
Interactive Volume Exploration on the StudyDesk 1

Interactive Volume Exploration on the StudyDesk

Werner Wohlfahrter
Vienna University of Technology

Favoritenstrasse 9-11/5
A-1040 Vienna, Austria

ww@cg.tuwien.ac.at

L. Miguel Encarnac¸ão
Fraunhofer Center for Research in

Computer Graphics (CRCG)
321 South Main Street, Providence,

RI 09203, USA
mencarna@crcg.edu

Dieter Schmalstieg
Vienna University of Technology

Favoritenstrasse 9-11/5
A-1040 Vienna, Austria
dieter@cg.tuwien.ac.at

Abstract
We present the combination of an interaction–rich virtual environment and a volume-rendering library which enables
to work in an easier and more natural way on volume data. This paper describes how we combined these packages and
points out the advantages of such a combination. We also give a short survey of the state of the art in volume rendering
libraries and we explain why we selected SGI Volumizer as the volume rendering library for our volume VR system.

Keywords
3D interaction, virtual reality, augmented reality, user interface, volume data

1 Introduction

Volume data is becoming increasingly important in
the scientific and medical field because of the use of
MRI, CT and ultrasound. Volume data are usually
very large and difficult to handle but need to be an-
alyzed in an efficient way. It is therefore important
to think about easier and more natural ways to inter-
act with volume data. Our approach is a combina-
tion of an interaction–rich VR system (StudyDesk)
and a volume-rendering system (SGI’s OpenGL Vo-
lumizer). We selected SGI OpenGL Volumizer as
the most suitable volume rendering library for our
interaction research, over VolPack, 3DDataMaster,
Amira, TeleInVivo, VoxelView and VTK. Our so-
lution comprises a powerful interaction system for
exploring volume data that allows the user to drag,
scale, or cut the volume in a very natural way using
two–handed interaction. It also provides a method
for “freezing” and “unfreezing” cutting planes into
different displays by using lookup tables, and the
ability to extract an arbitrary slice out of the volume
data.

2 Related Work

The following sections give you a brief introduc-
tion to StudyDesk, the VR interaction framework

we use, and Mirror Tools, which are an add–on to
StudyDesk.

2.1 StudyDesk

Studierstube [7, 22, 18] is an augmented reality
framework based on OpenInventor, which supports
two–handed interaction using a tracked personal in-
teraction panel (PIP) in the one hand and a tracked
pen in the other. The PIP is a see–through plastic
palette onto which virtual menus and controls are
mapped. The pen, also designed as a see–through
device, is used to point to certain objects. A user
works like a painter who holds a painters palette
in his non–dominant hand and a brush in his dom-
inant hand (Figure 1). Similar two–handed interac-
tion has proven useful in medical applications such
as surgical planning [8]. The VR interaction envi-
ronment that uses Studierstube in combination with
the Virtual Table described in [21] is called Study-
Desk which was employed for this work.

2.2 Mirror Tools

Bimber et al. [1, 2, 16] extended the capabili-
ties of the PIP by adding a semi–reflective, semi–
transparent foil onto it using it not only as a trans-
flective pad, but also as a reflective pad. This means
that the volume projection is calculated by using an

The Fourth International Immersive Projection Technology Workshop 2000



Interactive Volume Exploration on the StudyDesk 2

eyepoint reflected over the PIP plane. The volume
therefore appears distorted on the table but correct
on the reflective pad. This technique provides two
advantages:

� The tracked 3D space in front of the table can
be enlarged by mirroring the eyepoint.

� Normally only one person can be tracked, and
the others must wear untracked glasses. The
projection is calculated only for the tracked
person to whom it appears perfect, but to the
others the projection is distorted. Bimber et
al. showed that this distortion is small when
using the mirror setup.

3 Volume Rendering

As an introduction to 3.4 studied volume rendering
packages, we give a short overview of the state of
the art in volume rendering, in which we compare
different libraries.

Kaufman’s [10] survey of Volume Rendering di-
vides it into two parts: surface rendering techniques
and direct volume rendering techniques.

3.1 Surface Rendering Techniques

Surface rendering techniques approximate a surface
contained within volumetric data using primitives,
which can be rendered using conventional graphics
accelerator hardware. A surface can be defined by
applying a binary segmentation function,B(v), to
the volumetric data.B(v) evaluates to1 if the value
v is considered part of the object, and evaluates to
0 if the value v is part of the background. Thus the
surface is the region whereB(v) changes from0 to
1. With continuous interpolation functions, a sur-
face, known as an iso-valued surface or an isosur-
face, may be defined by a single value.
First proposed by Herman and Liu in 1979, the
Opaque Cubes method (also known as Cuberille)
was one of the first widely used visualizing methods
for volume data, and it simply visualizes the cells
that are part of the isosurface.

Schroeder, Martin and Lorensen [23] describe
Color Mapping as a visualization technique which
maps scalar data into colors and displays them. The
scalar mapping is implemented by indexing scalar
values into a color lookup table. They also dis-
cussContour Tracking in which the eye often sep-
arates similarly colored areas into distinct regions,
effectively constructing the boundary between these
regions. These boundaries correspond to contour

lines of constant scalar value. Examples of 2D con-
tour displays include weather maps shown with lines
of constant temperature (isotherms), or topological
maps drawn with lines of constant elevation.

The most important surface rendering algorithm
is Marching Squares, used for 2D data, andMarch-
ing Cubes [15], used to create isosurfaces out of 3D
data. Given a volume dataset and a threshold value,
the isosurface passing through the points of the vol-
ume dataset having this value can be reconstructed
by using theMarching Tetrahedra [4] algorithm,
which is a per cell approach similar to the marching
cubes algorithm. Another marching cubes–related
algorithm is called Dividing Cubes. In that case ev-
ery intersected voxel is subdivided until the divided
voxel is as large as a pixel of the final image or
smaller. This voxel will be rendered as a point.

3.2 Direct Volume Rendering
Techniques

Direct volume rendering techniques are divided into
Image Order andObject Order direct volume ren-
dering techniques.
Image order is also known as ray–casting,
backward–mapping, and pixel–space projection. To
render the image, all pixels of the image are calcu-
lated by looking what voxels contribute to it. This
is done by casting a “virtual ray” and evaluating the
voxels that are “hit”.
Object order is also known as forward–mapping and
voxel–space projection. To render the image, all
volume elements are traversed and projected into
image space. In other words, each voxel is accessed
to calculate the contribution it makes to the image.

Slicing is a volume visualization method that has
been used in medicine for many years. Every CT
or MRI scan is a set of image “slices” of a human.
This method is important for our work and will be
described in greater detail later.

A more recent method,Splatting or Foot-
print evaluation (perspective variant), completes a
front–to–back object–order traversal throughout the
dataset. It calculates (per plane or slice) what the
contribution of the voxels in that plane are, and thus
what the contribution of the plane itself is to the im-
age. This contribution is attenuated by a often pre–
calculated kernel (usually a Gaussian Filter), and fi-
nally projected into the image plane.

Lacrute and Levoy [13, 14] introducedShear
Warp Factorization. Their method is based on a fac-
torization of the viewing matrix into a 3D shear par-
allel to the slices of the volume data, a projection to

The Fourth International Immersive Projection Technology Workshop 2000



Interactive Volume Exploration on the StudyDesk 3

form a distorted intermediate image, and a 2D warp
to produce the final image.

3.3 Applied Volume Rendering
Criteria

A crucial part of our work was to find the most
suitable volume rendering package. Our environ-
ment and the targeted functionality to analyze vol-
ume data define certain meeting points that a volume
rendering library should provide.
Because Studierstube is based on OpenInventor, we
prefer a volume rendering library that is based on
OpenGL, making it easy to integrate and advanta-
geous in terms of performance. To feel comfort-
able working with such system, realtime rendering
is necessary. StudyDesk is driven by an SGI work-
station that defines the hardware platform. Stereo
vision is a supported feature of Studierstube. To get
correct stereoscopic projection of the volume data,
perspective rendering is needed. Exploring the in-
side of a volume is a major requirement for analyz-
ing volume data. This can be done by cutting the
volume or storing textures of an arbitrary plane. Ac-
cess to the underlying data is very important to re-
trieve and control these textures.

3.4 Studied Volume Rendering
Packages

VolPack [17] is a portable software library for vol-
ume rendering, developed by the University of Stan-
ford. Since the library does not use any specialized
hardware, it is portable to most platforms and still
achieves very fast rendering times. VolPack is based
on the Shear–Warp algorithm. The library does cur-
rently not support perspective projections and clip-
ping planes.

3D Data Master [25] is part of the 3D DataSuite
from TGS. 3D Data Master, an extension to Open-
Inventor, can deal with different types of meshes
to represent the data. These meshes are divided
into Surface Meshes, to store 2D data, andVol-
ume Meshes, to store 3D data. Surface and volume
meshes can either bestructured grids or unstruc-
tured meshes. 3D DataMaster uses color mapping,
marching cubes and marching tetrahedra to render
the data. This software package was a quick devel-
opment on top of OpenInventor. TGS no longer rec-
ommends using it as a volume rendering solution,
and instead recommends their new product Amira.

Amira [26] is the new strategic volume render-
ing software offered by TGS. Unfortunately, Amira,

which is based on the OpenInventor graphics toolkit,
does not include an API (TGS is working on that).
Amira uses marching cubes to generate isosurfaces
but does not exactly specify their algorithm for
direct volume rendering and data representation.
The package relies on fast hardware–accelerated
OpenGL 3D graphics. TGS strongly recommends
using hardware texture mapping, since many visual-
ization tools in Amira rely on it and some features
require it. Amira might be a very good volume–
rendering application but is not yet programmable
and therefore not usable in our case.

TeleInVivo [27] is a commercially avail-
able volume–visualization application developed at
Fraunhofer CRCG. It is based on a volume render-
ing framework developed in house. TeleInVivo uses
the parallel projection Shear–Warp algorithm for
rendering. It is currently implemented as a pure soft-
ware renderer without using the OpenGL library be-
cause the combination of Shear Warp and OpenGL
is still a problem. TeleInVivo has DICOM–3 read
capabilities and can handle any imaging modality
stored in that form. In addition, it has built–in ca-
pabilities for freehand acquisition of 3D ultrasound
using the MircoScribe arm from Immersion Corp.
TeleInVivo also renders multiply segmented and la-
beled volumes (i.e. digital atlases). A key feature is
the collaborative mode that allows remotely situated
personnal to share views of a volumetric dataset.
TeleInVivo is a pure software renderer, which makes
it hardware independent on the one hand, but rela-
tively slow on the other. The Shear Warp algorithm
is implemented for parallel projection only.

VoxelView [28] was designed and built by Vi-
talImages as a visualization software package es-
pecially for the medical imaging market. Unfortu-
nately, there is no information available about algo-
rithms or internal data structures used in this pack-
age. VoxelView uses shared memory and semaphore
to share the data with other programs. It is possi-
ble to manipulate the data over the shared memory
and display it in VoxelView, but it is not possible to
use their volume–rendering engine only. VoxelView
uses SGI as its strategic platform. It supports DI-
COM, Analyze and TIFF, and it can load datasets
like GE, Siemens and Toshiba. Perspective projec-
tion is used to render the volume data. Isosurfaces
are supported as well. VoxelView provides a func-
tionality called tracing contours, which allows users
to trace a contour on each slice and get the newly
generated geometry displayed in combination with
the volume data. VoxelView is well implemented
and offers various functions, but unfortunately it is
not freely available and has no API. VitalImages re-

The Fourth International Immersive Projection Technology Workshop 2000



Interactive Volume Exploration on the StudyDesk 4

cently released a volume–rendering software pack-
age followed–up called Vitrea.

The Visualization ToolKit (VTK) [23, 11] is an
open source, freely available software system for 3D
computer graphics, image processing, and visualiza-
tion. VTK includes a C++ class library (with more
than 500 classes), and several interpreted interface
layers including Tcl/Tk, Java, and Python. VTK
has been implemented on nearly every Unix–based
platform and PC (Windows NT and Windows95).
The graphics model in VTK is at a higher level of
abstraction than rendering libraries like OpenGL or
PEX. In VTK, applications can be written directly
in C++, Tcl, Java, or Python. In fact, using the inter-
preted languages Tcl or Python with Tk (and even
Java with its GUI class libraries) it is possible to
build useful applications fast. VTK is a very well
developed volume–rendering library. It is easy to
use and powerful, but slow because it uses ray cast-
ing as its volume rendering technique. As such, it is
unreasonable to use this library for our work without
having a Mitsubishi VolumePro [19] board at hand.

OpenGL Volumizer [24] is the volume render-
ing library from Silicon Graphics. This volume ren-
dering library will be described in more detail be-
cause this is the library of choice for the presented
application system.
It is built, as the first part of the name suggests, on
top of OpenGL, and it works very well with Open-
Inventor. OpenGL Volumizer uses a technique sim-
ilar to ray casting, called volume slicing, to leverage
the texture–mapping hardware that many worksta-
tions now have. Ray casting can be performed in
ray–order or sampling–surface order using planes or
spherical surfaces parallel to the line of sight. Vol-
ume slicing and ray casting are equivalent in the fol-
lowing ways:

� Ray casting under orthographic projection is
equivalent to taking a series of slices along
planes parallel to the viewport and composit-
ing them.

� Ray casting under perspective projection is
equivalent to sampling along a series of con-
centric spherical shells centered at the eye.

The result is volume rendering according to tex-
ture mapping, as shown in Figure 2.

Usually in ray casting, each point on a ray that
is projected from the eye position through the vol-
ume is processed sequentially by the CPU, therefore
slowing the process down. In Volumizer, all points
on a plane orthogonal to the line of sight are com-
puted sequentially in the texture–mapping hardware

(Figure 4).
Some image databases contain more voxel data

than can be stored in a machine’s texture mapping
hardware. To take advantage of hardware accelera-
tion, voxel data is broken up into subsections called
bricks. A brick is a subset of voxel data that can fit
into a machine’s texture–mapping hardware. Bricks
are regular hexahedra (boxes) with non–zero width,
height, and depth. Displaying a volume requires
paging the appropriate brick data into texture mem-
ory.

For further information, please consult the
OpenGL Volumizer Programmer’s Guide [5].

4 Implementation

The best way to combine OpenGL Volumizer and
StudyDesk is to encapsulate Volumizer into Open-
Inventor nodes, which then become part of the used
OpenInventor scene graph (Figure 3). Since Volu-
mizer acts like normal OpenInventor nodes, Study-
Desk does not have to change in any way. Figure 5
shows the relationship between the software pieces
used.
A status object stores all Volumizer and application–
related states. Every state change will also change
the status object and therefore affect the applica-
tion’s behavior. A state change is provoked by the
following functions.

� Loading volume data
The application can either read a 3D tiff or
a number of 2D raw format files, which is
important because most medical devices store
their volume data in that format. The volume
data are divided and stored as bricks whose
size depends on the hardware used. One brick
stores exactly the amount of data that can be
served by the texture memory. The collection
of bricks is stored in the main memory and
select bricks are downloaded into the texture
memory on demand. Having a large texture
memory increases the size of the bricks and
decreases the download effort from the main
memory to the texture memory.

� Scaling the volume
As described above, OpenGL Volumizer uses
the Volume Slicing technique to render the
volume data, and the texture mapped onto the
slices is calculated from the voxel data. En-
larging the volume by moving a sliderbar that
is mapped onto the PIP increases both the

The Fourth International Immersive Projection Technology Workshop 2000



Interactive Volume Exploration on the StudyDesk 5

number of slices and the size of each slice,
which provokes more texture calculation and
slows down the application.

� Lookup table
Using Volumizer’s lookup table functionality,
which controls the opacity and colors of the
volume, enables us to display the data that lies
in a specified range (compare Figures 11 and
12). We use a linear lookup table because it is
hardware optimized and goes from0:0 to 1:0,
starting atmean � tolerance=2 and finish-
ing atmean+ tolerance=2. Mean and toler-
ance can be set using sliders on the PIP simi-
lar to those used for scaling the volume. The
lookup table is activated by pressing the acti-
vate/deactivate lookup table button on the PIP
(Figure 10).

� Dragging the volume
One way we analyze an object in the real
world is by grabbing it, rotating it (if possi-
ble) and taking a closer look to get more de-
tails about the interesting parts. We aimed for
having the same ability in our environment to
explore the data in a similar way. Dragging
the volume is done by copying the pen’s track-
ing position to a transform node that is located
between the volume dragger node and the vol-
ume (Figures 3, 8, 9).

� Cutting the volume
The PIP is a tracked plastic pad that looks like
a clipboard. By flipping it over, the PIP func-
tionality changes fromdisplay mode to cut
mode, which means that the menus mapped
onto it disappear and the PIP works like a cut-
ting plane when sweeping it through the vol-
ume. While cutting the volume with the PIP
held in the nondominant hand, it is possible
to simultaneously move the volume using the
pen in the dominant hand. There is anecdotal
evidence that it is easier to find the interest-
ing areas in the volume using both hands be-
cause one hand is usually trained for different
tasks. The dominant hand is usually used for
precise work where as the non dominant hand
mostly takes the supporting rule [8]. The cut
is technically done by using an OpenInventor
clip plane node, which gets the tracker coordi-
nates and orientation of the PIP. The clip node
is placed before the volume dragger node, that
is used to drag the volume to provide two–
handed interaction while cutting the volume
described above (Figures 3, 7).

� Freezing cutting planes
To “freeze” certain cutting planes, an addi-
tional mode has to be set before flipping over
the plane. If the perfect cutting position is
reached, clicking the button on the pen freezes
the current cutting plane (Compare Figures
12, 13). This is a very natural way of defining
a volume of interest. Internally a copy of the
OpenInventor clipping plane is stored after
the volume–Dragger node and before the vol-
ume node. By doing so, the clipping plane is
fixed to the volume, regardless of whether the
volume is dragged or scaled, until the plane is
unfrozen (Figure 3).

� Unfreezing cutting planes
To “unfreeze” a cutting plane, the PIP must
be flipped back over into thedisplay mode. A
simple click of the pen button unfreezes the
last cutting plane, which technically means
that the last stored OpenInventor clip node is
deleted from the scene graph (Figure 3).

� Mirroring
To activate the mirror functionality, described
in 2.2, the PIP must be turned over. The appli-
cation is in clipping (transflective) mode if the
user looks through it to the table. It is in mir-
ror (reflective) mode if the user looks at the
PIP and seeing a correct reflection of the vol-
ume projected on the table (because the PIP is
working like a real mirror) (Figure 14).

� Extracting arbitrary slices
Extracting an arbitrary slice of data out of
the volume is important for medical or ge-
ological applications. Arbitrary slices are
generated by extracting data off the vol-
ume. The complexity involved in getting
these slices out of the volume depends on the
texture–mapping hardware used. With three–
dimensional texture–mapping hardware, the
slicing plane can be clipped using Volu-
mizer’s clip function, and the resulting poly-
gons can be drawn with texturing enabled.
Without three–dimensional texture–mapping
hardware, computing a tri–linearly filtered
oblique slice through a volume is more chal-
lenging (see [5] for more details). Though it is
complex it can be done using OpenGL Volu-
mizer’s Multi–Planar Reconstructions (MPR)
which calculate the slice and store the data in
a separate data structure.

The Fourth International Immersive Projection Technology Workshop 2000



Interactive Volume Exploration on the StudyDesk 6

5 Results

The two–handed interaction provided by StudyDesk
is well suited for handling volume data and provides
a very easy and natural way of manipulating it. For
example, we found that defining the best cutting po-
sition in the volume is much easier when using both
hands then using multiple sliders.

The way we get arbitrary slices out of the vol-
ume is fast and easy and could, therefore, be of
interest to researchers handling data in the fields of
geology or medicine.

Bimber et al.’s [2, 1, 16] mirroring fits very well
in that area especially since it minimizes the distor-
tion for the non–tracked viewers. Imagine a group
of doctors discussing a CT, MRI or ultrasound scan
of a patient. If some doctors see a distorted view,
their ability to comment on the scan is limited. This
method greatly reduces the distortion problem.

Fast hardware is necessary to render the volume
and geometry data together, in stereo, without delay.
We currently run our application on an SGI Octane,
using a Barco Baron Virtual Table, Cristal Eyes
and an Ascension Flock of Birds tracking system.
The delays that occur while interacting with a643

volume are hardly noticeable. Of course the delay
lengthens when working on a1283 volume. Today
working on a2563 volume and bigger is not practi-
cal in this environment. However, this may change
as faster CPUs and graphics cards become available.

Future work will thus focus on analyzing the ap-
plication behavior on faster hardware and studying
the interaction improvements achieved by integrat-
ing speech recognition and force feedback. After
integrating force feedback, we will try to integrate
volume deformation capabilities to simulate, for ex-
ample, a virtual cut [12, 29].

Figure 1: The transparent PIP and pen props
(taken from [21]).

Figure 2: Volume Rendering as Texture Map-
ping (taken from [5]).

Figure 3: Simplified OpenInventor subgraph.

The Fourth International Immersive Projection Technology Workshop 2000



Interactive Volume Exploration on the StudyDesk 7

Figure 4: Volume slicing (taken from [5]). Figure 5: Layer diagram of our System.

Figure 6: The Studydesk virtual environment. Figure 7: Cut through the head.

Figure 8: Start dragging the volume. Figure 9: Dragged volume in final position.

The Fourth International Immersive Projection Technology Workshop 2000



Interactive Volume Exploration on the StudyDesk 8

Figure 10: Activating lookup table. Figure 11: Ultrasound data of an foetus.

Figure 12: Ultrasound data after activating the
lookup table.

Figure 13: Foetus after clipping off all interfer-
ing data.

Figure 14: Mirroring: Correct reflected head on
the PIP (upper left) and distorted projection of
the head on the table (lower right).

The Fourth International Immersive Projection Technology Workshop 2000



Bibliography 9

References

[1] O. Bimber, L. M. Encarnac¸ão, and D. Schmal-
stieg. Augmented reality with back–projection
systems using transflective surfaces.Proceed-
ings Eurographics, 19(3), October 2000.

[2] O. Bimber, L. M. Encarnac¸ão, and D. Schmal-
stieg. Real mirrors reflecting virtual worlds.
IEEE VR Conference, New Brunswick,
N.J.,USA, March 2000.

[3] D. Blythe. Volume visualization with texture.
SIGGRAPH, Course 17 Advanced Graphics
Programming Techniques using OpenGL:174–
182, 1998.

[4] P. Cignoni, C. Montani, and R. Scopigno.
Tetrahedra based volume visualization. In
Hans-Christian Hege and Konrad Polthier, ed-
itors,Mathematical Visualization, pages 3–18.
Springer-Verlag, Heidelberg, 1998.

[5] G. Eckel. OpenGL Volumizer programmer’s
guide.Silicon Graphics Inc., 1998.

[6] J. Foley, A. van Dam, S. Feiner, and J. Hughes.
Computer Graphics - Principles and Practice.
Addison-Wesley System Programming Series,
second edition, 1990.

[7] M. Gervautz and Zs. Szalav´ari. A two handed
interface for augmented reality.Computer
Graphics Forum (Proceedings of EUROGR-
PHICS’97), 16(3):335–346, 1997.

[8] J. C. Goble, K. Hinckley, R. Pausch, J. W.
Snell, and N. F. Kassell. Two–handed spa-
tial interface tools for neurosurgical planning.
IEEE Computer, 28(7):20–26, 1995.

[9] M. B. Haley. Incremental volume rendering
using hierarchical compression. Master’s the-
sis, Faculty of Science at the University of
Cape Town, 1996.

[10] A. Kaufman. Volume visualization: Principles
and advances.SIGGRAPH, 1997. Part Course
notes Papers 9-1.

[11] Kitware, Inc.
URL: http://www.kitware.com. Visualization
Toolkit (VTK), 2000.

[12] Y. Kurzion and R. Yagel. Volume deforma-
tion using ray deflectors.The 6th Eurograph-
ics Workshop on Rendering, pages 21–32, June
1995. Dublin.

[13] P. G. Lacroute. Fast Volume Rendering us-
ing a Shear–Warp Factorization of the viewing
transformation. Departments of electrical en-
gineering and computer science, Stanford Uni-
versity, September 1995. Dissertation.

[14] P. G. Lacroute and M. Levoy. Fast volume
rendering using a shear-warp factorization of
the viewing transformation.Proceedings SIG-
GRAPH, pages 451–458, July 1994.

[15] W. Lorensen and H. Cline. Marching cubes:
A high resolution 3d surface reconstruction al-
gorithm. Proceedings SIGGRAPH, (21):163–
169, 1987.

[16] D. P. Mahoney. Mirror, mirror in the
hand. Computer Graphics World, pages 18–
19, March 2000.

[17] University of Stanford.
URL: http://www–graphics.stanford.edu/-
software/volpack/vpuserguide.html.VolPack,
1995.

[18] Vienna University of Technology.
URL: http://www.cg.tuwien.ac.at/research/-
vr/studierstube.Studierstube, 2000.

[19] Real Time Visualization.
URL: http://www.rtviz.com. VolumePro 500,
2000.

[20] G. Sakas and A. Pommert. Advanced ap-
plications of volume visualization methods in
medicine. Eurographics ’97 State of the Art
Reports, Budapest, pages 101–143, 1997.

[21] D. Schmalstieg, L. M. Encarnac¸ão, and Zs.
Szalavári. Using transparent props for inter-
action with the virtual table.ACM Symposium
on Interactive 3D Graphics (I3DG’99), pages
147–153, April 1999.

[22] D. Schmalstieg, A. Fuhrmann, M. Gervautz,
and Zs. Szalav´ari. Studierstube – an environ-
ment for collaboration in augmented reality.
Virtual Reality – Systems, Development and
Applications, 3(1):37–49, 1998.

[23] W. Schroeder, K. Martin, and B. Lorensen.The
Visualization Toolkit. Prentice Hall, 2nd edi-
tion, 1998.

[24] Silicon Graphics, Inc.
URL: http://www.sgi.com/software/-
volumizer.OpenGL Volumizer, 2000.

The Fourth International Immersive Projection Technology Workshop 2000



Bibliography 10

[25] Template Graphics Software, Inc.
URL: http://www.tgs.com/3DMS/index–
c++.html.3D DataMaster, 2000.

[26] Template Graphics Software, Inc.
URL: http://www.tgs.com/amira/. Amira,
2000.

[27] The Fraunhofer Center for Research in Com-
puter Graphics, Inc. (Fraunhofer CRCG).
URL: http://www.crcg/edu.TeleInVivo, 2000.

[28] Vital Images, Inc.
URL: http://www.vitalimages.com.
VoxelView, 2000.

[29] R. Yagel, D. Stredney, G. J. Wiet, P. Schmal-
brock, L. Rosenberg, D. J. Sessanna, and
Y. Kurzion. Building a virtual environment
for endoscopic sinus surgery simulation.Com-
puter Graphics, 20(6), December 1996.

The Fourth International Immersive Projection Technology Workshop 2000


