Device-Independent Navigation and Interaction in Virtual Environments

Chris Faisstnauer, Dieter Schmalstieg, Zsolt Szalavari
Vienna University of Technology, Austria

Abstract. We present a new approach to the integration of
input devices into virtual environment software systems.
Our approach employs a so-called Mapper module as an
intermediate between input device drivers and virtual
environment application. Major advantages of our
approach are full device-independence, including the
easy integration of new input devices and emulation of
missing device capabilities, interactive reconfiguration,
sharing of input devices among multiple applications,
automatic selection of devices and interaction
appropriate for the task, and high-level support for a
large variety of navigation stylesin virtual environments.

1. Introduction

Successfuhuman-canputer interaction requires efficient

transfer of infomation fran humans b computers Such
communicatian is mediated via input deviceshich have
becone more diversewith the introduction ofvirtual
reality systams that frequeryl use 6 degree direedom
(DOF) trackers and other devices that cannot yeadl
considered commaodities yet.

While most input device are conceptuall simple
(e. g., a digitaljoystick is nothingmore than a geof

may levitate the virtual enviranent applicatio from
simulating navigation and untie it fron specific input
device hardware.

This paper presents an approadior device-
independennavigatian andinteraction that overgoes the
limitations mentioned above. Its defining features are:

* Complete separatia of managenent and qusfing of
input devices frm the application. Data cdng from
the input devices is transfoed in a device-
independenformat that allevs applications to process
input data of a specific input class (g., position)
regardles of the source In this way, new input

devices can be integratedithout the need to alter the
application It alsoallows to enulate input behavior in
case thamost appropriate device is havailabk (e. g.,
emulating a mouse with the keyboard).

A module capable ahakingeducatd guesse- called
the Mapper - processes the applications’ reguest
interaction and navigation anautamatically selects
the most appropriate device and interactioylesfrom
the available input devices.

A navigation module perfoms the necessary
processig for simulating awide variey of navigation

switches), a lack of standardsespecia}y in 3-D

interaction prevents input devices fm being

interchangeable. Applications are gengralesigned to
work with a fixed set of input devices. While this ailt®
to exploit suth devices to the fullest both in tes of

function and perfanance, it has sevdralisadvantages:
The applicationmay present a tnited choice of input
devices Supportfor a nev devicemay require changes in
the application, or the applicationay not beable to fully

supportthe featuresof the nav device (f operated in
backvard campatibility mode).Also, the application may

dependon certain devices to be present amy refuse to
operate othevise. Separation of inpudevice handling

ard application is necessar to overcone these
restrictions.

Beyond gener& purpo® interaction in 2-D and 3-D,
virtual enviromments place additiohmaequiranents on the
software dealingwith user inputs For a convincing
simulation of a virtual world, simple and efficient
navigation is ver important Traditionally, navigation
was atask of the virtual enviranent application, that
simulateda particular navigatiometaphor fron raw data
obtained from input devices.This usual requires the
presence of certain input devices de 6-DCF tracker),
ard alo leads to re-implementation of the code that th
simulates the navigationmetaphor. A softare module
thatimplements a user configurable navigatiomtaphor

metaphos and delivers high level data to virtual
envirormert applications where it is mmediately
useful.

Mapper and navigation module encapsulate generalized
world knowledge about inpudevices and navigation
metaphors, respectiwel In cambination they allow a
virtual envirorment gstem to speciy interaction and
navigation requirments on a vegr high levé of
abstraction.

2. Related work

While the focus of researctvork has been laid on specific
interaction gtles for 3-D and VR applications, little
attentiom has been paid to the issue of device
independenceBoth experimentd (e. g, MR [Shan93])
ard commercid (e.g, DVS [Ghee94] virtual
envirorment ystems try to provice adriver architecture
that allows incorporation of ne devices, and shipith an
extensive list of built-in drivexrfor conmmon VR devices
(tracker, data glove etc.). Mever, applicatiors are still
designe for a particular device setup and cannot operate
independent of the available devices.

The onl work towards device-independerinteraction
atwe are ware ofwas presentedybHe am Kaufman
[He93]. Their device unified interface (DUI) pursuthe
same goals aswve do, but ans at general interaction for

3-D systems. Consequently, their approach covers only
general purpose 3-D interaction (equivalent to our
interaction layer covered in section5), but lacks an
equivalent to automatic selection of input devices and
support for navigation metaphors. Instead of a built-in
intelligence for the selection of devices, they provide a

The selected configuration is communicated back to the
application, whose responsibility it is to instruct the user
of the device usage, which may be different on
workstations with different connected input devices. The
set of input devices connected to one particular
workstation rarely changes, so that adaptation to a

comprehensive “device information-base” and rely on thearticular usage of a known application is not needlessly

application to perform the selection.

compromised. Furthermore, use of a particular device may

be enforced by modifying the preference lists.

3. Overview of the Mapper 31 Layers

The Mapper is a software module with the task to provide

applications with input data from the human user, As the Mapper is the only connection from input

n
matter which devices are available at runtime. It does 86;”;?itgatai%e:'g?&%niegdn#gtmp:ﬁgs;wg%ttg gr?n(gr g attg
by employing a set of device-independent data class r?1p|ement specialized types of navigatioh and interact,ion

which can be grouped into four layers as outlined beIO}(]vt nativelv brovided by the Maooer. the application must
(Figure 2). The Mapper is launched as an independe be ab)I/epto obtainylow—levagpda'r[a frgrr)r? the devices
background process, i .

labeled “Iogggr" and “p_rowder"._ ~ possibly concurrent 2-D and 3-D applications including
To make input devices available to the Mapper, it iSirtual environments.

necessary to write a device driver that follows a set of
specifications for the communication with the Mapper. At
runtime, the device driver connects to the “logger”, so that
the Mapper can query the input device. As part of the

Application

connection setup, the device driver transmits a description
of the device it manages to the Mapper, which maintains request
an inventory of all connected devices.
Applications which want to request input data connect - ~
to the “provider”. Upon connection, the new application is
added to the Mapper’s application list and can now issue \\
requests to the Mapper. The Mapper selects the most MAPPER \
suited input device for request from those devices in the
inventory that have not been occupied with previous [METAPHOR __layer |
requests. If the data provided by the input devices does [NAVIGATION _layer |
not fulfill the application’s requests, the Mapper enhances W
and processes the raw data in order to construct the data 4
types requested by the application. The Mapper works
with user configurable preference lists containing a /
ranking of input devices in reference to their suitability for \. y J
specific tasks. Figure 1 shows a schematic view of the
Mapper.
Application Device
- R ota types Driver
requested
- - ~\ Figure 2: The application may request data on four
Provider layers of increasing abstraction
These considerations motivate the use of four layers of
M APPER abstraction for the requests that may be issued to the
(Background process) Mapper:
polling request, L 1. Device layer: Thislayer delivers raw device data from
v ogger P ;) .
. \. J specific input devices without any processing on the
E raM \\ side of the Mapper.
2. Interaction layer: This layer supports generic
. | Device | | Device | | Device | | Device | | Device interaction data classes, that alow simplified
Driver | | Driver | | Driver || Driver | | Driver construction of any type of 2-D or 3-D graphical user
T T T T T interface, such as 3-D selection or choice from a set of
=i R : options. Intelligent selection of appropriate input
.

devices for the requested interaction task are carried
out on this layer.

Figure 1. The Mapper provides the application with a
unified view of the input devices’ capabilities

3. Navigation layer: By describing the desired style of 4. Devicelayer

needs.
The layers depend hierarchically on each other, so thapevice Paramet.ers
requests to a higher level layer can be translated inténalog Resolution (X/Y), number and type of
requests on a lower level layer, possibly with somejoystick” buttons (front, top, base)
additional processing. The four layers are shown in Figureigital Number of directions (4 or 8); number
2 and described in detail in the following sections. joystick”? | and type of buttons (front, top, base)
. Mouse Resolution (X/Y); number and type of
3.2 Mapping strategy buttons (left, middle, right)
The task of the Mapper is to match requests for input datarackball Resolution (X/Y); number and type of
on the mentioned layers coming from the application fo buttons (left, middle, right)
input devices or device components that are currenfiKeyboard | Number of function keys;
available. A brief examination of the problem reveals twp numerical keypad available?
fundamentally different strategies to solve this problem: | Tracker Resolution (for all 6DOF); number and|
« An application may request complete information type of units (mounted to head, torso,
about all currently available input devices (type, DOF, dominant hand, non-dominant hand);
absolute/relative positioning etc.), and then decide gn physical setup (offset emitter, offset
its own. The selection of the device mapping will be receivers); if hand-tracker (*flying
completely application specific. While this strateg mouse”): number and type of buttons
will always grant the maximum amount of flexibility,| Spaceball | Resolution (for all 6DOF); number ang
it requires that all processing of device selection |s type of buttons (left, middle, right)

We therefore decided to implemented a device mapping
strategy executed by the Mapper, but driven by prefereng
lists provided by the application or the user. Th
preference lists define an order of choices regardi
devices to use for a particular request. They allow
detailed modeling of suitability of particular devices fort
particular tasks (the latter being defined by th%

a user satisfied with the default preference list may ne
need to deal with Mapper configuration at all.

navigation (e. g., ground following or flying, constant

velocity or acceleration), an application can request On the lowest level, the device layer routes raw input

the Mapper to interpret the user's input as navigatioﬂev'ce data to the application. No or very little processing

commands and directly deliver the resulting movememt dor_1e to the da‘?- The M?Ppef does not need to know
to the application. anything about the input device parameters or the purpose

) of the requested data. This layer is used if applications
Metaphor layer: As a further step of abstraction, theywants to have direct access to the device, and requires the
application can be freed from describing thgppiication to know device-specific details.

navigation style in detail, and rather pick from a set of A characterization of the input devices (see also

predefined, intuitive navigation metaphors such as “c ; R
driving”, which cover the majority of navigation El?\c/)(laigi(r)]]_?gge[Blurd94]) we used for our implementation is

implemented for every application. It therefore defeat§ab|e 1:
the goal of achieving true device independence: t i
application may be relieved from dealing with devic

specific hardware details, but it still needs to considér Note that multi-joysticks (flight sticks with an extra joystick,
trade-offs in specific input devices. e. g., “coolie hat” etc.) are described in this context like a group

. . . of multiple separate joysticks.
The Mapper may decide on the device mapping based

on a static characterization of each available device,
such as DOF, accuracy, number of buttons etc. It
therefore completely frees the application from anyhe interaction layer provides basic interaction classes to
input device considerations at all. Unfortunately, sucgJpport generic human-computer interaction. These data
an approach fails to encapsulate real-world knowleddgpes provide the information typically needed by a wide
that is used by humans to decide the appropriatengggge of graphical applications to interact with the user.

of a particular interaction device or style for a
particular task. For example, a car simulator is bettﬂ’

controlled with a steering wheel than with a mous o ; . :
but this fact cannot be represented using a technic% ?ﬂlzﬁ;rrsﬂqm:n é;ggig?é?g;;gig]dlggtgagggé
classification only. (see aso[Fole90]) are givenin Table 2.

If an interaction class is issued to the Mapper, it
Snsults the preference lists to look up the most
propriate device mapping. We distinguish between

ices and device components, the latter being parts of
Fvices like individual buttons or functional groups like
he cursor keys. Note that components can overlap in their
tilization of a device (e.g., the numerical pad on a
Q&-yboard can be used to enter numbers or control a
%tursor, but not both tasks at the same time). Device
V(%mponents are the unit of assignment handled by the
Mapper, in other words, a device can be shared by
multiple requests as long as the assigned components do
not overlap.

Input devices and their characterizing
rameters

Interaction layer

The data types delivered by the interaction layer and
gher layers are device independent and completely free

Class and Characterization Parameters

Confirmation: Command issued to | -

application

Selection: Selection froma set of | Number of .

discrete values choices

Position: Input of a 1-D, 2-D or X-axis: yes/no?

3-D position Y -axis: yes/no?
Z-axis. yes/no?
Value range(s)
Absolute/relative

Orientation: Input of a 1-D, 2-D, Y aw: yes/no?

or 3-D orientation Pitch: yes/no?
Roll: yes/no?
Value range(s)
Absolute/relative

Direction: Boolean values with X-axis: yes/no?

directional meaning; used for Y -axis: yes/no?

simple steering without physical Z-axis. yes/no?

movement model

Quantity: Abstract numerical Vauerange

value Absolute/relative

Velocity: Special quantity Vauerange

indicating “velocity”; prefers

absolute device

Acceleration: Special quantity Vauerange

indicating. “acceleration”;

prefers relative device

Table 2: Interaction data classes and their description

The Mapper first picks a candidate device from the

device preference list, and then consults the device
component preference list for that device to find a suitable
mapping to device components. Starting from the top of
the preference list, the Mapper searches for a component
that is both physically available and not already occupied.
Once such a selection is made, the Mapper marks the
component as occupied and starts delivering input data to
the application (for details see the next section).

To make the basic agorithm apt for practical use, a

number of additional features can be controlled by the
user:

Use of modifiers: It is common user interface design
practice to use so-called modifiers to better exploit
limited input device resources. By concurrently
pressing a key or button, an interaction is modified in
its behavior, essentially, the same input device is used
for two or more, mutually exclusive tasks. Examples *®
are the use of the shift-key to distinguish cursor
navigation vs. selection in word processors, or moving

the mouse vs. dragging (with the mouse button
pressed). While the use of modifiers slightly increases

the cognitive load on the user, it may still be desirable,
especially if few devices are available (e.g., in a
typical desktop system where the only efficient 2-D
input device is a mouse). Consequently, requeststothe
Mapper can be attributed with up to two modifier keys
that may be assigned to the Mapper to reuse a
particularly suitable device component that is already
inuse.

Total vs. partial device assignment: By demanding
“total” device assignment, a user may indicate that a
particular request does not share a device with other

requests even if some components of the device are
left unused. This is necessary if one wishes to create a
dedicated device to a particular task.

Grouping: Frequently, a task may require multiple
channels of input data that belong together
semantically. It is therefore good design practice to
assign these requests to a single device or a small set
of devices. The standard mapping as described above
does tend to spread sequential requests over multiple
devices according to the most suitable available
device. By defining a group of requests rather than a
sequence of individual requests, a user may override
this behavior and instruct the Mapper to attempt to use
as few devices as possible, including the use of
modifiers. The latter may be restricted to avoid
“overload” of a particular device.

Application

' data types

request requested

~

(MAPPER

| | processing

Inventory
list

>

>

mapping

Socket

\ J

Send keyword:
"MOUSE"

Send description:
300 dpi,
left+right button

raw
mouse data

poll
message |

Device
Driver

raw data * T

Time axis

=
>

Figure 3: Example of interaction among device driver,
Mapper and application requesting data

Depth search vs. width search: Once the Mapper has
picked a device, in order to find an available device
component it may either prefer to check all devices of
the same type if the initial choice is unavailable, or it
may stick with the chosen device, stepping through all
entries of the device component preference list. This
behavior can be selected by specifying width search or
depth search, respectively.

Absolute vs. rélative input: The application may
specify a preference to whether an absolute or a
relative input is preferred for a particular request. The
Mapper tries to take this preference into account, but
is free to pick a relative device for absolute values and
vice versa and simulate the requested behavior, if the
request cannot otherwise be satisfied.

« Direct vs. indirect selection: selection can either be of the model is whether the simulated parts are also drawn
direct (every choice has a 1:1 correspondence to a by the application, so that the user can see his or her own
device component, e. g., a key) or indirect (the choice body. Figure 4 illustrates the relationship of the avatar’s
is made by simulating an array of choices, e.g., by body parts, a reference coordinate system and a tracking
cycling through the choices with a joystick and system.
confirming with ajoystick button). Indirect selection is
necessary if the set to select from is larger than the
available set of suitable device components. A request /
for selection may alow indirect selection, or it may R-Hand-CS
enforce direct selection, even if the ranking of the _—[—Head-C
chosen device is lower in the preference list. ‘<Y’

* Semi-dependent device components. Some device
components such as the X and Y-axis of a mouse do
not allow fully independent manipulation (i. e. when 3
moving the mouse, it is not easily possible to move it Torso-C
strictly along one axis). Therefore arequest may be set S}@/'
to isolating, meaning that it cannot share a semi-
dependent device component with another request. —

L-Hand-CS

e Continuous or polling mode: The application must
indicate whether it wishes to receive data in regular -
intervals, or if it data is sent a runtime only if the
application asks for it. Furthermore, the application World-CS‘J_>
can specify whether the Mapper should continuously

update its internal representation of the input devicefigyre 4: Structure of the avatar with relevant coordinate
state independent of the reports to the application. systems

Figure 3 shows an example of how the Mapper process%

S] L
a request for interaction by the application and mediat Qint of presence: Navigation is very dependent on how

between device driver and application (the same princip e user f?'ates to the avatar. We speak Sf?bérson
applies to higher layers) presence, if the user perceives the world “through the

eyes” of the avatar."Bperson presence is established if
o the user observes and controls the avatar from a viewpoint
6. Navigation layer other than the avatar's. According to this distinction,

The navigation layer supplies a convenient way for a¥fVveral models can be distinguished:
application to control the user's avatar in the virtual® person models:

environment without having to care about thg Ng pody: The user directly controls the point of view,
particularities of navigation. The supported navigation ang there is no visible representation of the user's
was designed with the intention to cover a large range of body. The appeal of this models is mainly its

navigation styles. simplicity.

6.1 Design considerations » Direct control of an avatar with body: The user
directly controls an avatar composed of one or
multiple body parts and is also able to see these body
parts (torso, hands) if gazing down.

A fundamental component of virtual environment
software is the user’s representation (avatar) that can be
directed through the simulated space, often controlling the) o))
Virtua| camera that iS used to generate the threé_ In VQhICle, no bOdy: The user is situated in a simulated
dimensional image sequence. However, there are other Vehicle such as a car or plane, and controls the
important issues to navigation that are usually hard-coded Viewpoint via simulated cockpit instruments. Body
in the application, but can freely be specified when using Parts are neither simulated nor drawn

the Mapper: e In vehicle, with body: The user is situated in a
Structure of avatar: A humanoid avatar suitable for ~ Simulated vehicle, but may see and control body parts.
direct control may contain the following body parts: head, Instruments are operated by employing the simulated
torso, left hand, right hand (compare [Robi93, Robi95]). hand(s). While the visual effect may be appealing, the
If only one body part is simulated, it may be seen as a double indirection (control simulated hands to control
combined torso/head, and defines the user’s point of view. Simulated instruments) can deteriorate performance.

If head and torso are both present, the torso is taken as :Bf'i’q)erson models:

frame of reference (defining the “overall” position of the,
avatar), while the head is defined in relation to the torso
and defines the user’s point of view - head and body may
be moved independently. Selection of the direction of
movement and general interaction can only be made via
the line of sight unless a dominant hand (or cursor) is
present, which can be moved independently of head and Vehicle controlled from outside: The user operates a
torso. Advanced models include a non-dominant hand as a vehicle in a simulated “remote control” model much
fourth part; feet are generally omitted. Another dimension like a model airplane.

Body controlled from outside: The body of an avatar is
controlled while being viewed from outside. This is a
rather unconventional approach more often found in
computer games than in immersive virtual

environments.

For 3" person presence to be useful, it must be ensured constrained by physical limitations such as tracker range,
that the vehicle does not leave the user’s field of viewable length or walls.

This is usually done by coupling the user's viewpoint t@|ying human: This class extends the walking human
the v.ehlcle.(e. g., a camera.that tralls behind a racing ¢34ss to the third dimension. The simulated human may
at a fixed distance), or by using a fixed camera. navigate freely in three dimensions. Direct
Physical setup: For successful implementation of acorrespondence with physical movement is no longer
navigation style, consideration has to be paid to thgossible (as humans cannot fly), so the scenario of usage
intended type of physical setup. We distinguish twis that the human remains more or less stationary and
variations: navigates by indicating direction and velocity of the
« The user is standing and free to walk around (in movement. Thg movement can also artificia!ly be Iimitgd
limited area). This is generally used for fu“yto 2-.D, to achleve a gr(_)und movement while remaining
immersive virtual environments (using head mounteBhysically stationary (unlike walking).
displays) or augmented reality. As it is inconvenient t¥ehicle: The vehicle class simulates traveling in an
use desktop-devices such as mouse or keyboard wratificial vehicle. While walking and flying are geared
standing, this setup assumes the use of 6DOF tracketewards “direct” navigation by using ones body in an

» The user is sitting at a workstation, and is not expectén :EZLS(':\(;% f\é':tlézgkteonv';%rt‘lrjnim;/vhtgfe t\;%hﬂeer f:lgr?tsrols a
to physically move around. The workstation ig" P PS,

- ; : imulated vehicle via a “dashboard” of desktop devices
ng]lﬁllgtrlge Z?(l;fgzg with desktop devices, tracker\%h“e sitting and looking at a screen. While the control

, . L . style is quite different to the flying human class, the
Dimension: Navigation may be constrained to a groungequest parameters are mostly the same. However, the

plane, effectively walking about in 2-D only, or may allowepicle class allows no choice of direction specification:
unconstrained 3-D (flying) movements. in 2-D, direction is always specified via heading, in 3-D
Velocity: Specification of velocity may be given byvia heading and pitch.
impulse (either standing still or moving at a preset speediavigation |Parameters
linear (any speed from a preset range may instantly Bg e
selected), acceleration (a simplified physical simulatio Walking Body parts: head, torso, left hand, right
that requires an acceleration phase to reach the desiregd 4 hand

speed). Negative velocities (backwards movement) may
may not be allowed.

Flying 2D or 3D; body parts: head, torso, left
human hand, right hand; preferred direction
specification [Mine95] (head direction,

6.2 Navigation data classes ; .) - :
9 torso direction, hand direction, line from

The application communicates to the Mapper which type head to hand, line from torso to hand);

of avatar it wishes to implement; the Mapper selects an preferred velocity specification (impulse
appropriate control mechanism based on the available linear); maximum velocity; negative

input devices, and supplies the application with position velocity allowed?

and orientation of the avatar’'s parts. The only task left thyehicle 2D or 3D; body parts: head, left hand, right
the application is to draw the avatar's visual hand; preferred velocity specification
representation to provide visual feedback to the user. The (impulse, linear); maximum velocity;
navigation layer relies on the interaction layer to provide negative velocity allowed?

basic input data; however, it employs separate navigation o]] .
preference lists together with rule-based knowledge iFable 3: Navigation classes with their characterization
order to select the appropriate input devices for the gecause they are designed to establish direct
control of the avatar. correspondence between a user's movements and the
Selection of a particular style is done by a number afavigation in the virtual environment, the walking or
parameters, the most important of which is the navigatidlying human model is only supported by the Mapper if
class, which instruct the Mapper on how the user shouldOF tracking is available. Each request for a particular
control the avatar. Choices arwalking human, flying body part may be mandatory or optional. For every
human, or vehicle. The parameters are listed in Table 3. mandatory part, a tracker must be available. Body parts
. R . for which the request is optional may be omitted by the
Walking human: This class simulates a human that i apper if too few trackers are available. If the

Iaek\)/lgl tql'r\\,\ilslling d(?l \girrtr?l?lg{ee ZV';()r;rtnleentol;ol:ﬁmggngr:?uvnedrappIication’s requirements cannot be fulfilled or desktop
X Sty device must be used, the Mapper automatically selects a
close to our real world experience. The human use

physically walk around in a small area bound by the ranvéhmle metaphor, which may be controlled by desktop

.) vices.
of the measuring device. Because humans are bound to

stay on the ground level, the movement is essentially 2-D

(although eye height can be varied). 6 DOF are the Metaphor layer

preferred input device configuration for the walkingrpe possibilities for navigation as provided in the

human class, as they allqw dire.ct correspondence b_EtWEF%ﬂ/igation layer are numerous, and most of the
the user's movements in reality and movement in theyhapjjities may not be needed for the majority of possible
virtual environment. This also means that movements aBplication. To simplify the selection, the metaphor layer

offers preconfigured choices of navigation style

(metaphors) describing the most useful parameter 9. Evaluation
combinations. Metaphors are well understood by . :
experience or cultural knowledge by most people, and -rl;gn':Itl)J:rtr;tiimengirag'r?:]eogéhe Mapper, we conducted a
therefore give designer and users alike a good impression) P P : .

about the structure and abilities of the avatar. Some EXperiment 1: Control of one or more vehicles. We
examples like “remote controlled car” or “Superman” ar€hoose this task to demonstrate the Mapper’s response to

given in Table 4. interaction requests, and how multiple successive requests
: i for interaction (multiple tanks) are satisfied. Simple
Metaphor [Class |Dim|Body Velocity movement of a tank is controlled by specifying a heading
: (1-D orientation) and absolute velocity, both constrained
Walker [Walkin|- |Head, torso, hang by an interval. The command issued to the Mapper is
9 : ORI ENTANGLE ABS H -180 180 +
Skater Flying | 2-D} Head, torso, hand Linear VELOCI TY -10 10
Superman| Vehicle 3-D Head, torso, hapd Linear

In the configuration we tested, a joystick was available

w/ neg. . .)
Fiying Vehicle| 3-D| Head, torso, hanil Impuise and chos_en as the most appropriate .deV|ce fqr the_ request:
carpet w/ neg. « Heading was mapped to the X-axis of the joystick
Remote c. [Vehicle| 2-D| - Linear « Velocity was mapped to the Y-axis of the joystick
car : : Using the upper, front, and finally both buttons of the
Remote c. Vehicle| 3-D| - Linear joystick as modifiers, the Mapper is able to satisfy up to
plane . four requests for concurrent tanks, running as independent
Car driver | Vehicle 2-0 Head, hand applications. In other words, a single joystick controls
Airplane Vehicle| 3-D| Head, hand four tanks at once (Figure 5). A fifth tank would be
pilot controlled using the keyboard.

Table 4: Overview of the metaphors

Yaxis+ Wper
8. Implementation

. . . TN X-axis+ Wper
The Mapper has been implemented in C++ under Ling

running on a PC, while the graphical applications run g
an SGI workstation. Connections via Ethernet allo

multiple workstations to be serviced by one device P¢ .
This setup It functions as a part of the networ| .
infrastructure of the “Remote Rendering Environmentg
developed by our group [Schm96]. Yaxis+ Wper

+ Font

Linux as a platform was chosen for multiple reason
While polling of the input devices and data processing is
simple task, it occupies a substantial amount of CP
power. Compared to the cost of a workstation-basq -
solution, a dedicated PC is an extremely inexpensive w
to add multiprocessing and decoupled simulatiof
[Shaw93] to the system. It also allows the use of PC-based
input devices (e. g., joysticks and steering wheels), whi¢higure 5: Controlling four tanks simultaneously with one

are cheap and readily available in a large variety. Thmouse and button combinations
communication of Mapper and application is carried 0&

Yaxis+ Font

X-axis+ Wpper Xavis+ Font,
+ Font

via a local network, which separates the Mapper from a p_erimen_t 2. Navigation with _diff_eren_t d_evice

particular graphics platform. The only constrainfonfigurations. The requested navigation is aimed for
introduced by this setup is that the Mapper PC must be ﬁplonn% a virtual en\;lrlcl)nm_ent. A flying _f(ljurganbln Z;ID
physical vicinity to the workstation so that the connecte!©t¢ that terrain following ‘is provided by the

input devices can be used together with the workstation.a_‘pplication)' consistil_‘ng Of. head, torso, an_d an optional
) right hand (to be omitted if no tracker available). Travel
The network protocol is based on standard TCHjrection should be specified by flying in crosshair

sockets. All communication regarding registration Ofjiraction (from head to right hand4EADRHAND, see

devices and applications, interaction and navigationy e 6) at variable velocity (max. speed: 10) determined
request and mapping is done using simple humang” jisiance between head and hand. The requested
readable ASCII strings. For the delivery of input dat@a igation is accompanied by an interaction request to

;rom the I\(/jlappe(; fto the appllcfatlon, akc?;fr_npact bllr;ar elect among 10 objects and use the currently selected
ormat is adopted for reasons of network efficiency. Eacl}e s (confirm). Issued requests are

binary data packet is headed by a tag. The tag allows

receiving application to identify which of its requests th VI GATI ON EIEIX:\IBGVEE ?EAELEAESES\SD
packet belongs to and therefore conclude how to decoggl_ECTI ON 10 + CONEI RM

the binary format.

At the first attempt, trackers for head, torso and hand Acknowledgments. The authors would like to thank
(flying mouse with 1 top and 3 front buttons), mouse and M. Eduard Groller for proofreading and Anton Fuhrmann
keyboard were available. The resulting mappings: for assistance with the hardware setup. This work was

« Head, torso, hand controlled by head, torso, hand sponsored by the Austrian Science Foundation (FWF)
tracker respéctively ' ’ under contract no. P-11392-MAT.

¢ Movement triggered by flying mouse button 1 (top])
button) Further information and software for download can be

e Selection cycled by flying mouse buttons 3 and 4 obtained from ourwe.zb site
(front buttons) http://www.cg.tuwien.ac.at/r esear ch/vr/mapper/

e Confirm triggered by flying mouse button 2 (front References

button) [Burd94] G. Burdea, P. Coiffet: Virtual Reality
Techology. John Wiley & Sons (1994)

[Fole90] J. Foley, A. van Dam, S. Feiner, J. Hughes:

oirection of movemert § Computer Graphics: Principles and Practice. Addison-
Wesley Publishing Co. (1990)

[Ghee94] S. Ghee, J. Naughton-Green: Programming
Virtual Worlds. SIGGRAPH'94 Course, No. 17 (1994)

[He93] T. He, A. Kaufman: Virtual Input Devices for 3D
Systems. Proc. IEEE Visualization'93, pp. 142-148
(1993)

[Mine95] M. Mine: Virtual Environment Interaction
Techniques. SIGGRAPH’95 Course, No. 8 (1995)

[Robi93] W. Robinett, R. Holloway: Implementation of
Flying, Scaling, and Grabbing in Virtual Worlds.

Figure 6: Cross-hair specification of the direction is used SIGGRAPH'93 Course, No. 43, pp. 6.1 - 6.4 (1993)

for navigation using a head-mounted display and tracker. ~ [Robi95] W. Robbinet, R. Holloway: The Visual Display

, , Transformation for Virtual Reality. Presence, Vol. 4,
The second attempt tried to demonstrate the emulation No. 1, pp. 1-23 (1995)

behavior when only desktop devices are present. [Schmgg] D. Schmalstieg, M. Gervautz, P. Stieglecker:
Consequently, only mouse and keyboard were made Optimizing Communication in Distributed Virtual
available to the Mapper. As a result, the Mapper changes Environments by Specialized Protocols. Virtual
the navigation style from “flying human” to *vehicle” (the gpironments and Scientific Visualization'96 (ed.
torso coordinate system becomes the vehicle coordinatey, Gobel), Springer (1996).

system) ar_1d the optjonally requested right hand is omittq«é.haw%] C. Shaw, M. Green, J. Liang, Y. Sun:
The resulting mappings: Decoupled simulation in virtual reality with the MR
* Vehicle heading controlled by mouse X-axis toolkit. ACM Transactions on Information Systems,
Vol. 11, No. 3, pp. 287-317 (1993)

¢ Vehicle velocity controlled by mouse Y-axis

¢ Head heading controlled by mouse X-axis + left button
¢ Head pitch controlled by mouse Y-axis + left button

¢ Selection controlled by middle and right button

e Confirm is controlled by keyboard (space-key)

10. Conclusion

We have presented an architecture aimed at achieving
independence of virtual environment applications from
particular input devices. This is realized by introducing a
separate component, the Mapper, that is capable of
supplying the application with the desired user input
processed to represent interaction and navigation. An
algorithm to select appropriate devices based on the
applications’ requirements and the presently available
input devices frees the application from any concerns
about devices. Our experimental implementation verifies
that this approach is feasible and eases the development of
virtual environment software.

/research/vr/mapper/

