
EUROGRAPHICS’99 / P. Brunet and R. Scopigno Volume 18 (1999), number 3
(Guest Editors)

Occluder Shadows for Fast Walkthroughs of Urban Environments

Peter Wonka* and Dieter Schmalstieg+

*IRISA Rennes, France, and Vienna University of Technology, Austria, email: wonka@cg.tuwien.ac.at

+Vienna University of Technology, Austria, email: dieter@cg.tuwien.ac.at

Abstract
This paper describes a new algorithm that employs image-based rendering for fast occlusion culling in
complex urban environments. It exploits graphics hardware to render and automatically combine a relatively
large set of occluders. The algorithm is fast to calculate and therefore also useful for scenes of moderate
complexity and walkthroughs with over 20 frames per second. Occlusion is calculated dynamically and does
not rely on any visibility precalculation or occluder preselection. Speed-ups of one order of magnitude can
be obtained.

1. Introduction

In walkthrough applications for urban environments, a
user navigates through a city as a pedestrian or vehicle
driver. Such a system is useful for example in traffic
simulation, visual impact analysis of architectural projects
and computer games. A desirable goal is real-time
rendering with about 20-30 frames per second (fps), that
are sustained even when the viewer’s speed is high (e. g.,
100km/h when driving in a fast car).

Scene complexity for large urban environments defeats
any naive approach of trying to render everything in
hardware. To remove larger scene parts before the final
rendering traversal, two approaches seem to be promising:

• One way is to use impostors20, mainly texture maps
(textured depth meshes), to replace complex
geometry. One texture map is valid only for a few
frames and has to be updated frequently, which is
only fast enough for a small number of impostors.

• The second method is to use occlusion culling12. A
number of polygons are selected as occluders in each
frame. The part of the scene that is occluded by one
of these occluders is not visible and can be culled.

Figure 1: Photograph from Klosterneuburg, Austria. Note
how only a few buildings are visible because of occlusion.

To understand optimization possibilities suitable for an
urban model, we have to analyze how an urban
environment looks like and examine its special properties
which may be exploited by an acceleration algorithm. For
the design of our occlusion algorithm, we tried to analyze
the visibility and occlusion of real and virtual urban
environments using data of European cities:

• Typically, an urban environment is modeled with a
ground mesh or plane, with different objects placed on
top of it. These are mostly buildings, trees and bushes,
other smaller decorating objects like traffic lights,
traffic signs, streetlights, mailboxes and the road
network (if it is not directly a part of the ground). This
type of environment is often referred to as 2½

The Eurographics Association and Blackwell Publishers 1999. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4, IJF, UK and 350 Main Street, Malden, MA
02148, USA.

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

dimensional. We can profit from this property for the
design of our data structures and algorithm.

• For most parts of a walkthrough the view is rather
restricted. Only from a few viewpoints can the
observer see further than a few hundred meters. Figure
1 shows a typical view of a location in the city of
Klosterneuburg, Austria, with a view between 100 and
200 meters. For such views, a small set of buildings or
blocks (about 20) occludes the rest of the model.

• For more open parts of the scenes, however, like the
place in front of a train station or the view along a
broader straight street or a riverside, a few occluders
are no longer sufficient. We still have very good
occlusion, but the occlusion is made up with a larger
number of occluders (up to a hundred). In the
foreground of our scene overview (see Figure 10),
there is a wide-open space where a larger number of
occluders is necessary.

Figure 2: An occluder shadow is used for fast rendering
of urban environments. Note how the roof top of the
shown building facade allows to determine whether an
object is hidden from its occluder shadow footprint in the
ground floor.

A good occlusion algorithm should use all important
occluders if possible, because any holes reduce the
performance of the algorithm. However, identifying all
important occluders analytically is a computationally
costly process. Instead, a fast algorithm may simply use a
larger set of potentially important occluders (according to
some simple criterion such as size) to heuristically achieve
the same degree of occlusion. Consequently, fast
computation of occlusion is essential.

In this paper we introduce a new hybrid image-based
and geometrical culling algorithm for urban environments
exhibiting the properties discussed above. We compute
occluder shadows (Figure 2) to determine which parts of
the environment are invisible from a given viewpoint.
Occluder shadows are shadow frusta cast from selected
occluders such as building fronts. The 2½D property of an
urban environment allows us to generate and combine
occluder shadows in a 2D bitmap using graphics
hardware.

Our algorithm has the following properties:

• It uses a relatively large set of occluders (up to 500)
that are automatically combined by the graphics
hardware.

• The algorithm is fast to calculate (about 13 ms on a
mid-range workstation for our environment of 4 km2)
and therefore also useful for scenes of moderate
complexity and walkthroughs with over 20fps.

• We calculate the occlusion dynamically and do not
rely on any visibility precalculation or occluder
preselection.

Furthermore, the algorithm is simple to understand and
implement. These properties should make this algorithm
suitable for many existing urban walkthrough
implementations without introducing major drawbacks to
existing systems.

After reviewing previous work, an overview of our
algorithm is given and the various stages of our
acceleration method are explained. Next we will describe
our implementation and give results of different tests made
with our example environment. Then we will discuss the
applicability of our algorithm and compare it to the other
existing solutions. Finally, we will give a preview of our
future work in that field to achieve further optimizations.

2. Previous Work

Several methods were proposed to speedup the rendering
of interactive walkthrough applications. General
optimizations are implemented by rendering toolkits like
Performer16 that aim for an optimal usage of hardware
resources. Level-of-detail (LOD) algorithms are very
popular in urban simulation14 because they do not require
a lot of calculation during runtime. Heckbert10 gives a
good overview of recent LOD algorithms.

The idea of image-based simplification is to replace
whole scene parts with an impostor. One impostor is
usually only valid for a few frames and has to be updated
frequently17,19. Other approaches use textured depth
meshes1,20 which incorporate depth information for
efficient impostor update.

The idea of an efficient visibility culling algorithm is to
calculate a conservative and fast estimation of those parts
of the scene that are definitely invisible. The final hidden
surface removal is done with the support of hardware,
usually a z-buffer. A simple and general culling method is
view frustum culling3, which is applicable to almost any
model. General algorithms for occlusion culling were
proposed that calculate the occlusion in image space9,14,11.
Green’s hierarchical z-buffer9 depends on special purpose
hardware, which makes it impractical for real walkthrough
systems. The hierarchical occlusion maps proposed by
Zhang et al.24 are a more practical approach, that was

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

implemented and tested on existing graphics hardware. A
set of occluders in the near field is rendered into the frame
buffer and this image is used to calculate a hierarchy of
occlusion maps, using mip mapping hardware. In a second
pass, the scene graph is traversed, and the bounding boxes
of the scene graph nodes are tested against the occlusion
hierarchy.

A general method to accelerate visibility is to break
down the viewspace into cells and precalculate for each
cell a set of objects that are potentially visible15

(potentially visible sets, PVS). For general scenes
visibility precalculation can become quite costly with
respect to time and memory, but for certain scenes like
terrains, it is possible to use a priori knowledge about the
scene structure for visibility calculation4,21. Cohen-Or5

observes that in densely occluded scenes most objects are
occluded by a single occluder near the viewpoint. He uses
this observation for an algorithm to calculate PVS, which
is demonstrated for an urban environment. In general, the
proposed algorithms to precalculate visibility are too slow
to be invoked for every frame.

For building interiors, most visibility algorithms
decompose the model into cells connected by portals22 and
compute inter-cell visibility (potentially visible set, PVS).
Luebke’s algorithm13 eliminates most precalculations and
calculates the PVS during runtime. Urban environments
were stated as a possible application, but we are not aware
of any implementation. Unclear problems are how to
render wide-open areas and the handling of the height
structure.

For urban environments, occlusion culling with a few
large occluders is a popular approach. Similar algorithms
were proposed by Coorg6,7, Bittner2 and Hudson12. For
each frame, a small set of occluders (about 5-30) likely to
occlude a big part of the model is selected. Hudson12

organizes the scene in a hierarchical data structure like a
k-d tree or bounding-box tree and clips the individual
nodes against the occluded region. Bittner uses a variation
of the shadow volume BSP tree to merge occluder
shadows. Coorg’s latest algorithm calculates visibility
events to make additional use of temporal coherence.

3. Overview of the Approach

3.1 Occluder shadows

The concept of occluder shadows is based on the
following observation: Given a viewpoint O, an occluder
polygon P casts an occluder shadow that occludes an area
of the scene that lies behind the occluder, as seen from the
viewpoint. This area can be seen as a shadow frustum that
is determined by the occluder and the viewpoint. Objects
fully in this shadow frustum are invisible.

Figure 3: This sketch shows the geometric relationship
used for the occlusion culling. An occluder shadow is
constructed from a given viewpoint and an occluder edge
of an occluder polygon P.

A more formal definition of an occluder shadow (see
Figure 3) is given in the following:

• The environment is required to have a ground plane1 π
with a normal vector N (up direction).

• An occluder polygon P is a (not necessarily convex)
polygon with its normal vector parallel to the ground
plane (i.e., P is standing upright). P is constructed
from a set of vertices V={v1,...,vk}, connected by a set
of edges E={e1,...,ek}. An edge e from va to vb is
written as e = (va, vb). At least one edge of P must lie
in the ground plane (i.e., ∃e∈E : e = (va, vb) ∧ va∈π ∧
vb∈π).

• An occluder edge is an edge e∈E with e = (va, vb) of P
that does not lie in the ground plane (i.e., va∉π ∨
vb∉π). Let va’ and vb’ denote the normal projection of
va and vb onto π, respectively. Then all points along
the two line segments (va, va’) and (vb, vb’) must be
completely inside P, i.e. every point along each of the
two line segments must also be contained in P.

• An occluder shadow is a quadrilateral with one edge
at infinity, constructed from an occluder edge
e = (va, vb) and two rays: va +t (va - O) and vb +u (vb -
 O). When looking in -N direction, the occluder
shadow covers all scene objects that are hidden by the
associated occluder polygon when viewed from O.

We exploit this observation by rendering the occluder
shadow with orthogonal projection into a bitmap
coincident with the ground plane. The height information
(z-buffer) from this rendering allows to determine whether
a point in 3D space is hidden by the occluder polygon or
not.

1 The definition is also valid if the urban environment is
modeled on top of a height field, but this complicates the
definition and is omitted here for brevity.

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

3.2 Algorithm outline

This section will explain how the concept of occluder
shadows is used for rendering acceleration. We assume an
urban model as described in the introduction. We rely on
no special geometric features concerning the model. We
need no expensive preprocessing and all needed data-
structures are built on the fly at startup. For a completely
arbitrary input scene, two tasks have to be solved that are
not addressed in this paper: (1) The scene has to be
decomposed into objects for the occlusion culling
algorithm, which can be a semantic decomposition into
buildings, trees and road segments or a plain geometric
decomposition into polygon sets. (2) Useful occluders -
mainly building fronts - must be identified. Details on
preprocessing are given in section 4.1.

The scene is structured in a regular 2D grid coincident
with the ground plane and all objects are entered into all
grid cells with which they intersect. During runtime, we
dynamically select a set of occluders for which occluder
shadows are rendered into an auxiliary buffer - the cull
map - using polygonal rendering hardware. Each pixel in
the cull map (image space) corresponds to a cell of the
scene-grid (object space). Therefore, the cull map is an
image plane parallel to the ground plane of the scene (see
section 4.2). Visibility can be determined for each cell (or
object) of the grid according to the values in the cull map.
To calculate the occluded parts of the scene, we can
compare for each cell the z value in the cull map to the z-
value of the bounding boxes of the objects entered into the
scene-grid at this cell (see section 4.3).

When we render a shadow with the graphics hardware,
we obtain z-values and color-buffer entries that more or
less correspond to a sample in the center of the pixel. This
is not satisfying for a conservative occlusion calculation.
For a correct solution, we have to guarantee, that (1) only
fully occluded cells are marked as invisible and (2) that
the z-values in the z-buffer correspond to the lowest z-
value of the occluder shadow in the grid cell and not a
sample in the center. How this is achieved is detailed in
section 4.4.

The advantage of our image-based approach over
geometric occlusion computation is that the whole scene is
not clipped against each shadow frustum separately. The
calculation time depends only on the number of pixels and
the number of occluders. For reasonable sizes of the cull
map the overhead incurred by copying the frame buffer
and visibility traversal is small and the algorithm runs
always fast independent of the scene complexity.

Furthermore, we can use a larger number of occluder
shadows, that are automatically combined by the graphics
hardware. This occluder fusion24 is very efficient, so that
only a few invisible objects are overlooked by our culling
algorithm.

To summarize, during runtime the following
calculations have to be performed for each frame of the
walkthrough:

• Occluder selection: For each frame a certain number
of occluders has to be selected, that have a high
chance to occlude the most parts of the invisible
portion of the scene. The input to this selection is the
viewpoint and the viewing direction.

• Draw occluder shadows: The selected occluders are
used to calculate occluder shadows which are rendered
into the cull map using graphics hardware.

• Visibility calculation: The cull map is traversed to
collect all the potentially visible objects in the scene.
Objects that are definitely not visible are omitted in
the final rendering traversal.

• Hidden surface removal: The selected objects are
passed to a hidden surface removal algorithm (z-buffer
hardware).

4. Culling Algorithm

4.1 Preprocessing

At startup, we have to build two auxiliary data-structures:
the scene grid and the occluder grid. To construct the
scene grid we have to organize all objects in a regular grid
covering the whole environment. All objects are entered
into all grid cells2 with wich they collide, so that we store
a list of objects for each grid cell. As occlusion is
computed on a cell basis, the complexity and size of the
environment influence the choice of the grid size.

Among the objects in the scene, candidates for occluder
polygons are identified. An occluder polygon should have
good potential for occlusion - it should be fully opaque
and large enough to possibly occlude other parts of the
scene. An occluder polygon does not necessarily have to
be a scene polygon. It could also be the combination of
several coplanar polygons or the cross section of a solid
object. Polygons extracted from objects like trees, bushes,
vehicles, or roads violate one or more of these properties,
which leaves mainly building fronts and polygons
constructed from roof edges as useful occluders. Other
possible candidates are walls, fences or monuments. The
occluders are stored structure as connected occluder-
chains in a separate grid data for fast retrieval at runtime.
Typically, in large-scale urban modeling buildings are
created as extrusions of their footprints. Therefore, it is
usually easy to identify occluders together with
connectivity information.

2 Note that usually objects span more than one cell.

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

These tasks can be done very fast and take a time
comparable to the loading of the scene.

4.2 Cull map creation

Once an occluder polygon is selected, the associated
occluder shadow quadrilateral is rendered into the cull
map. Since a quadrilateral with points at infinity cannot be
rendered, we simply assume very large values for the t and
u parameters from section 1.1, so that the edge in question
lies fully outside the cull map. When the quadrilateral is
rasterized, the z-values of the covered pixels in the cull
map describe the minimal visible height of the
corresponding cell in the scene-grid. The graphics
hardware automatically fuses multiple occluder polygons
rendered in sequence (Figure 4 and Figure 11).

When occluder shadows intersect, the z-buffer
automatically stores the z-value, which provides the best
occlusion.

Previous approaches selected a set of occluders
according to a heuristic depending on the distance from
the viewpoint, the area and the angle between the viewing
direction and the occluder-normal7,2. This is a necessary
step if only a small number of occluders can be
considered, but it has the disadvantage that the selection
has to be precalculated, which makes it more difficult to
add occlusion culling to an existing visualization system.
In our approach, the number of occluders is large enough,
so we use only the distance from the viewpoint as a
criterion for dynamic selection during runtime (Figure 12).

Figure 4: The cull map is created by drawing occluder
shadows as polygons using graphics hardware.
Overlapping occluders are correctly fused by standard
rasterization and z-buffer comparison.

Our experiences have shown that a more sophisticated
precomputed occluder selection does not improve the
occlusion performance of our implementation. However,
we perform a simple backface culling test on all occluder
candidates. Building fronts we consider are generally

closed loops of polygons, and it is sufficient to consider
only front facing polygons.

For each of the occluders we render the occluder
shadow in the cull map. The resulting cull map is passed
to the next step, the actual visibility calculation.

4.3 Visibility calculation

To determine the visible objects that should be passed to
the final rendering traversal, we have two options: We can
either traverse the cull map or we can traverse the scene
graph to determine which objects are visible. While
traversing the scene graph would make a hierarchical
traversal possible, we found that a fast scan through the
cull map is not only simpler, but also faster.

Our algorithm therefore visits each cell that intersects
the viewing frustum and checks the z-value in the cull map
against the height of the objects stored in that cell. We use
a two-level bounding box hierarchy to quickly perform
that test: first, the z-value from the cull map is tested
against the z-value of the bounding box enclosing all
objects associated with the cell to quickly reject cells
where all objects are occluded. If this test fails, the
bounding boxes of all individual objects are tested against
the cull map. Only those objects that pass the second test
must be considered for rendering.

In pseudo code, the algorithm looks like this:

for each cell C(i,j) in the grid do
 if C(i,j).z > cullmap(i,j)
 for each object O(k) in C(i,j) do
 if O(k).z > cullmap(i,j).z
 and O(k) not already rendered
 render O(k)

4.4 Cull map sampling correction

As stated in the previous section, the simple rendering of
the occluder shadows generally produces a non
conservative estimation of occlusion in the cull map
because of undersampling. For (1) correct z-values in the
cull map and (2) to avoid the rendering of occluder
shadows over pixels that are only partially occluded, we
have to shrink the occluder shadow depending on the grid
size and the rasterization rules of the graphics hardware.

Our method to overcome these sampling problems
requires information about the exact position used for
sampling within one pixel. Current image generators
usually take a sample in the middle of a pixel. For
example, the OpenGL18 specification requires that (1) the
computed z-value corresponds to the height in the middle
of a pixel, (2) a pixel fragment is generated when the
middle of a pixel is covered by the polygon and (3) For
two triangles, that share a common edge (defined by the
same endpoints), that crosses a pixel center, exactly one
has to generate the fragment.

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

v1 e
εe

εf1
εf2

f2

g w2w2´w1 w1´

f1

v1´ v2´

v2

f1´ f2´

e´

g´

Figure 5: Sampling correction is performed by moving
three edges of the occluder shadow inwards so that no
invalid pixels can accidentally be covered.

Given these sampling constraints, a conservative solution
for both stated problems is to shrink the occluder shadow
geometrically (Figure 5). Consider an occluder shadow
quadrilateral constructed from the vertices v1, v2, w1, and
w2, defining the occluder edge e = (v1, v2) and three other
edges f1 = (v1, w2), f2 = (v2, w2) and g = (w1, w2). By
moving e, f1, and f2 towards the interior of the polygon
along the normal vector by distances εe, εf1, and εf2,
respectively, we obtain a new, smaller quadrilateral with
edges e’, f1’, f 2’ and g’, that does not suffer from the
mentioned sampling problems. g is outside the viewing
frustum and need not be corrected, it is only shortened.

To avoid sampling problems in x-y-direction, the
correction terms εe, εf1, and εf2 have to depend on the
orientation of e, f1, and f2, respectively. An upper bound
for them is l √2, where l is half the length of a grid cell.
However, it is sufficient to take (|nx|+|ny|) ⋅ l, where n is the
normalized normal vector on an edge that should be
corrected. This term describes the farthest distance from
the pixel middle to a line with normal vector n that passes
through a corner of the pixel.

If the occluder or the angle between the occluder and
the viewing direction is small, f1’ and f2’ may intersect on
the opposite side of e as seen from e’. In this case, the
occluder shadow quadrilateral degenerates into a triangle,
but this degeneration does not affect the validity of the
occlusion.

To avoid sampling problems in z-direction, we render
the new, smaller quadrilateral with a slope in z that is
equal to or smaller than the slope of the original
quadrilateral. For the case that the occluder edge e is
parallel to the ground plane, the gradient (i.e., direction of
steepest slope in z) of the occluder shadow is identical to
the normal vector n of the occluder edge. Thus, the
sampling problem for z-values is solved implicitly. If the

occluder edge is not parallel to the ground plane, we have
to consider an additional correction term that is dependent
on the gradient of the occluder shadow. Note that only in
this case the z-value of the vertices v1’ and v2’ is different
from that of v1 and v2.

5. Implementation

Our implementation takes input scenes produced by the
modeling system VUEMS8 that was developed for traffic
simulation. Occluder information and other semantic
structures are created by the modeling system and written
into a separate file. We reuse this information instead of
extracting occluder polygons at startup.

We implemented our algorithm on an SGI platform
using Open Inventor (OIV) as high-level toolkit for the
navigation in and rendering of the urban environment. The
cull map handling is done with native OpenGL (which
also guarantees conservative occlusion) in an off-screen
buffer (pbuffer). OIV allows good control over rendering
and navigation and is available on different platforms. In
our cull map implementation, we use only simple OpenGL
calls, which should be well supported and optimized on
almost any hardware platform. The most crucial hardware
operation is fast copying of the frame buffer and the
rasterization of large triangles with z-buffer comparison.
Hardware accelerated geometry transformation is not an
important factor for our algorithm.

We tested and analyzed our implementation on two
different hardware architectures: an SGI Indigo2
Maximum Impact representing medium range
workstations and an O2 as a low end machine. Whereas
the implementation of most tasks met our estimated time
frames, the copying of the cull map showed significantly
different behavior on various hardware platforms and for
different pixel transfer paths. Where the time to copy the
red channel of a 250x250 pixel wide frame buffer area on
the Maximum Impact takes about 3 ms, this step takes
over 20 times as long on the O2, where only the copying
of the whole frame buffer (red, green, blue and alpha
channels) is fast. These differences have to be considered
in the implementation. Furthermore, copying the z-buffer
values on an O2 is more time-consuming and not efficient
enough for our real-time algorithm.

Due to the fact that fast copying of the z-buffer is not
possible (which is also stated by 24), we had to resort to a
variation of the algorithm that only needs to copy the
frame buffer:

1. At the beginning of each frame, each value of the z-
buffer is initialized with the maximum z-value from
the objects in the corresponding grid cell. z-buffer
writing is disabled, but not z-comparison. Next the
color buffer is cleared and the viewing frustum is
rendered with a key color meaning visible. The cells
not containing any objects are initialized to have very

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

high z-values, so that they are not marked visible by
rendering the viewing frustum.

2. Each occluder shadow is then written with a key color
meaning invisible overwriting all pixels (= grid cells)
that are fully occluded.

3. Finally, the resulting frame buffer is copied to memory
for inspection by the occlusion algorithm.

The sampling correction for the occluder shadows makes
it necessary to keep information of directly connected
occluders. All connected occluders are stored as poly-
lines. For our implementation we use an extension of the
described sampling correction algorithm to a set of
connected occluders, where most parts of the calculation
are precalculated at startup.

Furthermore, all occluders that come from building
fronts have an oriented normal-vector that is used for
backface culling. This helps to reduce the number of
occluders by about 50%.

6. Results

To evaluate the performance of our algorithm we
performed several tests using a model of the city of
Vienna. We started with the basic data of building
footprints and building heights and used a procedural
modeling program to create a three dimensional model of
the environment, compatible with the output of the
VUEMS8 modeling system. This made it possible to
control the size and scene complexity of the test scene. We
modeled each building with a few hundred polygons. For
the first test, we created a smaller model with 227355
polygons, which covers an area of about a square
kilometer.

We recorded a camera path through the environment
where we split the path in two parts. In the first part (until
frame number 250) the camera moves along closed streets
and places. This is a scenario typically seen by a car driver
navigating through the city. In the second part the viewer
moves in a wide-open area (in the real city of Vienna there
is a river crossing the city).

For our walkthroughs, we configured our system with a
grid size of 8 meter and we selected all occluders up to
800 meter (which is on the safe side). In most frames, we
select between 400 and 1000 occluders and drop about
half of them through backface culling. The construction of
the auxiliary data structures and occluder preprocessing
does not take longer than 10 seconds, even for larger
scenes, while loading of the geometry takes sometimes
over a minute. The cull map size for this test is 128x128.

Figure 6 shows the frame times for the walkthroughs on
the Indigo2 in ms. The curve frustum culling shows the
frame times for simple view frustum culling. The second
curve occlusion culling shows the frame times for our
algorithm. We see that we have good occlusion and that

the algorithm is fast to compute. We have a speedup of 3.7
for the Indigo 2. Furthermore, the frame rate stayed over
20 fps. The frame rates in the second part are also high,
because the model is structured in a way so that little
additional geometry comes into sight.

Figure 6: The frame times for the walkthrough of a model
consisting of 227355 polygons on an Indigo2 (frame times
on y-axis in ms).

For the second test, we used the same scene embedded in a
larger environment to test (1) the robustness of the
occlusion and (2) the behaviour of the algorithm when the
viewpoint is located on wide-open places. The new city
has about 1,300,000 polygons and covers a size of 4 km2

(see Figure 10). The cull map size for this test is 256x256.
To be able to compare the results, we used the same
camera path in the larger environment. The results for the
Indigo2 are shown in Figure 7 and a summary of all
results is given in Figure 8.

Figure 7: The frame times for the walkthrough of a model
consisting of 1,300,000 polygons on an Indigo2 (frame
times on y-axis in ms).

Indigo2 small Model

0
10

0
20

0
30

0
40

0

1 51 101 151 201 251 301 351

frustum culling occlusion culling

Indigo2 large Model

0

500

1000

1 51 101 151 201 251 301 351

frustum culling occlusion culling

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

It can be seen that the frame rate in the first part is almost
the same as in the smaller model. Almost exactly the same
set of objects were reported visible for both city models.
Longer frame times are only due to higher algorithm
computation time and overhead from data structure
management.

In the second part of the walkthrough, the field of view
is not fully occluded for several hundred meters
(sometimes up to 700) and a large number of buildings
become visible. Still our algorithm works efficiently and
selects only few invisible objects.

Indigo2 Model 1 Model 2
Frustum culling 103 ms 653 ms
Occlusion culling 25 ms 37 ms
Algorithm time 7 ms 13 ms
Part 1 26 ms 32 ms
Part 2 24 ms 44 ms
Speedup 4,2 17,8

O2 Model 1 Model 2
Frustum culling 312 ms 2029 ms
Occlusion culling 68 ms 108 ms
Algorithm time 13 ms 25 ms
Part 1 68 ms 84 ms
Part 2 67 ms 149 ms
Speedup 4,6 18,8

Figure 8: Summary of all measurements for the two
walthrough sequences. Speedup factors between 4 and 18
were be obtained. Frustum culling: average frame time
using view frustum culling. Occlusion culling: average
frame time using our occlusion culling algorithm.
Algorithm time: average calculation time of our
algorithm. Part1 (Part2): average frame time of the
walkthrough in Part1 (Part2). Speedup: speedup factor
compared to view frustum culling..

This evaluation demonstrates that the occlusion is robust
and that our algorithm generally does not leave
unoccluded portions in the field of view if suitable
occluders are present (see Part 1 of the walkthrough).
Even the low-end O2 workstation was able to sustain a
frame time of 108 ms.

In the second part of the walkthrough we demonstrated
the algorithm behavior in a more challenging environment,
where dense occlusion is no longer given. The
performance drops as expected, but nevertheless the frame
time of the Indigo2 does not exceed 85ms (the maximum
frame time) and the average frame time for the second part
also stays below 50ms.

The overall improvement for the whole path (compared
to simple view frustum culling) equals a factor of about
18. However, results also indicate that performance
depends on the presence of a large amount of occlusion.
To unconditionally sustain a high frame rate, a

combination with other acceleration methods (see
proposed future work) is desirable.

A third experiment was conducted to examine the
theoretical performance limits of the algorithm. The goal
was to assess how the amount of detected occlusion is
related to grid size. Completely accurate occlusion can be
computed if all possible occluders are rendered into a cull
map with infinitely small grid elements. We therefore
performed a walkthrough for model 1 with cell sizes of 8,
6, 4, and 2 meters. All occluders in the view frustum were
rendered into the cull map unconditionally. A breakdown
of the times for individual parts of the algorithm is given
in (see Figure 9).

The times reported for actual rendering of buildings
indicate that a standard cell size of 8m has only about 20%
overhead compared to the much smaller 2m cells. This
overhead is mainly due to the fact that whole buildings are
treated as one object. Despite its discrete nature, the
algorithm estimates true visibility very accurately. We
expect that better results can be achieved with more
careful scene structuring while keeping cell size constant.

We also observed that the rasterization of occluder
shadows and copying of the cull map becomes the
bottleneck of the system for larger environments. cull map
traversal is really fast for a typical setup (cull map <
256x256), so that it is not necessary to find optimizations
through hierarchical traversals.

Indigo2
Cell size 8m 6m 4m 2m
Cull map size 128

x128
174
x174

256
x256

512
x512

Render shadows 5.3 5.3 5.3 8
Copy cull map 1.3 1.7 2.3 6.3
Traverse cull map 0.5 0.7 0.9 2.2
Render buidlings 18.3 17.4 17 15.8
complete
frame time

25.4 25.0 25.5 32.3

Figure 9: This table shows the results of the walkthrough
in the smaller model on the Indigo 2 for different cell sizes
(cull map sizes). All occluders in the viewing frustum were
selected for this test (time values are given in ms).

7. Discussion

For the applicability of an occlusion culling algorithm we
found that fast calculation times are an important feature.
If we assume the goal of 20 fps for a fluent walkthrough,
we have only 50ms per frame. If 30 ms are spent on the
occlusion algorithm, little is left for other tasks like
rendering, LOD selection or image-based simplifications.
Such an algorithm may accelerate from 2 to 10 frames per
second, but not from 4 to 20 fps, which is a fundamental
difference. We therefore found it more important to have
an algorithm that is robust and does not degenerate under

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

worst case conditions rather than an algorithm that
occludes as much as possible.

An expensive algorithm depends on strongly occluded
scenarios to compensate for its calculation time, whereas a
fast algorithm can also result in speedups for slightly
occluded environments. Consider HOMs24 used for the
UNC walkthrough system, for which the calculation times
of the occlusion algorithm itself on mid-range machines
are relatively high. The pure construction time of the
occlusion map hierarchy given the basic occlusion map on
an SGI Indigo2 Maximum Impact is about 9 ms. This is
about the time for one complete frame of our algorithm on
the same machine. However, it must be stressed that
HOMs provide a framework that is suitable for far more
general scenes which cannot be handled by our algorithm.

The geometrical algorithms of Coorg7, Hudson12 and
Bittner2 operate on a similar idea. Coorg’s algorithm
makes additional use of temporal coherence, and Bittner
merges occluder shadows. All algorithms have the
advantages that they can be used as a general framework
for three-dimensional occlusion culling, but we will only
relate to their performance in urban environments.
Geometrical algorithms have the following advantages:

• Independence from graphics hardware makes a multi-
processor implementation simpler.

• The algorithm's scalability is not constrained by a
fixed size cull map.

In contrast, our algorithm has the following advantages:

• It is faster to compute and we can handle an order of
magnitude more occluders.

• We do not rely on the precalculation of suitable
occluders for viewspace cells.

• The calculated occlusion is more robust and our
algorithm also provides good occlusion when the
viewpoint is located on open places.

8. Conclusions and Future Work

We have presented a new algorithm for fast walkthroughs
of urban environments based on occluder shadows. The
algorithm has proven to be fast, robust, and useful even
for scenes of medium complexity and low-end graphics
workstations. It is capable of accelerating up to one order
of magnitude, depending mostly on support for fast frame
buffer copying, which hopefully will be also available on
low-cost hardware in the near future.

For very large-scale urban environments, occlusion
culling alone is not sufficient if views with open view
corridors into a far field with huge geometric complexity
are possible. To overcome this restriction, we are currently
working towards the integration of occluder shadows and
a ray casting/image cache algorithm for far field

rendering23, which should eliminate the mentioned
restriction. We hope to be able to present a true 20 fps
walk through a very large-scale (10 million polygons)
urban environment in the near future.

9. Acknowledgments

This research is supported in part by the Austrian Science
Fund (FWF) contract no. P-11392-MAT and TMR
Research Network PAVR. Special thanks to Stephane
Donikian for organisational support, Michael Wimmer for
fruitful discussions about rendering hardware, Michael
Kofler from the TU Graz for the basic city model of
Vienna and Erich Wonka for pictures of Klosterneuburg.

References

1. D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson,
K. Hoff, T. Hudson, W. Stuerzlinger, E. Baker, R.
Bastos, M. Whitton, F. Brooks, D. Manocha. A
Framework for the Real-Time Walkthrough of Massive
Models. UNC, Technical Report #98-013, 1998.

2. J. Bittner, V. Havran, P. Slavík. Hierarchical Visibility
Culling with Occlusion Trees. Computer Graphics
International 1998 Proceedings, pp. 207-219, June,
1998.

3. J. Clark: Hierarchical geometric models for visible
surface algorithms. Communications of the ACM,
19(10), pp. 547-554, October, 1976.

4. D. Cohen-Or, A. Shaked. Visibility and Dead-Zones in
Digital Terrain Maps. Computer Graphics Forum, vol.
14, num. 3, pp. 171-180, September, 1995.

5. D. Cohen-Or, G. Fibich, D. Haperin, E. Zadicario.
Conservative Visibility and Strong Occlusion for
Viewspace Partitioning of Densely Occluded Scenes.
Proceedings of EUROGRAPHICS’98, 1998.

6. S. Coorg and S. Teller. Temporally Coherent
Conservative Visibility. Proceedings of the Twelfth
Annual Symposium on Computational Geometry 96,
pp. 78-87, May, 1996.

7. S. Coorg, S. Teller. Real-Time Occlusion Culling for
Models with Large Occluders. Proceedings of the
Symposium on Interactive 3D Graphics, 1997.

8. S. Donikian. VUEMS: A Virtual Urban Environment
Modeling System. In Proceedings of the Computer
Graphics International '97, pp.84-92, 1997.

9. N. Greene, M. Kass: Hierarchical Z-Buffer Visibility,
Proceedings of SIGGRAPH’91, pp. 231-240, 1993.

10. P. Heckbert, M. Garland. Survey of Polygonal Surface
Simplification Algorithms. Technical Report, CS Dept.,
Carnegie Mellon University, 1997.

11. H. Hey, R. Tobler. Lazy Occlusion Grid Culling.
Technical Report, Vienna University of Technology,
Institute of Computer Graphics, TR-186-2-99-12, 1999.

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

12. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, H.
Zhang. Accelerated Occlusion Culling using Shadow
Frusta. 13th International Annual Symposium on
Computational Geometry (SCG-97), 1997.

13. D. Luebke, C Georges. Portals and Mirrors: Simple,
Fast Evaluation of Potentially Visible Sets. Proceedings
of the Symposium on Interactive 3D Graphics, ACM
Press, April, 1995.

14. W. Jepson, R. Liggett, S. Friedman. An Environment
for Real-time Urban Simulation. Proceedings of the
Symposium on Interactive 3D Graphics, 1995.

15. H. Plantinga. Conservative visibility preprocessing for
efficient walkthroughs of 3D scenes. Proceedings of
Graphics Interface ’93, pp. 166-173, May, 1993.

16. J. Rohlf, J. Helman. IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-Time
3D Graphics. Proceedings of SIGGRAPH’94, pp. 381-
395, 1994.

17. G. Schaufler, W. Stuerzlinger. A Three-Dimensional
Image Cache for Virtual Reality. Proceedings of
EUROGRAPHICS’96, 1996.

18. M. Segal and Kurt Akeley : The OpenGL Graphics
System : A Specification (Version 1.2.2), 1998.

19. J. Shade, D. Lischinski, D. Salesin, T. DeRose, J.
Snyder. Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments. Proceedings
of SIGGRAPH’96, pp. 75-82, 1996.

20. F. Sillion, G. Drettakis, B. Bodelet. Efficient Impostor
Manipulation for Real-Time Visualization of Urban
Scenery. Computer Graphics Forum, 1997.

21. A. Stewart. Hierarchical Visibility in Terrains.
Eurographics Rendering Workshop 1997, pp. 217-228,
June, 1997.

22. S. Teller, C. Sequin. Visibility preprocessing for
interactive walkthroughs. Proceedings of
SIGGRAPH’91, pp. 61-69, 1991.

23. M. Wimmer, M. Giegl, D. Schmalstieg. Fast
Walkthroughs with Image Caches and Ray Casting.
Institut for Computergraphics, TU Vienna, Technical
Report TR-186-2-98-30, to appear in EGVE'99, 1999.

24. H. Zhang, D. Manocha, T. Hudson, K. E. Hoff.
Visibility Culling Using Hierarchical Occlusion Maps.
SIGGRAPH 97 Conference Proceedings, 1997.

P. Wonka and D. Schmalstieg: Occluder Shadows for Fast Walkthroughs of Urban Environments

© The Eurographics Association and Blackwell Publishers 1999.

Figure 10: This model of the city of Vienna with approximately 1.3M polygons was used for our experiments.

Figure 11: Two views of the cull map used for occlusion culling. The left view shows the grid cells inspected for suitable
occluders (in red) and selected occluders near the viewpoint (in blue). The right view shows the culled portion of the model
(in red) and the remaining cells after culling (in white).

Figure 12: For the viewpoint used in Figure 11, the resulting image is given on the left. The right view shows a wireframe
rendering of the occluders to give an impression of occluder density.

