plan. A client visualizes the whole
scene from a determined viewpoint and receives position
updates of the various objects, in order to remain
consistent with the server. Due to limited network
bandwidth, only part of all pending updates can be
transmitted to the client.

The visual error, given by the difference in position of
the objects on server and client, will be minimized by the
enhanced PRR algorithm. While the simulator
continuously moves all objects, we let the PRR algorithm
select as many objects as the network permits (e.g. 10 %),

4 This value depends on the number of objects the

PRR can schedule per unit time.

using the velocity of the objects as Error Per Unit (EPU).
As reference we use the same setup, but we use Round-
Robin (RR) instead of the PRR algorithm.

In the first part of the evaluation we will run the
testbed without visibility culling (all updates are
transmitted to the clients), focussing on the scheduling
capabilites of PRR. The second part includes visibility
culling as filtering technique, where both PRR and RR
send only updates of the visible objects to the clients (but
RR does not enforce priorities).

Figure 4a-d: Screenshots of the testbed employed to

evaluate the enhanced PRR algorithm.

Figure 4 shows snapshots of the evaluation testbed
when visibility culling is used: the server (simulator) in
Panel 4a depicts the floor plan and the moving objects;
the client's viewpoint is depicted by a star, and the
invisible areas are shown shaded dark. The Panels 4c and
4d show the visual error of the connected client; Panel 4d
depicts the visual error for RR, while Panel 4c shows the
visual error for the enhanced PRR. Please note that only
the visible objects are shown in Panels 4c and 4d. The
visual error is depicted by a circle; its center coincides
with the last updated position of an object on the client,
while the actual position on the server determines the
radius of the circle (both positions are also connected with
a line). Thus the bigger the radius, the higher is the visual
error. The graph in Panel 4b permits to monitor the
overall error for RR and PRR scheduling.

The motion of the objects through the environment
was implemented by first digitizing and triangulating a
floor plan, and then generating a connection-graph of the
triangles. The simulator generates for each object a path
from the current position to a random destination position,
and then moves the object along this path with a given
velocity (used as EPU).

The area visible from the viewpoint chosen by the
client is also easily computed with the help of the
triangulated floor plan. Starting from the triangle which
contains the viewpoint, the 2.5D-visibility algorithm
presented by Schmalstieg in [Schm96] generates the set of
potentially visible triangles from the viewpoint.

If the object is invisible, then the algorithm determines
the shortest path from the actual to the nearest visible
triangle. From the length of the path and the object's
velocity the PRR makes a safe guess of the moment the
object will become visible in the worst case (if it
immediately starts heading for the visible area), and gives
the object an according priority.

6 Evaluation and results

The enhanced PRR algorithm is evaluated by
comparing it to plain Round-Robin (RR) scheduling; this
allows us to evaluate the performance increase that can be
gained by substituting RR with PRR.

In the examples given below, the server hosts a
simulator and moves 10000 objects (simulating avatars) at
a predetermined velocity through the environment; the
velocity is used as Error Per Unit (EPU). To simulate the
network bottleneck, although the simulator can move all
objects in every simulation step, only 10% of the position
updates (1000 in numbers) can be transmitted to the
client. The main loop of the testbed consists thus in first
simulating all 10000 objects; afterwards a PRR-scheduler,
as well as a plain RR queue can select and update 1000
objects. The actual overall error is computed and
evaluated for both RR and PRR scheduling after each
loop. Examples 1 and 2 (Section 6.1 and 6.2) compare

PRR to RR without employing any filtering technique,
Examples 3 and 4 (Section 6.3) include visibility culling;
the use of dead reckoning is evaluated in Section 6.4.

6.1 Example 1: clustered error distribution

This example shows a case apt for the PRR algorithm,
as we have three different clusters of EPUs which can be
serviced by PRR at different priorities. We let 10000
avatars walk along random paths in the environment at
different velocities (used as EPU):
 500 avatars get a velocity between 9 and 10 units
 2000 avatars get a velocity between 3 and 4 units
 7500 avatars get a velocity between 0.1 and 0.5 units

Figure 5 shows a comparison of the overall visual
error caused by a RR and a PRR algorithm (for the same
client), if only 10% of the 10000 objects are scheduled
after each simulation loop.

Figure 5: Due to the clustered error distribution, the visual
error of the enhanced PRR is 72% lower compared to RR.

6.2 Example 2: uniform error distribution

As PRR relies on servicing the objects at different
priorities, according to their EPU (velocity), a uniform
error distribution prevents PRR from constructing clearly
distinct error groups. In contrast to the previous example,
each avatar gets a random velocity between 1 and 10
units. Hence the reduction of the overall visual error, as
compared to RR scheduling, is 'only' 10%.

Figure 6: With a uniform error distribution, the visual error of
the enhanced PRR is only 10% lower compared to RR.

6.3 Examples 3 and 4: including visibility culling

In this example we combine Priority Round-Robin
with visibility culling, as described in Section 4. Both
PRR and RR send only updates of avatars which are
visible, as only the visible avatars contribute to the actual
visual error. The position of the camera was set as shown
in Figure 4a. For the avatars we use the same velocities as
in Example 1 and 2. With the uniform error distribution
(as in Example 2), the use of visibility culling lets PRR
outperform plain RR by 92%.

Figure 7: The combined use of visibilty culling and PRR on a
uniform error distribution decreases the visual error by 92%.

With the clustered error distribution (as in
Example 1), the exploitation of the visibility information
allows PRR to achieve an even more substantial decrease
in the visual error, outperforming RR by 307%.

Figure 8: The use of visibility culling lets PRR outperform RR
scheduling by 307%.

6.4 Example 5: including dead reckoning

Dead reckoning is often used as filtering technique in
physically based simulations where the motion of objects
is computed from linear velocity vectors. We compare the
avatars as selected by PRR and RR to the threshold set for
dead reckoning, and transmit the update only if the visual
error exceeds the threshold. Thus we use the Priority
Round-Robin technique to optimize the order in which the

objects are examined for transmission. The priority of the
elements in PRR is determined by the difference between
simulated and approximated position, as compared to the
threshold by dead reckoning. We interpret this difference
as distance, and from its changes on each simulation step
we compute an average velocity used as Error Per Unit
for the avatars.

We move all 10000 avatars along random paths
through the floorplan, with a given velocity:
 1000 avatars get a velocity between 9 and 10 units
 2000 avatars get a velocity between 2 and 3 units
 7000 avatars get a velocity between 0.1 and 0.5 units

Both PRR and RR can schedule 10% of the 10000
avatars on each simulation loop. However, the motion
through the long corridors is mostly coherent to the extent
that all avatars which exceed the threshold can also be
transmitted (which makes scheduling not necessary at all).
Hence we let all avatars change their path every 10
simulation steps. Using e.g. a threshold distance of 5
makes dead reckoning select on average 50% of the
avatars for update (which in absolute numbers is
approximately 5000), compared to the 1000 objects that
can at most be updated.

In this situation, by enhancing dead reckoning with
PRR allows to lower the overall visual by about 42%5,
compared to employing dead reckoning with simple
round-robin.

Figure 9: The overall error is decreased by 42% if dead
reckoning is enhanced with PRR.

7 Conclusions and future work
We have presented a technique to enhance plain Round

Robin scheduling, by adding the enforcement of priorities
to its advantages of being output sensitive and immune to
starvation. The Priority Round-Robin (PRR) algorithm
can bring a substantial contribution to the development of
distributed virtual environments or networked online-
games which contain a very high number of objects. The
simplicity of PRR and the freely definable error metric

5 All percentages refer to the error caused by PRR.

make it a suitable substitution for Round-Robin in most
cases. In our examples we have employed PRR as
substitute for the plain Round-Robin queue to transmit the
update messages at a constant effort per connected client;
the frequency of the updates is determined from priorites
based on the behavior of the objects.

Furthermore, PRR can be efficiently combined with
filtering techniques such as visibility culling. By
including the visibility information in the determinition of
the objects' priorities, we do not abondon output
sensitivity. Hence PRR not only provides a scalable
technique that leads to a graceful degradation of the
system's performance caused by network bandwidth
limitations. But is also helps avoid computational
bottlenecks caused by a naive application of filtering
techniques.

In order to furthermore optimize the PRR algorithm
for distributed environments and online-games, future
work will examine the scheduling of avatars (build
according to a hierarchical human model) and employ
Levels of Detail for the accuracy of the updates
transmitted to the clients. To account for the highly
unpredictable behavior of user-controlled avatars, a
measure to determine the rate at which the objects change
their activity is investigated. It should help to specify at
which threshold the prediction becomes useless: for
example, if an object has a moderate movement, it will be
inserted in a 'slow' level with a low traversal speed. But if
the activity of the object suddenly starts to increase
rapidly, its slow traversal speed may cause the element to
react too slow. Concluding, it is planned to construct an
extended environment containing a large number of
rooms, buildings and open landscapes, and evaluate
perceptual error metrics to minimize the visual error as
perceived by the user.

Acknowledgements
The work presented in this paper was sponsored by

the European Community under contract no. FMRX-CT-
96-0036.

References
[Aire90] J. M. Airey, J. H. Rohlf, F. Brooks Jr.: Towards Image

Realism with Interactive Update Rates in Complex Virtual
Building Enviroments. Computer Graphics, 24(2):41, 1990.

[Barr96] Barrus, J., Waters, R., & Anderson, R.: Locales and
Beacons: Precise and Efficient Support for Large Multi-User
Virtual Environments. Proceedings of VRAIS’96, pp. 204-
213, Santa Clara CA, 1996.

[Benf93] S. Benford, L. Fahlen: A spatial model of interaction
in large-scale virtual environments. 3rd European Conference
on CSCW, pp. 109-124, 1993.

[Das97] T. Das, G. Singh, A. Mitchell, P. Kumar, K. McGhee:
NetEffect: A Network Architecture for Large-scale Multiuser
Virtual World. Proc. of ACM VRST'97, pp. 157-163, 1997.

[Deit90] H. M. Deitel. An introduction to operating systems.
Addison-Wesley, Inc. ISBN 0-201-18038-3, 1990.

Fais00] C. Faisstnauer, D. Schmalstieg, W. Purgathofer.
Priority Round-Robin Scheduling for Very Large Virtual
Enviroments. Proc. of IEEE VR'2000, pp. 135-142, 2000.

[Funk93] T. A. Funkhouser, C.H. Sequin. Adaptive Display
Algorithm for Interactive Frame Rates During Visualization
of Complex Virtual Environments. Proceedings of
SIGGRAPH’93, pages 247-254, 1993.

[Funk95] T. A. Funkhouser. RING - A Client-Server System for
Multi-User Virtual Environments. SIGGRAPH Symposium
on Interactive 3D Graphics, pp. 85-92, 1995.

[Funk96] T. Funkhouser: Network Topologies for Scaleable
Multi-User Virtual Environments. Proceedings of VRAIS’96,
pp. 222-229, Santa Clara CA, 1996.

 [Mace94] M. R. Macedonia et al. NPSNET: A Network
Software Architecture for Large-Scale Virtual Environments.
Presence, Vol 3(4), pp. 265-287, 1994.

[Mace95] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, P.
Barham: Exploiting Reality with Multicast Groups. IEEE
Computer Graphics and Applications 15(3), pp. 38-45, 1995.

[Makb99] Y. Makbily, C. Gotsman, R. Bar-Yehuda: Geometric
Algorithms for Message Filtering in Decentralized Virtual
Environments. SIGGRAPH 1999 Symposium on Interactive
3D Graphics, pp. 39-46, Altanta GA, April 1999.

[Schm96] D. Schmalstieg et al.: Demand-Driven Geometry
Transmission for Distributed Virtual Environments.
Proceedings EUROGRAPHICS ‘96, 15(3), 421-433.

[Silb88] A. Silberschatz. Operating system concepts. Published
by Addison-Wesley, Inc. ISBN 0-201-18760-4, 1988.

[Sing95] S. K. Singhal, D. R. Cheriton. Exploiting Position
History for Efficient Remote Rendering in Networked
Virtual Reality. Presence, Vol. 4 (2), pp. 169-193, 1995.

[Snow94] D. N. Snowdon, A. J. West. AVIARY: Design Issues
for Future Large-Scale Virtual Environments. Presence, Vol
3(4), pp. 288-308, 1994.

[Stal95] W. Stallings. Operating systems. Published by
Prentice-Hall, Inc. ISBN 0-02-415493-8, 1995.

[Suda96] O. Sudarsky, C. Gotsman. Output-Sensitive Visibility
Algorithms for Dynamic Scenes with Applications to Virtual
Reality. Proceedings of EUROGRAPHICS’96, Vol 15(3),
pp. 249-258, 1996.

[Suda97] O. Sudarsky , C.Gotsman: Output-Sensitive Rendering
and Communication in Dynamic Virtual Environments. Proc.
of ACM VRST’97, Switzerland, 1997.

[Tane92] A. S. Tanenbaum. Modern operating systems.
Published by Prentice-Hall, Inc. ISBN 0-13-588187-0, 1992.

