
Optimizing Communication in Distributed Virtual
Environments by Specialized Protocols

Dieter Schmalstieg, Michael Gervautz, Peter Stieglecker
Institute of Computer Graphics, Vienna University of Technology

schmalstieg|gervautz|stieglecker@cg.tuwien.ac.at - http://www.cg.tuwien.ac.at/

Abstract
A successful implementation of a distributed virtual environment should be built on a
strong network layer. The network as a constrained resource must be used efficiently, and
also the structure of communication should allow to select those features that are needed
without having to support multiple complicated protocols. Therefore we designed a set of
specialized protocols tailored for dedicated tasks of communication in virtual
environments. The combination of these protocols yields the desired communication
functions without introducing much overhead. In particular, it is possible for participants
with varying degrees of capability to use the virtual environment to communicate with
each other.

1. Introduction
The restrictions that are most hard to overcome in distributed virtual environments are the need
for consistency, and constrained network bandwidth. It is because of these restrictions that
virtual environments either focus on rich interaction [Carl93, Snow94, Bric94, Brol95] or on
large-scale distribution [Mace94], but not both.

Our goal is to develop a distributed virtual environment in which users can participate and
contribute content. We favor a client-server based approach, that lets users run client software
and connect to servers over a network [Schm95]. Such a scheme will separate the participants
from the providers of the VE infrastructure. Users can use the VE with inexpensive desktop
machines, and do not have to be responsible for setting up the VE infrastructure. This is
important if a large, loosely coupled user community is to be supported. In particular, the
simulation of the environment is independent of the presence of users - the VE exists even if no
user is currently present. The server provides consistency, concurrency control and persistence,
that are otherwise hard to accomplish. Scalability is achieved by localizing the simulation: every
server is responsible for a region in the virtual universe, and maintains a loosely coupled
connection to its neighbors. Inside the server’s region, the influence of objects is also localized
to a relatively small area of interest.

Simulation kernel. Our virtual environment consists of actors. An object-oriented
hierarchy allows diverse actor types representing different levels of “intelligence”. Pure static
actors serve as “decoration” of the scene (walls, trees etc.) and have no built-in behavior. Such
actors can be extended to include key-framed, deterministic animation (e.g. a clock with moving
hands). A more sophisticated class of actors exhibits behavior that is formulated in an
interpreted scripting language. Behaviors are triggered by messages that are exchanged between
actors. As messages are exchanged, the simulation progresses. Modifications to the internal
state of the actors, in particular their visual representation, are reflected in the virtual
environment. The most powerful actor type is controlled by an external application.

Multiple levels of participation. The separation of server and clients allows multiple
levels of participation, dependent on the type of client that is used:

An observer can only explore the VE, but cannot interact with any objects. The client may
limit its display to a pure walk-through (only considering static geometry), or also request the
dynamic changes of the visual artifacts, that are created by the simulation. Nothing an observer
does affects the VE.

A participant may introduce his own avatar and use it to fully interact with the simulation,
its autonomous agents and other avatars. His actions modify the dynamic state of the VE; they
are distributed to other clients and stored persistently in the database.

An author may contribute his own content to the virtual environment. He may create and
destroy objects, and even more importantly create new types of objects with their own behavior,
that can continue to exist as autonomous agents without the user’s aid.

This hierarchy of participation is similar to the one found in conventional MUDs (text-based
multi-user games) that can in many respect be seen as VEs without a visual component.

To maximize flexibility, we also allow applications to function as clients. While most
behaviors of objects in the VE can be formulated using our scripting engine, the most interesting
behaviors are too complex or computationally demanding for scripts. Therefore an interface is
provided to allow external applications to “remote control” objects in the VE. Because the only
restriction for an application client is that it complies to the network protocols we use, any
application can be made to cooperate with the VE.

Overview of the protocols. The requirements we have for our system are diverse and
demanding. A single unified framework for communication that incorporates every form of
information exchange into a single protocol is not sufficient. Instead, we define a set of highly
specialized protocols that complement each other and can be tailored for the task. This approach
allows us to exploit domain-specific properties for efficiency, assign network access to the
protocols for an optimal bandwidth usage, and combine protocols as needed by the different
levels of participation.

Some protocols (such as the one that builds a network connection to the VE) must
obviously be spoken by all types of clients, while others can be used or neglected at the client’s
disposal. They will, however, determine the client’s capabilities. Table 1 gives an overview of
the protocols we use and their scope:

Protocol Responsible for
Connection
management:

login, logout, protocol negotiation, user migration

Avatar control: navigating the user’s representation through the VE
Geometry: transmitting geometric description of the objects in the VE to the client
Animation: transmitting changes in the visual database of the VE to the client
Simulation: exchanging messages concerning the ongoing simulation among actors and between actor

and client
Interaction: letting the user interact with objects in the VE and other users
Authoring: managing modifications to the structure of the VE, such as object instantiation and

deletion, creation of new object types and configuration of external applications

Table 1: Overview and characterization of the protocol framework

2. Connection management protocol
Connection management provides fundamental networking functions on which the distributed
environment is built. It handles the login and logout process of user and authentication. It also
allows the user to migrate from server to server, in which case the network connection is
transiently passed on. Client and server software negotiate the range of protocols used for
communication.

3. Avatar control protocol
The avatar control protocol is concerned with the control of the virtual representation of the
user. The user may upload his own avatar representation, or else decide to use a default
representation. He may also transiently switch to an alternate avatar representation, if the
situation or application demands it (e.g. for participating in a game).

The avatar control protocol’s task is to determine where the user is and what he can see.
The protocol is extremely simple because it only needs to be able to communicate transformation
matrices. The avatar control information is sent from the participating client to the server, and
then distributed to all relevant clients. High performance regarding this protocol is of extreme
importance for high fidelity interaction among a large group of users. We therefore chose to
isolate the task in a separate protocol to have room for optimizations, that can be based on
proximity [Benf93], visibility [Funk95], dead reckoning [Mace94] or fidelity channels
[Sing95].

Other control commands concerning the avatar (object manipulation etc.) are part of a more
general protocol, the interaction protocol.

4. Geometry protocol
Detailed models consume a lot of network bandwidth, so usually network transmission is either
avoided [Zyda92], or image generation stalls until transmission is complete (such as current
VRML browsers do [Hard95]). Our approach differs in trying deliver the model data “just in
time” for display.

The overall geometric database held on the server is much larger than the client’s area of
interest (AOI, comparable to the “aura” [Benf95]). Models contained in the AOI are held in a
geometry cache (local memory) for immediate display [Figure 1]. If an object is no longer in the
AOI, it will eventually drop out of the cache. Prefetching of objects that approach the AOI
compensates for network delays.

Server
Client 2

Client 3

Client 1

Figure 1: A server maintains a geometry database of objects (small white circles), and also represents clients
(small black circles) and their corresponding areas of interest (large circles)

This strategy can still fail if too many and too complex objects are in the user’s AOI. We
therefore incorporate a level-of-detail (LOD) method: Objects are modeled at multiple
resolutions, and the appropriate resolution is selected at runtime based on heuristics [Funk93].
We extend this method to work with our distributed protocol along the lines of [Funk92] by
transmitting single LODs instead of objects. This has several advantages: If the object can be
represented by a coarse approximation (normally if seen at a distance), only the coarse model
has to be transmitted, which saves transmission time and client memory. Assuming
hierarchically modeled objects, transmission can be incremental (a finer LOD is based on the
next coarser LOD), which also saves bandwidth. Finally, if timing constraints cannot be met
(i.e. the desired LOD is not delivered in time), a coarser LOD can be used instead, to keep
image generation from stalling (at the expense of degraded image fidelity).

Because the client requests the geometry at his disposal, the sophistication of the LOD
strategy is up to the client. The server only needs to inform the client about any activity in his
AOI. We use the VRML format for our protocol, but are developing a custom compressed
variant to reduce the sizes of transmitted models.

5. Animation protocol
The animation protocol communicates dynamic changes in the scene. The nodes of the
hierarchical scene graph we use consist of attributes, dependent on the node type. If an attribute
is modified, the modification can be encoded by specifying the object ID, name of the attribute,
and the new value.

To make the transmission efficient, updates for a particular client are collected and sent at
regular intervals. For a particular modified attribute, only the most recent value is sent.
Dependencies in the scene graph can be exploited by specifying attributes as functions of one or
more parameters. Many attributes can depend on the same parameter, which provides a small

and powerful interface for simulation updates, and also drastically reduces the number of
updates that must be transmitted. Parameters can also depend on time, so that self-contained
key-framed animations can be constructed. The principle has been known in computer
animation for quite a long time [Magn83]. Parameters are built as an extension of Inventor
engines [Stra92].

6. Simulation protocol
A uniform mechanism is needed to allow external programs (either clients or external
applications) to talk to an actor living on the server. The protocol can automatically be built from
the actor’s method list. Method invocations with appropriate parameters are used as remote
procedure call stubs. We use this protocol for three purposes:

1. to let actors exchange messages within the server,
2. to let external applications or users send control messages to actors, and
3. to let remote-controlled actors pass on all received messages to an external application.

While these three ways of usage are semantically very different, the protocol syntax is identical.

7. Interaction protocol
The interaction protocol addresses several requirements:

• For interaction of actors and humans, the simulation protocol alone is not sufficient. We
also need a description of the interaction style.

• We do not want to require everybody to own the same type of I/O hardware (e.g. a
position tracker or data glove). Instead, we aim at an abstract workplace characterization
such as known from PHIGS [ISO89]. The user interface should be dynamically created
from an abstract characterization.

• A client-server system suffers from the lag introduced by the relatively long round-trip an
interaction message takes from client to server and back. We want to support local
interaction for simple interaction tasks, that do not require the server’s simulation
capabilities (e.g. positioning in 3-D).

To describe interactions, we use interaction rules similar to the dialogue manager presented in
[Appi92]. Interaction rules specify how to map input events generated by the user to output,
generating feedback both locally (tightly coupled) and globally (distributed via the server). An
interaction rule consists of input and output specification:

Input is characterized by the quality of interaction (e.g. positioning, selection, action-
trigger), input dimension, input mode (discrete or continuous, absolute or relative), default and
range values, importance (priority) and preconditions (to logically link multiple inputs together).

Output is defined by (1) one or more simulation protocol stubs of the simulation protocol to
call with the parameters from the input, and (2) direct feedback to the geometry of the actor
(replicated at the client, so we use the animation protocol locally). Note that there is no one-to-
one mapping between interaction rules and simulation protocol stubs.

With a combination of simulation protocol stubs and interaction rules, we can decouple
simple interactions from the server and run them locally with high fidelity, while interaction
with the server’s simulation is not restricted in any way.

8. Authoring protocol
A virtual environment should allow dynamic modification of all its components. While the
modification of existing actors is handled by the simulation protocol, for creation and deletion of
actors and actor types we introduce an authoring protocol.

Actors are categorized by type. In our system Python - an object oriented interpreted
language - is used to define actor types and to instanciate actors at the server. The authoring
protocol allows the creation of a new actor class (actor type), the instanciation of a new actor of
a specific type, and the deletion of an actor. New actor types require a description of the actor’s
geometry (specified in extended VRML), behavior (specified in a scripting language), and user

interface (interaction rules). An actor can also be configured to cooperate with an external
application that determines the actor’s behavior (remote-controlled actor).

All parts of the actor’s description can be written using simple text files, that can
conveniently be transmitted between sites and edited. The authoring protocol has no time-critical
requirements.

9. Tying the protocols together
While the multitude of protocols we use is certainly more complex than a simple uniform
protocol, the benefits make it worthwhile:

Efficiency. Every protocol can use specific knowledge from the particular domain to
tailor the protocol specifically for the task. This is important because network bandwidth is
precious, and must be preserved as far as possible to allow scalability. Measures for efficiency
include compact encoding of information, data compression, and the use of multiple low level
networking standards (e.g. TCP vs. UPD) as needed by the protocol.

Contention management. Because multiple protocol streams execute concurrently,
conflictual situations may arise when multiple communication streams are competing for limited
network bandwidth. In particular, if network performance degrades significantly, it is important
to prefer those protocols that have tighter timing requirements. A priority mechanism can be
used to resolve the problem (for example, transmission of animation has a very tight time
window, while authoring is not really time-critical).

Protocol combination. The selection of protocols allows to combine them as needed by
a client (fig. 1).

An observer will only need to support the connection management protocol, avatar control
protocol, and geometry protocol. Sending the avatar control protocol allows the observer to
navigate the VE. This is sufficient for a simple walkthrough system. Optionally the observer can
receive avatar control messages from other avatars, so that its environment is not static, or even
the animation protocol for highly detailed animation.

A participant subscribes to the same protocols as an observer, plus mandatory support for
the animation protocol. The difference to the observer is that the participant supports the
interaction protocol.

An author must at least run connection management and the authoring protocol. Usually the
author will also run other protocols, so that the user can see the effects of his work.

An application will run connection management and a bi-directional simulation protocol:
incoming simulation messages are passed on from the actor to the application for processing,
and the reactions of the application are re-inserted into the server’s simulation by also using the
simulation protocol. An application may also choose to subscribe the geometry and possibly
animation protocol (e.g., for collision detection).

application

walk-through
client

participation
client

modeling
client

application-
client

4

1

1 1
4

2

6

7

6

5

geometry5

interaction3

avatar control2connection management1

authoring7

simulation4

2

animation6

observer participant

author

5

2

4 Server

 network of
virtual environment servers

1

71

32

Fig. 2: Different kind of protocols are needed for different kind of clients.

Communication between servers naturally differs from communication between client and
server, but basically re-uses the protocols already described. Beside connection management,
server-server communication involves actor migration (sending a package containing actor and
actor type, mostly the same as the authoring protocol), and the usage of the simulation protocol
should actors wish to communicate over server boundaries.

10. Implementation
The possibility to combine protocols allows us to start with a subset of the full architecture, and
extend it as needed. We have currently implemented a distributed system supporting
communication for what is characterized above as an observer client. Such a systems supports
navigation in a large virtual environment composed of static geometry (walkthrough) for
multiple users that can also see each other. Of particular interest is the management of geometry
data in the very large environment (details can be found in [Schm96]). Client and server
software support three protocols: Connection management, avatar control, and geometry
management.

Connection management basically allows a client to connect (init_connection) and
disconnect (kill_connection) while the environment is running. Upon log-in, the client receives
a unique client ID, states his initial position and orientation and the size of his AOI, and uploads
the user’s geometric description (avatar) to be seen by other users [Table 2] (column labeled
„Dir.“ indicates direction of message - from client to server or vice versa).

Message Dir. Parameters
init_connection c→s client_id, position, orientation, AOI_data, avatar_data
kill_connection c→s client_id

Table 2: Connection management protocol units

Adding avatar control requires two additional protocol units [Table 3]: With
update_client_position the client tells the server about its new position after if the user has
moved. The server uses update_object_position to inform the client about movement activity in
the client’s current area of interest. Movement of both animated objects (if the server simulates
objects’ behavior) and of other users is transmitted to the client.

Message Dir. Parameters
update_client_pos c→s position, orientation
update_object_pos s→c object_id, position, orientation

Table 3: Avatar control protocol units

Geometry management requires communication in two directions: The client decides it needs a
particular piece of geometry and issues a request to the server (request_geometry). The unit of
transmission is a single level-of-detail of a particular object. The server packages and sends the
requested geometry data (transmit_geometry). Additionally, the client must know details about
the objects in his AOI, so it can compute its needs and issue requests. This information is
continually kept up to date by the server as the environment changes (transmit_object_info).
Other necessary information includes: update of the client if an object is deleted (e.g. blown up;
kill_object), and update of the server if the client decides to change the size of its AOI (e.g. if
running out of memory; update_AOI). Table 4 shows the protocol units.

Message Dir. Parameters
request_geometry c→s object_id, lod_no
transmit_geometry s→c object_id, lod_no, geometry_data
transmit_object_info s→c new_object_id, object_info_data
kill_object s→c object_id
update_AOI c→s AOI_data

Table 4: Geometry management protocol units

Our experiments show that the geometry management as provided by the protocol bring
significant savings in the amount of consumed network bandwidth. Not only can a geometry
database with well-designed levels of detail yield a net traffic reduction of 2-3 times, but also the
peak network load is much lower, since the transmission of single levels of detail instead of
complete objects (all levels of detail) tends to distribute the network load much better.

11. Conclusion and future work
We have presented a framework of protocols designed to be used for special communication
needs in client-server virtual environments. They address simulation, animation, interaction and
VE authoring, and can be combined as needed for multiple levels of participation in the VE.
Separating these tasks in different optimized protocols leads to more efficiency in using the
given bandwidth of today’s computer networks.
Our current implementation allows walkthrough and observation of large multi-user virtual
environments by supporting connection management, avatar control and geometry management.
Support for the complete communication framework as outlined in this paper is under
development. The framework will also allow integration of new protocols, such as support for
text or audio based participant communication, that we plan to include in a future project.

Acknowledgements
This work was sponsored by the Austrian Science Foundation (FWF) under contract number
P11392-MAT.

References.
[Appi92] P. Appino, J. Lewis, L. Koved, D. Ling, D. Rabenhorst, C. Codella: An

Architecture for Virtual Worlds. Presence, Vol. 1, No. 1, pp. 1-17 (1992)
[Benf93] S. Benford, L. Fahlen: A spatial model of interaction in large-scale virtual

environments. 3rd European Conference on CSCW, pp. 109-124 (1993)
[Bric94] W. Bricken, G. Coco: The VEOS Project. Presence, Vol. 3, No. 2, pp. 111-129

(1994)
[Brol95] W. Broll: Interacting in Distributed Collaborative VE. Proc. of VRAIS’95 (1995)
[Carl93] C. Carlsson, O. Hagsand: DIVE- A platform for multi-user virtual environments.

Computers & Graphics, Vol. 17, No. 6, pp. 663-669 (1993)
[Funk92] T. Funkhouser, C. Sequin, S. Teller: Management of Large Amounts of Data in

Interactive Building Walkthroughs. SIGGRAPH Symposium on Interactive 3D
Graphics, pp. 11-20 (1992)

[Funk93] T. Funkhouser, C. Sequin: Adaptive Display Algorithm for Interactive Frame Rates
During Visualisation of Complex Virtual Environments. Proceedings of
SIGGRAPH’93, pp. 247-254 (1993)

[Funk95] T. Funkhouser: RING - A Client-Server System for Multi-User Virtual
Environments. SIGGRAPH Symposium on Interactive 3D Graphics, pp. 85-92
(1995)

[Hard95] J. Hardenberg, G. Bell, M. Pesce: VRML: Using 3D to surf the Web.
SIGGRAPH’95 Course, No. 12 (1995)

[ISO89] ISO: Programmer’s Hierarchical Interactive Graphics System Functional
Description. ISO/IEC 9592: 1 (1989)

[Mace94] M. Macedonia, M. Zyda, D. Pratt, P. Barham, S. Zeswitz: NPSNET: A Network
Software Architecture for Large-Scale Virtual Environment. Presence, Vol. 3, No.
4, pp. 265-287 (1994)

[Magn83] N. Magnenat-Thalmann, D. Thalmann: The Use of High-Level 3-D Graphical
Types in the Mira Animation System. Computer Graphics and Applications, pp. 9-
16 (1983)

[Schm95] D. Schmalstieg, M. Gervautz: Towards a Virtual Environment for Interactive World
Building. Proceedings of the GI Workshop on Modeling - Virtual Worlds -
Distributed Graphics, Bonn. Also Technical Report TR-186-2-95-08, Vienna
University of Technology, Austria (1995).
ftp://ftp.cg.tuwien.ac.at/TR/95/TR-186-2-95-08Paper.ps.gz

[Schm96] D. Schmalstieg, M. Gervautz: Demand-driven geometry transmission for
Distributed Virtual Environments. Submitted for publication. Also technical report
TR-186-2-96-02, Vienna University of Technology, Austria (1996).
ftp://ftp.cg.tuwien.ac.at/TR/96/TR-186-2-96-02Paper.ps.gz

[Sing95] S. Singhal, D. Cheriton: Exploiting Position History for Efficient Remote
Rendering in Networked Virtual Reality. Presence, Vol. 4, No. 2, pp. 169-194
(1995)

[Snow94] D. Snowdon, A. West: AVIARY: Design Issues for Future Large-Scale Virtual
Environments. Presence, Vol. 3, No. 4, pp. 288-308 (1994)

[Stra92] P. Strauss, R. Carey: An Object Oriented 3D Graphics Toolkit. Proceedings of
SIGGRAPH’92, No. 2, pp. 341 (1992)

[Zyda92] M. Zyda, D. Pratt, J. Monahan, K. Wilson: NPSNET: Constructing a 3D Virtual
World. SIGGRAPH Symposium on Interactive 3D Graphics, pp. 147 (1992)

