
High Fidelity for Immersive Displays

Gernot Schaufler Tomasz Mazuryk Dieter Schmalstieg
GUP Institute of Computer Graphics

Kepler University Linz, Austria Vienna University of Technology, Austria
gs@gup.uni-linz.ac.at mazuryk@cg.tuwien.ac.at dieter@cg.tuwien.ac.at

ABSTRACT
Head-tracked immersive displays suffer from lag and non-
uniform frame rates. A novel rendering architecture is
proposed that combines head prediction with dynamic
impostors for 3-D image correction and achieves bounded
frame rates and significantly reduced lag.

Keywords
virtual reality, head tracking, immersion, lag, prediction,
uniform frame rates, impostors

INTRODUCTION
The aim of virtual reality applications is to create the
feeling of immersion by presenting convincing stimuli, in
particular images, to the user, and allowing application
control by direct interaction. Head-mounted displays are
used to replace the user’s view of the world with the
computer output. Tracking of head movements allows
direct control of the viewpoint in 3-D.

The degree of immersion in today’s VR systems is not
really satisfying. Limitations of quality are largely due to
two factors:

• System lag is unacceptably long, causing image
“swimming” and “overshooting” behavior.

• Non-uniform and low frame rates cause discomfort and
prevent effective interaction with the system.

ENHANCING THE RENDERING PIPELINE
Proper software design of virtual reality systems must be
used to deal with these disturbing factors. In particular the
lag introduced by the hardware must be compensated for
and strategies must be built into the system which deal
with potential overload of the hardware. Important
approaches are summarized in this chapter. In the next
chapter a software design is proposed which actually
removes the two severe quality restrictions discussed in
the introduction.

Head prediction
To partly compensate for the lag, one can predict head
movements and use the predicted head position for
rendering. By the time the image is presented to the user,
the predicted value will better match the real head
position than the measured one, and lag influence will be
reduced. Unfortunately the prediction accuracy decreases
rapidly with longer prediction intervals. Moreover
precision is further compromised by the noise present in
magnetic tracker data. Mazuryk and Gervautz have

presented an algorithm based on a modified Kalman filter
[1]. Separate filters are used to correct the values for the
position, velocity, and acceleration values, which are
then used to compute the predicted values.

Model culling
Typically only a small portion of a large scene is visible
at any time, so for a large geometric database, the
hardware will spent most of the time dealing with objects
that are not visible. A database preprocessing step for
every frame can discard the invisible portions. Several
approaches have been presented, such as viewing frustum
culling, potentially visible set determination [2] and
hierarchical Z-buffer rendering [3].

Approximate rendering with dynamic impostors
Even the most expensive hardware cannot provide
uniform frame rates as long as there are no restrictions on
scene complexity and user movement. Fortunately, it is
not always necessary to generate an image with
maximum quality, as it was found to be less disturbing to
have reduced image quality than to have a highly
variable (and possible low) frame rate. It may be better to
render an approximate image than to present a frame late.

Schaufler has proposed a method for such approximate
rendering based on dynamically generated impostors [4].
Separate images are produced for every object and stored
in texture memory. The final image is composed by
rendering a single polygon for every object with the
object’s pre-rendered image texture-mapped onto it.
During times of high frame-to-frame coherence, most of
the image data from the previous frame can be re-used.

The method includes level-of-detail (LOD) rendering
based on multiple, progressively coarser geometric
representations of polygonal models [5]. Selection of the
appropriate approximation that gives the best possible
image for a fixed frame time is done using a heuristic as
presented in [6].

IMMERSIVE DISPLAY RENDERING PIPELINE
VR systems must be designed as “closed-loop
simulations” where the user interacts with the system and
immediately expects the results of his actions to be
reflected in the system’s output. Though the mentioned
contributions can greatly enhance any VR system, it is
the successful combination of all these techniques which
yields top of the line performance.

To make the best use of the prediction mechanism, we
split the rendering process into two stages. The first stage
will render the objects. Despite optimizations with
impostors and LODs, this step takes up so much time
that prediction cannot be completely accurate. Thus, the
second stage will generate the final image taking into
consideration new tracker data. Image deflection is used



to better reflect the actual head position of the user. The
use of impostors allows us to apply image deflection in
3-D which is far superior to conventional 2-D deflection.
For an overview of our rendering architecture see fig. 1.

partition
objects

check
impostors

select LODs

update impostors

3-D deflect

validinvalid

near far

prediction

head tracking

2-D deflect

render impostors

present
image

(BitBlT)

render near

Fig. 1: Rendering pipeline for immersive displays

First stage: rendering
After obtaining the camera position by predicted head
tracking, we select those objects that are potentially
visible according to their bounding volume. These objects
are partitioned into two sets: distant objects are
represented by impostors (textures), while objects close
to the observer are directly rendered into the frame buffer
(impostors are not useful for close objects due to little
coherence in their images and high texture memory
requirements). Every impostor is examined for being still
valid (for details, see [4]), only the invalid impostors are
re-rendered, thus saving rendering time. For every object
that must be rendered (either into a texture map or
directly into the frame buffer), an appropriate geometric
level of detail is chosen.

Second stage: image composition and deflection
The final image is composed from the frame buffer
containing near objects and the impostors. Composition is
done by simply rendering additional polygons textured
with the impostors into the half-ready frame buffer.

Even with impostors and levels of detail, rendering takes
time; usually newer tracker data becomes available as
image generation progresses. Therefore we re-read the
tracker and employ image deflection to compensate for
the prediction error made in the first stage. We use
different deflection strategies for the frame buffer and the
impostors:

• The frame buffer can only be panned and scrolled in 2-
D, which allows corrections to made be perpendicular
to the line of sight (see [1]).

• In contrast, the impostors are 3-D polygons that can be
transformed in 3-D to reflect the most recent head
position. Panning, scrolling, rotation, and zooming can
be achieved by simply modifying the camera
transformation before rendering the impostor polygon.
Thus the range of prediction errors that can be
compensated for with 3-D deflection is significantly
larger than in 2-D. Accuracy of the final image is
greatly improved, in particular as 3-D deflection is
able to compensate large amounts of perspective
distortion in distant objects, caused by fast translatory
head movements.

When the final image must be presented to the user, the
standard approach is to use double buffering. Mazuryk et
al. have shown [7], that using hardware buffer swapping
can introduce a considerable delay, as the vertical
retrace of the raster device must be waited for. With
hardware accelerated bit-block transfer (BitBlT)
operations it is safer and faster to copy the new image
into the frame buffer. Especially in the situation when the
vertical retrace has just been missed, the rendering
system would block for a whole frame. With 2-D
hardware acceleration the copying step itself is so fast
that disturbing flickering does not occur.

CONCLUSIONS
This paper presented a rendering architecture for high
fidelity immersive applications. The approach is suitable
for typical man-in-the-loop graphics applications with
head-tracking. It uses a multi-stage rendering pipeline and
combines head tracking with prediction, LODs and
dynamic impostors, which should lead to significantly
reduced system lag and near uniform frame rates.

REFERENCES
1. Mazuryk T., Gervautz M. Two-Step Prediction and

Image Deflection for Exact Head-Tracking in VEs.
Proc. of EUROGRAPHICS’95 (1995), 29-41

2. Teller S., Séquin C. Visibility Preprocessing For
Interactive Walktroughs. Proceedings of SIGGRAPH’91
(1991), 61-69

3. Greene N., Kass M., Miller G. Hierarchical Z-Buffer
Visibility. Proc. of SIGGRAPH’93 (1993), 231-237

4. Schaufler G. Dynamically Generated Impostors. GI
Workshop on Modeling, Virtual Worlds, Distributed
Graphics (Bonn, Germany 1995)

5. Schaufler G. Exploiting Frame to Frame Coherence in
a VR System. To appear: Proc. of VRAIS’96 (1996)

6. Funkhouser T., Sequin C. Adaptive Display Algorithm
for Interactive Frame Rates During Visualisation of
Complex Virtual Environments. Proceedings of
SIGGRAPH’93 (1993), 247-254

7. Mazuryk T., Schmalstieg D., Gervautz M. Zoom
Rendering: Improving 3-D Rendering Performance
With 2-D Operations. Techn. report:
ftp://ftp.cg.tuwien.ac.at/
pub/TR/95/ TR-186-2-95-09Paper.ps.gz


