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Abstract. The problem of resource bottlenecks is 
encountered in almost any distributed virtual environment 
or networked game. In a typical client-server setup, where 
the virtual world is managed by a server and replicated 
by connected clients which visualize the scene, the server 
must repeatedly transmit update messages to the clients. 
The computational power needed to select the messages 
to transmit to each client, or the network bandwidth 
limitations often allow only a subset of the update 
messages to be transmitted to the clients; this leads to a 
performance degradation and an accumulation of errors, 
e.g. a visual error based on the positional displacement of 
moving objects.  

This paper presents a scheduling algorithm that 
enforces priorities based on a freely definable error 
metric, trying  to minimize the overall error. It is able to 
achieve a graceful degradation of the system's 
performance and to minimize the risc of starvation, while 
retaining an output sensitive behavior. This makes it 
suitable not only to schedule the update messages to 
transmit to the various clients, but it also allows to 
employ filtering techniques at a constant effort. 

1 Introduction 
In the simulation of large virtual environments, 

contention for limited resources such as CPU, rendering 
pipeline, or network bandwidth frequently causes a 
degradation of the system's performance. Whenever there 
is such a competition and not all elements that require the 
resource can be serviced, an approximation must be made 
in order not to compromise interactive performance. The 
techniques employed to deal with such a situation can be 
divided in two groups: 
1. 'Filtering' techniques which reduce the absolute 

number of elements that require the resource and are 
thus competing for it. Examples include level of 
detail rendering (see e.g. [Funk93]), dead reckoning 
([Sing95], [Mace94])  and visibility culling 
([Suda96], [Funk95]). 

2. Traditional scheduling algorithms such as known 
from operating systems theory deal with the issue of 
selecting items that are granted resources ([Silb88], 
[Tane92]). 

A popular approach to build virtual environments and 
networked games is to use a client-server architecture: the 
virtual world is managed by the server and (partially) 
replicated by connected clients, which visualize the scene 
and/or navigate an avatar through the environment. All 
updates from the clients are routed via the server (often 
also responsible for the simulation of autonomous 
entities), which can perform arbitrary filtering functions; 
some systems employ visibility information in order to 
decrease the network load, by transmitting to each client 
only updates for those objects visible to it. Timely 
delivery of update messages to clients is essential to avoid 
visual errors (e.g. different positions of the same object on 
server and client). However these approaches cause a 
substantial overhead to the server, as it is often required to 
examine all objects in the environments for each client. 
For example, to transmit only the visible object updates to 
a client, it is necessary for the server to keep track of the 
point of view for all clients, and continously select the 
corresponding visible objects. Assume n = number of 
clients = number of objects. This means examining all 
objects for all clients leads to an effort of O(n2), which 
substantially affects the scalability. Furthermore these 
filtering techniques do not deal with the issue of 
scheduling the remaining objects. If the number of 
messages to be transmitted still exceeds the network 
bandwidth, the bottleneck problem may persist. 

In this case, or if no filtering is employed at all (as in 
many peer-to-peer systems), we face a scheduling 
problem similar to those found in operating systems 
research. However, scheduling in operating systems is not 
identical to scheduling in VEs. In particular, VEs can host 
a very large number of elements, so that the examination 
of every element in every turn is too computationally 
expensive. Instead, application in a VE requires an output 
sensitive algorithm that operates with constant effort 
independent of the number of elements. The simple 
Round-Robin (RR) approach to scheduling has this 
property and is therefore often used for such scheduling 
problems. But the RR strategy - simply selecting every 
element in turn - cannot accommodate dynamically 
changing simulations. For example, if the server has to 
distribute updates of entities moving with variable speed, 
for increased realism in the behavior, fast entities will 



require more frequent updates than slower ones. Such 
priorities cannot be achieved with plain RR. 

In this paper, we propose an enhancement to RR called 
Priority Round-Robin scheduling (PRR). This algorithm 
enforces priorities, while retaining the output sensitivity 
and starvation-free performance of RR. Priorities are set 
by a user-defined error metric (e.g. visual error), which 
the algorithm attempts to minimize. This allows not only 
to schedule the entites competing for a resource, e.g. 
updates competing for the network, but also to fill the gap 
between 'filtering' and 'scheduling' techniques: it allows to 
perform both filtering and scheduling of the elements at a 
constant effort. The freely definable error metric allows to 
include the filtering technique - e.g. visibility culling - in 
the determinition of the elements' priorities, which 
influences the time to wait between two consecutive 
schedulings; the PRR in turn selects the elements upon 
which the filter is applied. 

We will evaluate our algorithm in the aforementioned 
client-server system; PRR is used to schedule the update 
messages at a constant effort of O(k) per client, where k is 
the number of updates that can be transmitted by the 
network (and thus have to be selected); the priority of the 
elements is determined by the visual error, e.g. the 
position displacement. By applying visibility culling 
(determining whether an object is visible) when it is 
selected by PRR, the resulting effort is still O(k). Hence 
we have an overall effort of O(k*n)=O(n) for n connected 
clients, an output sensitive behavior which is crucial for 
scalable environments. Other than client-server oriented 
virtual environments and typical current online games 
(such as Ultima Online, Everquest, Asheron's Call, Half-
Life, Quake III Arena, Unreal Tournament etc.), PRR 
scheduling is also applicable to peer-to-peer systems 
(with the known difficulties of emplyong filtering 
techniques in serverless systems). 

2 Related Work 
Most virtual environments employ strategies to deal 

with the network bandwidth restrictions that limit the 
number of possible update messages. Many of them are 
filtering techniques which reduce the number of elements 
competing for the resource. They can roughly be 
categorized into the following groups: 

Several systems exploit the fact that a client is 
typically interested only in a small subsection – an area of 
interest - of the virtual world, which has local scope. 
Often the clients perception is limited to what can be seen 
from the current viewpoint. Objects that are occluded or 
too far away are not considered. Updates can be 
propagated on a “need to know” basis, greatly reducing 
the amount of messages that must be considered. The 
regions for which communication locality is exploited can 
either be given by the application designer, such as in 
SPLINE [Barr96], based on a regular (e.g. hexagonal) 
subdivision such as in NPSNET-IV [Mace95], by the 

viewing frustum/view cone such as in AVIARY 
[Snow94], or by visibility culling [Funk95, Makb99]. 
Visibility culling is often carried out with potentially 
visible sets (PVS) first introduced by Airey [Aire90]: An 
environment is first decomposed into cells, for which 
inter-cell visibility is pre-computed and used at runtime to 
identify visible objects for a given viewpoint. A simple 
PVS algorithm [Schm96] was also used for our test 
system. 

A related concept is that of temporal bounding 
volumes (TBV) [Suda96, Suda97] and update free regions 
(UFR) [Makb99]. A TBV is a region of space which 
completely contains an object for a determined period of 
time. For an object in a completely hidden TBV, no 
update must be considered during the validity interval of 
the TBV. UFR implement a similar concept for mutual 
visibility of objects. In this paper, we construct and use 
TBVs to enhance message scheduling. 

Communication filtering can also be performed based 
on proximity such as in DIVE [Benf93], or by explicitely 
registering interest in particular objects or events such as 
exemplified by NPSNET-IV or AVIARY. 

A scalable distributed virtual environment requires 
also some care in the choice of network topology, which 
is often considered together with a message filtering 
mechanism. Several systems use multicasting instead of 
or together with client-server schemes to achieve better 
scalability. Multicast groups are often associated with a 
particular location or message type for implicit message 
filtering by multicast subscriptions. Examples for such 
methods can be found in NPSNET-IV, DIVE, SPLINE, 
and RING [Funk96]. It should be noted that although it 
was tested in a client-server environment, the scheduling 
algorithm presented in this paper is independent of 
network topology and can be used in any network setup. 

Finally, dead reckoning is a networking enhancement 
technique used in physically based simulations where the 
motion of the objects is computed from linear velocity 
vectors. Each host stores a local copy of a remote object 
and predicts movements of the objects based on the 
current velocity. An update gets sent only when the 
difference between actual movement of the object at the 
remote host and the local copy exceeds a certain treshold. 
Several forms of dead reckoning have been developed, 
including prediction based on first-order derivatives such 
as in NPSNET [Mace94], position history such as in 
PARADISE [Sing95], or group dead reckoning such as in 
NetEffect [Das97]. 

Although all these techniques may reduce the number 
of messages to be transmitted by a considerable amount, 
they usually require a separate examination of all objects 
for each connected client (e.g. in visibility culling each 
client can have a different viewpoint), leading to a 
considerable effort. Furthermore, if the number of 
remaining messages still exceeds the network bandwidth, 
they must be scheduled or sorted in some way. 



The scheduling algorithm presented in this paper fills 
in this gap. While the factors used in the algorithm are 
limited to a few (visual error, visibility), its freely 
definable metric makes it principially suitable to 
accommodate any of the above filtering techniques, and 
work together with other networking techniques. 

3 The Priority Round-Robin Algorithm 

3.1 Overview 

The inspiration of the Priority Round-Robin (PRR) 
algorithm can be found in the short-term process 
scheduling known from operating system's research, 
where a set of independent processes is given processor 
time in order to optimize determined system's parameters 
[Deit90, Silb88, Stal95, Tane92]. Two of the most widely 
used algorithms are Round-Robin (or First Come-First 
Served, which is the non-preemptive version of Round-
Robin), and the Multilevel Feedback Queue (MLFQ). 
Round-Robin (RR) is widely used due to its simplicity, 
output sensitivity and starvation-free performance, but 
prevents the use of priorities. The MLFQ does enforce 
priorities (it consists of a set of levels with decreasing 
priorities), but has either to deal with the risk of 
starvation, or must constantly monitor all processes and 
thus renounce to a constant overhead. 

The scheduling of processes in operating systems and 
the scheduling of objects in virtual environments bears 
some substantial differences: in virtual environments for 
example – as opposed to process scheduling - the objects 
usually need be scheduled repeatedly, and their high 
number prevents an examination or sorting of all objects 
(for more details refer [Fais00]). However, by combining 
the basic properties of RR and MLFQ, the PRR algorithm 
inherits the advantages of both, providing an output 
sensitive and starvation free performance, and being able 
to enforce priorities. It is therefore a valid replacement for 
RR in most circumstances. We will employ PRR in our 
client-server testbed to schedule position update 
messages, a task which is usually handled by a simple RR 
queue. 

The priority management of PRR is based on the 
assumption that if an object is not granted the resource 
requested, it accumulates error, e.g. visual error. To be 
useful for scheduling, this error must be modeled as an 
appropriate error metric (such as deviation in position); 
the goal of the PRR algorithm is thus to minimize the 
cumulative error over all objects in the environment, 
called the 'overall error'.  

Each object in the algorithm is assigned a so called 
'Error Per Unit' (EPU), which is a prediction of how 
much the error will increase in a determined time unit1. If 

                                                           
1 The time unit chosen for the Error Per Unit does not 

affect the performance of the algorithm. 

the error is a deviation in position, then the velocity of an 
object is a suitable EPU. 

While the levels are processed in RR order, each level 
is assigned a priority, which must reflect the frequency 
with which the elements in the different levels are 
selected. Basically, elements with higher EPU must be 
scheduled more often than elements with lower EPU. The 
combination of traversing each level using RR, but with a 
different priority, gives our algorithm its name - Priority 
Round Robin scheduling. 

We call the waiting time wait between two consecutive 
schedulings the repetition count (rc); it is a measure of the 
time an element has to wait between two selections and 
thus for the cumulative error generated by the element 
until the next scheduling. All elements in level i have the 
same repetition count rci, which determines the 
scheduling frequency and hence the priority of a level. 

Let lev denote the number of levels and nei denote the 
number of elements in level i. If we repeatedly take one 
element from each level (we traverse all levels at an equal 
speed of one), the repetition count is simply 

levnerc ii *  

In the example shown in Figure 1, the elements of the 
first level (A and B) must wait 6 times between two 
consecutive schedulings, those of the second level have a 
repetition count of 12, and element G is scheduled every 3 
elements. 

 
Figure 1:  Scheduling order of the elements if all levels 

are traversed at an equal speed of one. 

The more elements in a level, the longer they must wait 
between two consecutive schedulings. If all levels are of 
equal length, the Repetition Count of the elements is the 
same as if they were scheduled by the RR algorithm  
(rc = number of elements). 

We also see that in the time interval the largest level m 
is traversed exactly once, the other levels i (of equal or 
smaller size) are traversed at least once. We thus define 
thelLevel frequency lfi of level i as 

i

m
i ne

ne
lf   

(1) 

(2) 



Whenever the largest level is traversed exactly once, 
all elements have been scheduled at least once; those of 
the largest level one time, and those of the other levels 
one or more times. The Turnaround Time TT in which all 
elements have been scheduled at least once is simply      

levnett m *  

If the EPU of an element can be assumed to be 
constant (such as for entities travelling at constant speed), 
a predicted error pe for that element can be calculated 
from 

rcepupe *  

Furthermore, an estimate of the total error per level 
and the total error of the environment can be computed 
from the EPU of each element and the repetition count of 
the levels. Keeping score of these total error measures is 
done incrementally with negligible overhead.  

3.2 Scheduling for static error distributions 

So far the issue of how elements are assigned to levels 
has not been discussed. Also, it has not been mentioned 
whether the number of elements in a level is constant or 
variable. Assuming a constant number of elements for 
each level, elements in smaller levels get scheduled more 
often. To fulfill the requirement mentioned in the 
introduction that elements with a large EPU should get 
scheduled more often in order to minimize overall error, 
these elements should be inserted into smaller levels. 

If the error distribution of the objects is known a priori, 
it is possible to fix the number and size of the levels a 
priori. If we define a set of levels with increasing size and 
insert the elements with decreasing EPU into the levels, 
then the larger the EPU of the element, the smaller is the 
level (and thus the repetition count) the element is 
assigned to. After having determined the optimal number 
and size of the levels from the error distribution of the 
elements (based on a prediction of the error), we can 
determine the level to which to assign an element. Each 
successive level covers a range of possible errors - an 
error interval - corresponding to the elements it contains. 
If the error values associated with the elements are 
completely static, elements will stay in the level they are 
assigned to. 

Unfortunately, dynamic virtual environments do not 
have a static error distribution. An element’s EPU will 
almost certainly change each time it is inspected. Not only 
must the element then be inserted into another level, but 
also the error intervals associated with the levels must be 
adjusted, if the size of the levels is to be kept constant. 
However, we have found that for large numbers of 
elements, the systems response to these adjustments is 
slow, and the overall error is often larger than plain RR 
when element behavior is dynamically changing. 

3.3 Scheduling for dynamic error distributions 

In order to overcome the aforementioned problem, the 
size of the levels must be variable. Therefore, the error 
interval covered by a level is no longer an indicator of 
where an element should be inserted. We considered two 
alternative variants of how to assign an element to a level: 

1. Minimization of overall error: The most suitable 
level for each element is chosen by estimating for the 
element’s current EPU of how the overall error is 
affected if the element is inserted into each level. The 
algorithm then selects that level which leads to the 
lowest overall error. Unfortunately, while this 
strategy automatically finds the best number of 
elements for each level, it is not superior to RR: as 
the assignment to a level is only dependent on global 
error minimization rather than directly on the EPU of 
the element, this algorithm tends to distribute 
elements with high and low errors equally on all 
levels. This leads to levels of equal length and equal 
average error, with a performance equivalent to RR 
scheduling. Therefore the size of the levels must be 
variable, and the assignment of an element to a level 
must directly depend on its EPU. 

2. Average Error Per Unit: This approach uses an 
average EPU associated with each level to determine 
the most suitable level for an element. The average 
EPU is computed using a moving average. An 
element is then assigned (according to its EPU) to the 
level with the 'closest' EPU average. This does not 
produce a perfect grouping of the elements according 
to their error, but does quickly adapt to changing 
error distributions with no additional overhead. 

After some experimentation, the second approach - 
based on average EPU - was chosen as the most efficient 
strategy. 

3.4 Optimum traversal rate 

In Section 3.1 we have introduced a scheduling 
strategy that consists of repeatedly picking one element 
from each level. In this case the average contribution of 
an element to the overall error is determined by the 
number of elements in each level, other that the EPU of 
the element (Equations 1 and 2).  

But by assigning an element to a level according to the 
EPU of both element and level, the length of the level is 
fixed by the error distribution of the elements. This retains 
from minimizing the overall error produced by the 
elements by determining an appropriate repetition count 
for each level. This would in turn require all levels to 
have a given length (in order to achieve a determined 
repetition count, if all levels are traversed at an equal 
speed of one).  
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(
3)



Therefore we need to detemine for each level a 
different 'speed' with which it is traversed (calculated 
from the error generated by the level), rather than 
constantly picking one element from each level. This 
traversal rate tri describes for each level i the number of 
elements that are selected from that level each time it is 
visited (all levels are accessed in turn, as in Figure 1). 
This makes the repetition count not depend only on the 
number  of elements in each level (other than the number 
of levels), but allows it to be varied by modifying the tri. 

Using a determined traversal rate tri, the repetition count 
rci for level i is now given by 
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where nei is the number of elements in a level and lev the 
total number of levels. If avi is the average2 EPU of    
level i, we can furthermore calculate a predicted error pli 

for level i.  
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By summing up the errors predicted for each level, we 
can derive a formula for the overall error (err). 













lev

i
i

lev

i i

ii

lev

i
i

tr
tr

avne
err

plerr

11

2

1

*
*

 

Our goal is to minimize the overall error err by selecting 
the optimum traversal rate tri for each level i. Hence we 
can build a cost-function err to minimize, with tri being 
the variables of the function. The number of elements nei 
and the average error avi of each level i can be treated as 
constant; hence we can ignore the sum of the tri in 
Equation 6, and use sui to substitute for 

iii avnesu *2  

 This allows us to construct the following cost-function 
err from Equation 6: 


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This optimization problem is best solved with the help of 
Lagrange  Multipliers: Equation 9 allows us to find the 
extrema of function f, with g being a constraint function 
for the variables of f:  

grad  f =  * grad  g 

                                                           
2 As an element is assigned to a level according to its EPU, the 

average EPU of a level is the moving average of the elements’ EPU 
contained in that level. Simplifying, we can assume that all elements in a 
level have the same (average) EPU. 

Hence we use err as function to minimize (substitute for 
f) and introduce a constraint function cons (Equation 10) 
given by the sum of all traversal rates, which is assumed 
to be equal to one3. 
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Substituting for function f and g in Equation 9 yields 
Equation 11, which allows us to find the values for the 
variables tri where err is a minimum: 
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To do so, we have to build for all variables tri the partial 

derivatives 
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Solving the partial derivatives 
itrF  we get 
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and from this we can solve for tri: 
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Now, by plugging Equation 13 into the constraint 
function (Equation 10, Equation 14) 

1...1  levtrtr  

we can solve for  
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After substituting for   into Equation 13 we get a 
formula for tri: 
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Resolving for sui (Equation 7) we finally get the optimum 
value for the traversal rate tri, in order to minimze the 
overall error err. 
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3 The value of one is arbitrary and only chosen for convenience 
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The main loop of the PRR algorithm hence consists in 
simultaneously traversing all levels according to their 
'speed' tri. Every time an object is selected, it is granted 
the resource requested (e.g. transmitting a position 
update), after which the object is re-evaluated: first a new 
EPU is determined (we base it on the actual velocity), 
then the object is reassigned to one of the levels according 
to its EPU. Assigning the object to the level whose 
average EPU is most close to the EPU of the object yields 
an simple yet effective adaptation to even rapidly 
changing error distributions. Afterwards the traversal rate 
of the levels is modified so to account for the new error 
distribution.  

By assuming a fixed number of levels, the effort 
needed to schedule an object is constant; hence the PRR 
algorithm can achieve an output-sensitive behavior. The 
freely definable EPU allows us to include visibility 
information in the determination of an object's priority. 

4 Using visibility information 

4.1 Overview 

Visibility information is already available in many 
existing virtual environments and networked games, 
usually employed to limit the amount of data transmitted 
over the network. In indoor scenes, rooms and building 
occlude most parts of the environment; in outdoor scenes 
the visibility is often limited by a radius around the user, 
e.g. the so called 'fog of war' in strategy games. 

Visibility culling of objects in a virtual environment 
can be accomplished by first determining the visible area 
that can be seen from the viewpoint, and then checking 
which objects are inside and outside that area. Figure 2 
depicts the visible area for a client, with object A and B 
being visible, and object C being invisible. 

Usually visibility culling is first used to reduce the 
number of objects, then a plain FIFO or Round-Robin 
(RR) queue is used to schedule the remaining objects; 
hence the visibility information is employed to insert or 
remove objects from the queue. 

 
Figure 2: Visible area and visible objects for a given viewpoint 
of the client. 

In contrast, we replace RR with a Priority Round-
Robin (PRR) scheduler and include visibility information 
in the priority of the objects. This allows us to reduce the 
effort for the server to determine which updates should be 
sent to each client. As each client has its own field of 

view, the server must usually examine all objects for each 
client. Assuming the number of clients approaching the 
number of objects, it is an effort of O(n2). 

By employing the PRR algorithm it is possible to shift 
part of this effort the scheduler; we let PRR repeatedly 
schedule as many objects (k) as the network permits, 
achieving an overall effort of O(k*n)=O(n) for n 
connected clients. Whenever an object is selected, PRR 
checks whether it is visible or not. For a visible object the 
update is transmitted, otherwise the algorithm continues 
its selection, looking for visible objects, with the highest 
speed permitted by the computing power and the network 
bandwidth. The visibility information affects how the 
objects' priority is determined: visible objects get a 
priority equal to their velocity (their EPU); if an object is 
invisible, the priority is chosen such as to let the object be 
rescheduled when it is expected to become visible again. 
In our implementation we base the prediction of when an 
object will be visible again on the shortest path from the 
actual position to the next visible area (and the actual 
velocity of the object). 

4.2 Temporal bounding volumes 

The determination of the time interval an object is 
supposed to remain invisible is based on a technique 
called 'temporal bounding volumes' (TBV). A TBV is a 
region of space (for simplicity often a circle or sphere) 
which completely contains an object for a specific period 
of time (called the validity interval). The TBV becomes 
invalid if the object leaves the volume. Hence its 
'expiration date' is determined by the movement of the 
object (e.g. rotating around a fixed point, traveling along a 
track, or translating freely in space) and by the size the 
TBV can have. In the extreme, a TBV encompassing the 
whole area of movement of the object will always be 
valid. 

 
Figure 3: Temporal bounding volume for an invisible object 

based on the shortest path to the next visible area. 

For objects with unconstrained translational 
movement, the expiration date of the TBV is directly 
related to its size. The validity interval of a TBV could be 
calculated by dividing the size of the TBV by the velocity 
of the object. However, in large virtual environments the 
entities are usually avatars with an unpredictable 
behavior. 



Our application of the TBV consists in using them to 
determine the priority of objects in the PRR algorithm: 
every time an object is scheduled, PRR determines 
whether it is visible or not. In the latter case, a TBV is 
constructed, based on the time the object is supposed to 
become visible again (thus, the size of the TBV 
determines its validity interval). Given the fact that the 
scheduling frequency of an object is reflected by its 
priority, we assign the object a priority such as to become 
scheduled again at the same moment the TBV expires 
(and the object is supposed to become visible again); this  
provides kind of an automated 'wake-up' function.  Figure 
3 shows the TBV for an object with unbound translation, 
calculated from the shortest path to the next visible area 
(hatched area). 

4.3 Integrating visibility information in PRR 

In order to be usable by the PRR algorithm, we 
express the time interval an object has to wait (given by 
the TBV) in number of scheduling actions4. Hence we can 
directly compare the waiting time of an object  - given by 
a number of scheduling actions - to the scheduling 
frequency of each level  (given by the repetition count, as 
calculated using Equation 1). An object is then assigned 
to that level whose scheduling frequency best matches its 
required waiting time. 

This causes a difference in how an object is assigned 
to a level, depending whether it is visible or not: if an 
object is visible, it is assigned to that level whose average 
EPU best matches the EPU of the object (given by its 
velocity). If it is invisible, that level is chosen whose 
scheduling frequency best matches the waiting time 
determined by the TBV. In the latter case, the EPU of the 
object is not determined by its velocity; rather it 
temporarily assumes the average EPU of the assigned 
level. This allows the PRR algorithm to simultaneously 
process visible and invisible objects. 

5 Testbed implementation 

Our testbed consists of a server which moves a 
determined number of objects through an environment, 
generated from a floor plan. A client visualizes the whole 
scene from a determined viewpoint and receives position 
updates of the various objects, in order to remain 
consistent with the server. Due to limited network 
bandwidth, only part of all pending updates can be 
transmitted to the client. 

The visual error, given by the difference in position of 
the objects on server and client, will be minimized by the 
enhanced PRR algorithm. While the simulator 
continuously moves all objects, we let the PRR algorithm 
select as many objects as the network permits (e.g. 10 %), 

                                                           
4 This value depends on the number of objects the 

PRR can schedule per unit time. 

using the velocity of the objects as Error Per Unit (EPU). 
As reference we use the same setup, but we use Round-
Robin (RR) instead of the PRR algorithm. 

In the first part of the evaluation we will run the 
testbed without visibility culling (all updates are 
transmitted to the clients), focussing on the scheduling 
capabilites of PRR.  The second part includes visibility 
culling as filtering technique, where both PRR and RR 
send only updates of the visible objects to the clients (but 
RR does not enforce priorities). 

 
Figure 4a-d: Screenshots of the testbed employed to 

evaluate the enhanced PRR algorithm. 



Figure 4 shows snapshots of the evaluation testbed 
when visibility culling is used: the server (simulator) in 
Panel 4a depicts the floor plan and the moving objects; 
the client's viewpoint is depicted by a star, and the 
invisible areas are shown shaded dark. The Panels 4c and 
4d show the visual error of the connected client; Panel 4d 
depicts the visual error for RR, while Panel 4c shows the 
visual error for the enhanced PRR. Please note that only 
the visible objects are shown in Panels 4c and 4d. The 
visual error is depicted by a circle; its center coincides 
with the last updated position of an object on the client, 
while the actual position on the server determines the 
radius of the circle (both positions are also connected with 
a line). Thus the bigger the radius, the higher is the visual 
error. The graph in Panel 4b permits to monitor the 
overall error for RR and PRR scheduling. 

The motion of the objects through the environment 
was implemented by first digitizing and triangulating a 
floor plan, and then generating a connection-graph of the 
triangles. The simulator generates for each object a path 
from the current position to a random destination position, 
and then moves the object along this path with a given 
velocity (used as EPU).  

The area visible from the viewpoint chosen by the 
client is also easily computed with the help of the 
triangulated floor plan. Starting from the triangle which 
contains the viewpoint, the 2.5D-visibility algorithm 
presented by Schmalstieg in [Schm96] generates the set of 
potentially visible triangles from the viewpoint. 

If the object is invisible, then the algorithm determines 
the shortest path from the actual to the nearest visible 
triangle. From the length of the path and the object's 
velocity the PRR makes a safe guess of the moment the 
object will become visible in the worst case (if it 
immediately starts heading for the visible area), and gives 
the object an according priority. 

6 Evaluation and results 

The enhanced PRR algorithm is evaluated by 
comparing it to plain Round-Robin (RR) scheduling; this 
allows us to evaluate the performance increase that can be 
gained by substituting RR with PRR. 

In the examples given below, the server hosts a 
simulator and moves 10000 objects (simulating avatars) at 
a predetermined velocity through the environment; the 
velocity is used as Error Per Unit (EPU). To simulate the 
network bottleneck, although the simulator can move all 
objects in every simulation step, only 10% of the position 
updates (1000 in numbers) can be transmitted to the 
client. The main loop of the testbed consists thus in first 
simulating all 10000 objects; afterwards a PRR-scheduler, 
as well as a plain RR queue can select and update 1000 
objects. The actual overall error is computed and 
evaluated for both RR and PRR scheduling after each 
loop. Examples 1 and 2 (Section 6.1 and 6.2) compare 

PRR to RR without employing any filtering technique, 
Examples 3 and 4 (Section 6.3) include visibility culling; 
the use of dead reckoning is evaluated in Section 6.4. 

6.1 Example 1: clustered error distribution 

This example shows a case apt for the PRR algorithm, 
as we have three different clusters of EPUs which can be 
serviced by PRR at different priorities. We let 10000 
avatars walk along random paths in the environment at 
different velocities (used as EPU): 
 500 avatars get a velocity between 9 and 10 units 
 2000 avatars get a velocity between 3 and 4 units 
 7500 avatars get a velocity between 0.1 and 0.5 units 

Figure 5 shows a comparison of the overall visual 
error caused by a RR and a PRR algorithm (for the same 
client), if only 10% of the 10000 objects are scheduled 
after each simulation loop.  

 
Figure 5: Due to the clustered error distribution, the visual 
error of the enhanced PRR is 72% lower  compared to RR. 

6.2 Example 2: uniform error distribution  

As PRR relies on servicing the objects at different 
priorities, according to their EPU (velocity), a uniform 
error distribution prevents PRR from constructing clearly 
distinct error groups. In contrast to the previous example, 
each avatar gets a random velocity between 1 and 10 
units. Hence the reduction of the overall visual error, as 
compared to RR scheduling,  is 'only' 10%. 

 
Figure 6: With a uniform error distribution, the visual error of 
the enhanced PRR is only 10% lower compared to RR. 



6.3 Examples 3 and 4: including visibility culling 

In this example we combine Priority Round-Robin 
with visibility culling, as described in Section 4. Both 
PRR and RR send only updates of avatars which are 
visible, as only the visible avatars contribute to the actual 
visual error. The position of the camera was set as shown 
in Figure 4a. For the avatars we use the same velocities as 
in Example 1 and 2. With the uniform error distribution 
(as in Example 2), the use of visibility culling lets PRR 
outperform plain RR by 92%.  

 
Figure 7: The combined use of visibilty culling and PRR on a 
uniform error distribution decreases the visual error by 92%. 

With the clustered error distribution (as in  
Example 1), the exploitation of the visibility information 
allows PRR to achieve an even more substantial decrease 
in the visual error, outperforming RR by 307%. 

 
Figure 8: The use of visibility culling lets PRR outperform RR 
scheduling by 307%. 

6.4 Example 5: including dead reckoning 

Dead reckoning is often used as filtering technique in 
physically based simulations where the motion of objects 
is computed from linear velocity vectors. We compare the 
avatars as selected by PRR and RR to the threshold set for 
dead reckoning, and transmit the update only if the visual 
error exceeds the threshold. Thus we use the Priority 
Round-Robin technique to optimize the order in which the 

objects are examined for transmission. The priority of the 
elements in PRR is determined by the difference between 
simulated and approximated position, as compared to the 
threshold by dead reckoning. We interpret this difference 
as distance, and from its changes on each simulation step 
we compute an average velocity used as Error Per Unit 
for the avatars.  

We move all 10000 avatars along random paths 
through the floorplan, with a given velocity: 
 1000 avatars get a velocity between 9 and 10 units 
 2000 avatars get a velocity between 2 and 3 units 
 7000 avatars get a velocity between 0.1 and 0.5 units 

Both PRR and RR can schedule 10% of the 10000 
avatars on each simulation loop. However, the motion 
through the long corridors is mostly coherent to the extent 
that all avatars which exceed the threshold can also be 
transmitted (which makes scheduling not necessary at all). 
Hence we let all avatars change their path every 10 
simulation steps. Using e.g. a threshold distance of 5 
makes dead reckoning select on average 50% of the 
avatars for update (which in absolute numbers is 
approximately 5000), compared to the 1000 objects that 
can at most be updated. 

In this situation, by enhancing dead reckoning with 
PRR allows to lower the overall visual by about 42%5, 
compared to employing dead reckoning with simple 
round-robin. 

 
Figure 9: The overall error is decreased by 42% if dead 
reckoning is enhanced with PRR. 

7 Conclusions and future work 
We have presented a technique to enhance plain Round 

Robin scheduling, by adding the enforcement of priorities 
to its advantages of being output sensitive and immune to 
starvation. The Priority Round-Robin (PRR) algorithm 
can bring a substantial contribution to the development of 
distributed virtual environments or networked online-
games which contain a very high number of objects. The 
simplicity of PRR and the freely definable error metric 

                                                           
5 All percentages refer to the error caused by PRR. 



make it a suitable substitution for Round-Robin in most 
cases. In our examples we have employed PRR as 
substitute for the plain Round-Robin queue to transmit the 
update messages at a constant effort per connected client; 
the frequency of the updates is determined from priorites 
based on the behavior of the objects.  

Furthermore, PRR can be efficiently combined with 
filtering techniques such as visibility culling. By 
including the visibility information in the determinition of 
the objects' priorities, we do not abondon output 
sensitivity. Hence PRR not only provides a scalable 
technique that leads to a graceful degradation of the 
system's performance caused by network bandwidth 
limitations. But is also helps avoid computational 
bottlenecks caused by a naive application of filtering 
techniques. 

In order to furthermore optimize the PRR algorithm 
for distributed environments and online-games, future 
work will examine the scheduling of avatars (build 
according to a hierarchical human model) and employ 
Levels of Detail for the accuracy of the updates 
transmitted to the clients. To account for the highly 
unpredictable behavior of user-controlled avatars, a 
measure to determine the rate at which the objects change 
their activity is investigated. It should help to specify at 
which threshold the prediction becomes useless: for 
example, if an object has a moderate movement, it will be 
inserted in a 'slow' level with a low traversal speed. But if 
the activity of the object suddenly starts to increase 
rapidly, its slow traversal speed may cause the element to 
react too slow. Concluding, it is planned to construct an 
extended environment containing a large number of 
rooms, buildings and open landscapes, and evaluate 
perceptual error metrics to minimize the visual error as 
perceived by the user. 

Acknowledgements 
The work presented in this paper was sponsored by 

the European Community under contract no. FMRX-CT-
96-0036. 

References 
[Aire90] J. M. Airey, J. H. Rohlf, F. Brooks Jr.: Towards Image 

Realism with Interactive Update Rates in Complex Virtual 
Building Enviroments. Computer Graphics, 24(2):41, 1990. 

[Barr96] Barrus, J., Waters, R., & Anderson, R.: Locales and 
Beacons: Precise and Efficient Support for Large Multi-User 
Virtual Environments. Proceedings of VRAIS’96, pp. 204-
213, Santa Clara CA, 1996. 

[Benf93] S. Benford, L. Fahlen: A spatial model of interaction 
in large-scale virtual environments. 3rd European Conference 
on CSCW, pp. 109-124, 1993. 

[Das97] T. Das, G. Singh, A. Mitchell, P. Kumar, K. McGhee: 
NetEffect: A Network Architecture for Large-scale Multiuser 
Virtual World. Proc. of ACM VRST'97, pp. 157-163, 1997. 

[Deit90] H. M. Deitel. An introduction to operating systems. 
Addison-Wesley, Inc. ISBN 0-201-18038-3, 1990. 

Fais00] C. Faisstnauer, D. Schmalstieg, W. Purgathofer. 
Priority Round-Robin Scheduling for Very Large Virtual 
Enviroments. Proc. of IEEE VR'2000, pp. 135-142, 2000. 

[Funk93] T. A. Funkhouser, C.H. Sequin. Adaptive Display 
Algorithm for Interactive Frame Rates During Visualization 
of Complex Virtual Environments. Proceedings of 
SIGGRAPH’93, pages 247-254, 1993. 

[Funk95] T. A. Funkhouser. RING - A Client-Server System for 
Multi-User Virtual Environments. SIGGRAPH Symposium 
on Interactive 3D Graphics, pp. 85-92, 1995. 

[Funk96] T. Funkhouser: Network Topologies for Scaleable 
Multi-User Virtual Environments. Proceedings of VRAIS’96, 
pp. 222-229, Santa Clara CA, 1996. 

 [Mace94] M. R. Macedonia et al. NPSNET: A Network 
Software Architecture for Large-Scale Virtual Environments. 
Presence, Vol 3(4), pp. 265-287, 1994. 

[Mace95] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, P. 
Barham: Exploiting Reality with Multicast Groups. IEEE 
Computer Graphics and Applications 15(3), pp. 38-45, 1995. 

[Makb99] Y. Makbily, C. Gotsman, R. Bar-Yehuda: Geometric 
Algorithms for Message Filtering in Decentralized Virtual 
Environments. SIGGRAPH 1999 Symposium on Interactive 
3D Graphics, pp. 39-46, Altanta GA, April 1999. 

[Schm96] D. Schmalstieg et al.: Demand-Driven Geometry 
Transmission for Distributed Virtual Environments. 
Proceedings EUROGRAPHICS ‘96, 15(3), 421-433. 

[Silb88] A. Silberschatz. Operating system concepts. Published 
by Addison-Wesley, Inc. ISBN 0-201-18760-4, 1988. 

[Sing95] S. K. Singhal, D. R. Cheriton. Exploiting Position 
History for Efficient Remote Rendering in Networked 
Virtual Reality. Presence, Vol. 4 (2), pp. 169-193, 1995. 

[Snow94] D. N. Snowdon, A. J. West. AVIARY: Design Issues 
for Future Large-Scale Virtual Environments. Presence, Vol 
3(4), pp. 288-308, 1994. 

[Stal95] W. Stallings. Operating systems. Published by 
Prentice-Hall, Inc. ISBN 0-02-415493-8, 1995. 

[Suda96] O. Sudarsky, C. Gotsman. Output-Sensitive Visibility 
Algorithms for Dynamic Scenes with Applications to Virtual 
Reality. Proceedings of EUROGRAPHICS’96, Vol 15(3), 
pp. 249-258, 1996. 

[Suda97] O. Sudarsky , C.Gotsman: Output-Sensitive Rendering 
and Communication in Dynamic Virtual Environments. Proc. 
of ACM VRST’97,  Switzerland, 1997. 

[Tane92] A. S. Tanenbaum. Modern operating systems. 
Published by Prentice-Hall, Inc. ISBN 0-13-588187-0, 1992. 


