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Fig. 1. Overview of the NeuralPVS pipeline. The left side illustrates the overall system and task, where the camera is colored purple, and the white rendering
indicates geometry invisible to the camera. A froxelized representation of the input scene is fed into the neural network with interleaving layers and outputs
the potentially visible set (PVS) in froxelized form, as displayed in the middle. The network is trained with pairs consisting of a froxelized scene and the
corresponding ground-truth PVS in froxelized form. The network runs at 100 Hz (10 ms per frame) on the GPU and generates less than 1% error rate, without
introducing noticeable artifacts in the rendered images. The right side shows the rendered PVS of the frame from a bird’s-eye view.

Real-time visibility determination in expansive or dynamically changing
environments has long posed a significant challenge in computer graphics.
Existing techniques are computationally expensive and often applied as
a precomputation step on a static scene. We present NeuralPVS, the first
deep-learning approach for visibility computation that efficiently determines
from-region visibility in a large scene, running at approximately 100 Hz
processing with less than 1% missing geometry. This approach is possible
by using a neural network operating on a froxelized representation of the
scene. The network’s performance is achieved by combining sparse con-
volution with a 3D volume-preserving interleaving for data compression.
Moreover, we introduce a novel repulsive visibility loss that can effectively
guide the network to converge to the correct data distribution. This loss
provides enhanced robustness and generalization to unseen scenes. Our
results demonstrate that NeuralPVS outperforms existing visibility methods
in terms of both accuracy and efficiency.
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1 Introduction

Visibility computation is one of the fundamental problems in com-
puter graphics, as it enables a broad spectrum of applications such
as shadow mapping, light-field rendering, global illumination, or col-
lision detection. A common approach is to determine a potentially
visible set (PVS), which contains an approximation of the visible por-
tion of a scene [Teller and Séquin 1991]. Many methods have been
proposed for computing a PVS [Cohen-Or et al. 2003], either from a
single viewpoint or from a region (a so-called viewcell). Commercial
game engines frequently determine a from-point PVS before shad-
ing to reduce shading load. Computing a from-region PVS has much
broader use for applications such as frame extrapolation, prefetching
or streaming rendering. Unfortunately, algorithms for from-region
PVS have an inherently high computational complexity [Durand
et al. 2002], and most algorithms rely on precomputation [Bittner
et al. 2009; Mattausch et al. 2006], including solutions used in com-
mercial game engines such as Unreal [Epic Games 2022]. Some
recent work [Hladky et al. 2019; Kim and Lee 2023; Koch and Wim-
mer 2021; Voglreiter et al. 2023] achieves promising online visibility
computation, but the limitations of the underlying algorithms still
restrict their applicability, especially for high resolutions and scenes
with high geometric complexity.

In recent years, neural networks have revolutionized many areas
of computer graphics, such as material representation [Dou et al.
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2024; Sztrajman et al. 2021], denoising [Bako et al. 2017; Chaitanya
et al. 2017], and global illumination [Diolatzis et al. 2022; Ren et al.
2024; Zheng et al. 2024]. Even complex and ill-posed problems can be
successfully handled by neural networks, if enough training data is
available for supervised learning. In computer graphics, the problem
of procuring enough training data can often be solved by generat-
ing synthetic images or datasets. With sufficient optimization, the
resulting trained network may be able to run on a GPU at rates that
are competitive to conventional algorithms. For example, NVIDIA
DLSS [Liu 2020] uses a neural network for frame upsampling.

In this paper, we explore the use of a convolutional neural network
(CNN) to compute a from-region PVS. We rasterize the given scene
into a froxel grid, i.e., a frustum-aligned grid expressed in normalized
device coordinates [Evans 2015]. Then, we compute a ground-truth
PVS as another grid in the same space, by sampling visibility from
many viewpoints in the viewcell. Pairs of geometry grid and ground-
thruth PVS are derived from synthetic scenes and used for training.
At inference time, the network predicts the PVS for the scene as
seen from the current viewpoint.

Our approach, called NeuralPVS, makes use of the most recent
refinements to CNN architectures, which rely on sparse and adaptive
convolutions [Peng et al. 2024]. To boost the speed of our network to
real-time performance, we extend the network with 3D interleaving
of the froxelized input data. Our end-to-end training pipeline allows
the model to learn the visibility patterns directly from synthetic
scenes, which consists of basic geometric primitives with varying
complexity and occlusion patterns. The trained network can be
applied to arbitrary scenes without any need for fine-tuning. This
design makes our network a drop-in replacement for a conventional
PVS generator. We also introduce a novel repulsive visibility loss
function that encourages the model to focus on the most relevant
regions and stay away from invisible regions. Our main technical
contributions can be summarized as follows:

e We propose a novel neural network for from-region PVS
computation, which has significantly improved accuracy
and speed compared to existing methods.

e We explore 3D volumetric interleaving and repulsive visi-
bility loss to enhance the efficiency of the neural network,
while preserving the accuracy of visibility estimation.

e We develop a rendering pipeline and application with our
proposed method, which demonstrates the effectiveness of
our approach through extensive experiments on large scenes,
showing that our method outperforms existing state-of-the-
art methods in terms of both accuracy and efficiency.

2 Background

We begin by surveying prior work on PVS computation, distin-
guishing between offline methods and those designed for real-time
execution. We then review recent advances in integrating deep
learning into the traditional graphics pipeline, highlighting how
neural architectures have been employed to solve graphics tasks. Fi-
nally, we discuss contemporary techniques in 3D geometric learning,
particularly those that inform the backbone network architecture
adopted in our work.
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2.1 PVS computation

For performance reasons, computing PVS offline for the region is
a common practice to speed up rendering. The space of possible
viewpoints can be subdivided into static viewcells, and the PVS
per viewcell can be computed and stored [Teller and Séquin 1991].
Early offline PVS computation methods are restricted to handling
2.5D geometry [Wonka et al. 2000] and often imposed additional
constraints such as watertight geometry [Schaufler et al. 2000] or
particular data distribution schemes [Cohen-Or et al. 1998]. Sub-
sequent research aimed to remove these restrictions and address
more general geometric scenarios using various techniques based
on rasterization [Bittner et al. 2005; Nirenstein and Blake 2004] or
raytracing [Bittner et al. 2009]. The main problem of offline methods
remains that they can only work with static scenes.

Modern graphics applications, e.g., 3D streaming and dynamic 3D
scenes, call for PVS computation methods that can operate in real
time. From-point methods often rely on depth buffering to test and
store occlusions. For example, rendering engines can use a geometry
pre-pass to establish visible fragments [Burns and Hunt 2013]. If a
full-resolution geometry pre-pass is considered too expensive, an
efficient software rasterizer working at lower resolution [Hassel-
gren et al. 2016] or a hierarchical depth buffer [Greene et al. 1993]
can be used. The latter can be accelerated with hardware occlusion
queries, although the need for GPU synchronization limits scalabil-
ity [Mattausch et al. 2006]. Another approach reduces the required
geometry processing by replacing complex scene geometry with
simpler occlusion proxies [Koltun et al. 2000]. Finding good proxies
is still an active research topic [Tan et al. 2025].

Only a few methods address online computation of a from-region
PVS. Simple solutions can try to heuristically sample multiple pre-
dicted camera positions [Hladky et al. 2022; Mueller et al. 2018;
Reinert et al. 2016], but this approach is not very scalable.

The camera offset space of Hladky et al. [2019] uses per-pixel
linked lists as a scene representation to determine the PVS. Maintain-
ing sorted lists is expensive and difficult to scale to high resolutions.
Koch et al. [2021] use hardware ray-tracing to find visible surfaces.
Their method is stochastic, and its convergence depends on the
speed of the raytracing hardware. Kim and Lee [2023] propose track
disocclusions through depth peeling. Scalability of depth peeling is
limited by the need to repeatedly rasterize the scene. Voglreiter et
al. [2023] combine traversal of a coarse octree in world space with k-
buffering in image space. Peeling octree layers instead of traditional
depth peeling allows them to build the PVS with a single geometry
pass. However, the scalability of their method is still affected by the
need for GPU synchronization after each layer.

Recently, a disocclusion-based approach was proposed [Anony-
mous 2025], introducing the disocclusion buffer as a sparse, layered
representation that allows order-independent and fully parallel com-
putation of PVS, achieving speed-ups with comparable accuracy.
Although both this concurrent work and ours advance PVS gener-
ation, our neural network-based approach will benefit even more
from future GPU advancements, as improved hardware directly
accelerates inference performance.

Our method builds on the observation that visibility can be effi-
ciently expressed in a froxelized view frustum. A froxel grid requires
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only one bit per froxel to indicate a disoccluded region. Such a froxel
grid can be built much more efficiently than linked lists, k-buffers
or depth peeling layers. We use the froxel grid as input to a CNN,
which has a run-time cost that is only dependent on the froxel grid
resolution. This resolution is independent of both the target image
resolution and the complexity of the scene.

2.2 Deep learning in graphics

With the ability to learn and model complex mappings, deep learn-
ing is increasingly gaining recognition as a new approach to over-
come bottlenecks in computer graphics because of its predictable
computational cost and speed.

Deep Shading [Nalbach et al. 2017] is one of the earliest works to
introduce a CNN into graphics tasks to compute the shading effect
on pixels from shading buffers. A CNN has also been used to effi-
ciently denoise Monte Carlo rendering [Bako et al. 2017; Chaitanya
et al. 2017]. Similar neural network-based techniques are widely
used in post-processing, such as by DLSS [Liu 2020]. BRDF methods
based on deep learning [Dou et al. 2024; Hu et al. 2020; Sztrajman
et al. 2021] use neural layers to represent BRDF to replace the large
tabulated dataset and can achieve a better trade-off between mem-
ory and quality. Neural global illumination [Diolatzis et al. 2022;
Ren et al. 2024; Zheng et al. 2024] can now compete in quality for
dynamic lighting simulation [Ren et al. 2024] and deliver convincing
results on dynamic geometry [Zheng et al. 2024].

To the best of our knowledge, no existing work addressed visibility
computing with a neural network. In this paper, we will focus on
applying deep learning methods to the field of PVS computation.

2.3 3D geometric learning

Our PVS estimation network combines several key techniques from
3D geometric learning, including sparse 3D convolution and the
latest improvements to the convolutional network design.

Classical 3D convolutional networks [Dai et al. 2017; Tchapmi
et al. 2017] use dense representation to learn 3D geometry patterns.
Dense representations have extremely high memory consumption
and lead to slow inference speed. Most geometric models have
ample empty space and do not require convolutions to be applied
in the empty areas. Therefore, a sparse CNN architecture is usually
preferred for this kind of problem.

Instead of storing the entire space as one tensor, a sparse 3D
convolution network stores its data, the so-called sparse tensor, ei-
ther in an octree [Riegler et al. 2017] or in a hash table [Chen et al.
2022; Choy et al. 2019; Graham and Maaten 2017; Spconv Contrib-
utors 2022]. Sparse 3D convolutions on hash tables are optimized
by placing the kernel center at the activated positions [Graham
and Maaten 2017], dilating to the activated position’s neighbors
[Choy et al. 2019], dynamically dilating the reception field [Chen
et al. 2022], or combinations of these factors [Choy et al. 2019;
Spconv Contributors 2022]. Recent work [Peng et al. 2024] on an
omni-adaptive convolutional neural network (OA-CNN) demon-
strates that advances in transformer networks can be retrofitted to
CNN architectures by adding adaptive receptor fields and a form of
self-awareness. Our method benefits from the speed and efficiency

NeuralPVS: Learned Estimation of Potentially Visible Sets « 3

afforded by these architectures, since a volumetric scene typically
has an occupancy of less than 5% of the froxels.

’

e C

(a) Viewcell

(b) Geometry froxel-grid

Fig. 2. (a) A frustum enclosing all primitives that are potentially visible from
a viewcell (blue area) with radius r around the current viewpoint c is created
by displacing the viewpoint backwards to ¢’. (b) The scene primitives are
conservatively rasterized into a regular grid.

3  Method

Our goal is to significantly improve the performance of PVS com-
putation by replacing previous algorithms operating on analytic
or sampled geometry with a robust neural network operating on a
froxelized scene representation. The network is pre-trained with syn-
thetic geometry grids corresponding to random scenes that loosely
resemble the structure of the target scenes. A key advantage of using
a CNN comes from the fact that converting the polygonal scene into
a froxel grid of fixed resolution makes the time needed to compute
a PVS largely independent of geometric scene complexity. Overall,
our pipeline proceeds as follows (Figure 3):

(1) Viewcell definition: build a geometry grid G by rasterizing
the scene into G

(2) PVS generation: a single forward pass through the neural
network infers the PVS

(3) Novel view synthesis: rasterize only primitives contained
in the PVS

Step 3 is repeated until the camera leaves the current viewcell, then
the process is restarted with step 1.

3.1 Preliminaries

We represent the scene geometry by a grid G(x),x € X, in nor-
malized device coordinates, which is 1 if the froxel at x is occu-
pied, and 0, otherwise. G is defined over a discrete domain X =
[1..Nx] X [1..Ny] X [1..N,], which splits the view frustum into a
grid of discrete froxels.

The potentially visible set can be defined as the union of visible
polygons for all the viewpoints in a cell [Airey et al. 1990]. Based
on the definition, we represent the PVS in volumetric form as a
grid V(x), which is 1 for visible froxels, and 0 otherwise. Let N =
Nx - Ny - N;. Our goal is to learn a mapping from G to the ground-
truth per-froxel visibilities V{0, 11N - {0,1}N. We train a 3D
convolutional network fy that produces per-froxel probabilities and
obtain V = 1(f»(G)), where 1 is an indicator function [V (x) > 7]
with a threshold 7.
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Fig. 3. NeuralPVS pipeline. For each viewcell, the scene’s geometry is froxelized into a GV, which is input to the PVS estimator network. A 3D interleaving
function first compresses the GV channels; a CNN then predicts the visible part of the geometry grid; afterwards, a 3D deinterleaving function reconstructs
the full PVS. Geometric primitives in froxels marked invisible in the PVS are culled from all further rendering computations.

3.2 Pre-processing

Our definition of the viewcell 8 (Figure 2a) considers a lateral
motion of the camera from an original viewpoint ¢ up to radius
r [Wonka et al. 2001]. If we assume that the camera has a field of
view of 6, the view frustum ¥ associated with a viewpoint ¢’ dis-
placed backward by r/tan(6/2) encloses the PVS associated with
8. To accommodate camera rotations up to a maximum angle of
on either side, we enlarge the field of view to 6 + 2.

We rasterize the primitives contained in ¥ into a geometry grid
G stored as a 3D texture, according to the concept of froxelization
[Evans 2015]. Each fragment (x, y,z) " in normalized device coordi-
nates is quantized to the froxel coordinates at ([u Ny |, [0 Ny], [w NZJ)T,
and the texture at the corresponding location is set to 1 to indicate an
occupied froxel. To ensure a gap-free rasterization, we supersample
the scene at a resolution of (sNy, sNy, sNz). For storage efficiency,
we pack eight consecutive froxels along the x-axis into an 8-bit
integer using atomic bitwise-OR for concurrent texture writes. For
the ground-truth generation during training, the fragments are gen-
erated using orthographic projections and then reprojected on the
fly into ¥ to ensure a uniform sample distribution across all dis-
tances from the camera. At test time, we prioritize speed and use a
conventional perspective projection to generate the samples for the
geometry grid.

By construction, supp(V(x)) C supp(V), which allows imme-
diate occlusion culling: Any fragment mapping to a froxel where
V = 0 can be discarded. As proposed by Hladky et al. [2019], the
ground truth PVS is computed by dense sampling of the viewcell.
A large number (M = 1000) of viewpoints ¢, € B is selected. For
each viewpoint, the primitives in # are rendered and a depth buffer
is produced. The fragments indicated in the depth buffer are repro-
jected to the coordinate system of ¢, and the corresponding froxels
in G are marked as occupied.

3.3 Neural PVS estimation

Dense volumetric CNN architectures, such as VNet [Milletari et al.
2016], are designed for offline operation, such as segmentation of
medical scans. Even their sparse variants are too slow for applica-
tions in real-time graphics. Therefore, we adopted OA-CNN [Peng
et al. 2024] as a backbone. OA-CNN is built on a highly optimized
kernel for sparse convolution. Furthermore, it introduces adaptive re-
ceptive fields and dynamically adjusts convolutional kernel weights
to deliver performance that reflects modern transformer networks.
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The network accepts a geometry grid G as input and provides volu-
metric probabilities V as output. The complete pipeline is described
in Figure 3.

3D volume-preserving interleaving. The CNN inference time com-
plexity is linearly dependent on the resolution of the input features,
while the number of features has less impact on the speed. To further
improve the inference speed, we adopt a 3D volume-preserving inter-
leaving, generalizing the mechanism proposed by Xiao et al. [2018].
As shown in Figure 3, we place an interleaving function g4 before the
convolutional layers and a corresponding de-interleaving function
after the convolutional layers:

V =g3"(fo(9a(G))).

The interleaving function
Nx o Ny _ N,
94 : RNxXNyxNz _, RTXTyXTZ
takes as input a grid of Ny X Ny X N froxels. It divides the grid into
blocks of dimension d X d X d and stacks the froxels in a block into
a one-dimensional feature vector. The de-interleaving function

Ny N,
ggl:R%XTyxf_)RNxxNnyz

inverts this process. We choose d € {8, 16,32} for optimal memory
alignment. A value d < 8 is not practical, as the setup overhead
becomes too high [Xiao et al. 2018]. The interleaving preserves the
relative positional information of the geometry, while shrinking the
dimension of the input by a factor of d>. For the typical setup of
d = 16, the first convolution step after interleaving further shrinks
the size of each input vector from d* to around 200 elements, leading
to a significantly reduced processing time.

Weighted Dice loss. We adopt a weighted Dice loss, which weighs
false negatives (FN) much more strongly than false positives (FP)
by a factor «. In our context, false negatives are froxels included in
the ground truth PVS, but missing from the predicted PVS. False
positives are froxels not included in the ground truth, but included in
the predicted PVS. True positives (TP) are froxels which are included
both in the ground truth and the predicted PVS, and ground truth
positives (GTP) are all froxels marked in the ground truth V:

TP(V,V) = z V(x)-V(x), FP(V,V) = Z V(x) - (1-V(x),

xeX xeX

EN(V,V) = 2(1 -V(x)-V(x), GTP(V) = Z V(x).

xeX xeX
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Fig. 4. The pipeline of our proposed synthetic 3D data generation. To ensure the data distribution diversity, we applied a multi-step scene generation strategy

in order to cover as many occlusion patterns as possible.

Following the definition of Taha and Hanbury [2015], our modified
Dice loss is given as
2 TP(V,V)

Ldice(V: V) =1- = = —.
2TP(V,V) + aFP(V,V) + (1 — a)FN(V, V)

Repulsive visibility loss. Our training data is necessarily very im-
balanced, because the number of visible froxels in real scenes is
usually between 0.5% and 10% and can vary significantly between
scenes and viewpoints. This imbalance makes it difficult to achieve
convergence, as the network can easily get stuck in a local mini-
mum during training. The conditioning to avoid high false negative
counts can lead to overprediction of visibility, or the network never
leaves the initial state.

To overcome these imbalance issues, we propose a repulsive visi-
bility loss (RVL) inspired by the work of Wang et al. [2018]. Unlike
Dice loss, which globally supervises all froxels, RVL aggressively
encourages only prediction in local grids where V = 1 to match the
overall distribution of FN/FP. This loss is given as

FN _ PP
ﬁ, -Crep = ﬁ,
where L4, attracts the prediction to match the ground truth, and
Lyep pushes the prediction away from non-visible areas. We train
the model by minimizing a combination of L., and L,,:

L= Laice(V,V) + (1= 1) - Lro(V, V).

Lro = Lapr + Lrep, Lattr =1-

4 Implementation
4.1 Datasets

The training dataset must include a wide range of geometric vari-
ations to ensure generalization. To achieve this, we use synthetic
data. We randomly place selected objects at varying frequencies and
apply random scales and rotations with a consistent distribution
across the local object dimensions (Figure 4). Each training set is
composed of 1,000 frames.

Our objects consist of primitive and complex shapes, including
cubes, cones, pyramids, cylinders, dodecahedrons, icosahedrons,
and round arches, as well as the monkey head model from Blender,
a wall with a door-shaped cutout, and a cube with a square hole

resembling a window. To simulate architectural structures such
as walls, floors, and ceilings, we scale certain objects significantly
along two of their three dimensions. Finally, we introduce planes
that serve as a global base for the floor, wall, and ceiling, extending
across the scene. These planes are initialized to ensure that they
remain visible within the viewcell. The viewcell is initialized at the
center of the scene, positioned above the floor at a random height,
and randomly rotated for variations.

We generate evaluation datasets using widely used scenes, such
as Viking Village and Robot Lab, for comparison with previous
work. For both the training and evaluation sets, we create pairs of a
geometry grid and ground-truth PVS (Section 3.2).

4.2 Training and evaluation

Our neural network implementation is based on OA-CNN [Pointcept
Contributors 2023] (see supplementary material for details). For
performance reasons, we use an aspect ratio of 1:1 for our viewport.
Specifically, we test grid resolutions of A X A X A with A = 256 and
a viewcell size r € {30 cm, 60 cm, 90 cm}.

All training was performed on an Oracle Linux 7.9 server with
2 AMD EPYC 7662, 1 TB RAM, and 4 NVIDIA A100 SXM4 GPU;
only one GPU was used for training. All evaluations were run on a
desktop computer running Oracle Linux 9.5, equipped with AMD
Ryzen 9 7900X, 64 GB RAM, and an NVIDIA RTX 5090 GPU. We
optimized the model using 4 = 0.99, with an initial learning rate
0.001, learning rate decay rate 10~1°, and batch size 3. We performed
200 epochs of training, which took approximately 15 hours for our
setup. We used 7 = 0.5 throughout all experiments.

4.3 Rendering

We use Unity’s Universal Rendering Pipeline (URP) version 17.0 for
all rendering tasks. The main camera is configured with a resolution
of 1024x1024 pixels, a field of view (FOV) of 60°, a near plane of
0.3 m, and a far plane of 1000 m. For the rendering of GV and PVS,
we employ a wider FOV of 90° to account for up to 15° of camera
rotation within a viewcell. To avoid visibility gaps, we render these
buffers at a higher resolution of 2048x2048.
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(a) Performance metrics for various viewcell size on different scenes. The
horizontal axis is grouped by viewcell size r € 30 cm, 60 cm, 90 cm for each
scene. Given that our network uses a fixed geometry grid size, performance
remains relatively insensitive to changes in r.
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(b) Froxel space performance metrics for various interleaving grid size d on
different scenes. The horizontal axis is grouped by viewcell size d € 8, 16,32
for each scene. The performance is affected by changes in d; setting d = 16
gives the overall best performance.

Fig. 5. Performance for different viewcell sizes and interleaving (Section 3.3)
grid sizes. All metrics were averaged over the entire frame sequence.

The predicted view frustum spans up to a threshold (empirically
chosen at 30 m). For distances larger than the threshold, we render
the far-field scene geometry into a visibility buffer once when the
PVS is created, and add the geometry indicated in the ID attachment
of the visibility buffer to the PVS directly. This optimization allows
the CNN to focus its predictive power in the near- and mid-ranges,
where disocclusions are expected. The ground truth PVS is sampled
using 1000 evenly distributed camera positions per viewcell.

5 Results

We evaluate our method on two indoor scenes (Sponza, Robot Lab)
and three outdoor scenes (Viking Village, Big City, Industrial Set
v3.0), as illustrated in Figure 8. For each scene, we render a 60-second
animation at 60 Hz along a pre-recorded camera path, resulting in
3600 frames per scene.

5.1 Performance metrics

To evaluate the performance of the PVS estimation, we define
the false negative rate FNR=FN/GTP (]), the false positive rate
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Fig. 6. (a) Average inference time (ms) and (b) average peak allocated mem-
ory (MB) for different interleaving factors d = {8, 16,32}.

Ours mTR
0.047
0.038
=4 0.019 0.022
E 0.004 - 0.005 0.006 0.006 .
Viking Village RobotLab Sponza Big City
3.45
2.32
2
K]
g 0.65 0.60 (.45 0.61 0.6 0.64
-_— |
Viking Village RobotLab Sponza Big City

Fig. 7. Comparison of FNR and FPR (false positive as a multiple of the
ground truth) between our results and baseline TR [Voglreiter et al. 2023].
In general, our method produces better FNR, similar or better FPR.

Table 1. Image space performance metrics SSIM for various interleaving
grid size d on different scenes.

Scenes SSIM T
d=8 d=16 d=32
Viking Village 0.9990 0.9996 0.9985
City 0.9991 0.9988 0.9972
Industrial 0.9963 0.9963 0.9996
Robot Lab 0.9985 0.9984 0.9995
Sponza 0.9998 0.9981 0.9913

FPR=FP/GTP (|) and the pixel error rate PER (|) for comparison
with previous work. The pixel error rate reports the pixels showing
incorrect primitives because of primitives missed in the PVS. It is
computed as a fraction of the screen resolution and averaged over a
sequence of frames through the scene. Moreover, we render shaded
scenes from the PVS and the original geometry and compare the
results using SSIM (T) [Wang et al. 2004], which considers local
luminance, contrast, and structure over a sliding window.
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685 Table 2. Comparison of time (ms), memory (MB) and pixel error rate (PER) between our
636 method and Trim Regions [Voglreiter et al. 2023]. "Ours" uses r = 30, d = 16 and "Ours*" uses
r =30,d = 8 to reduced memory. Pixel error comparison between our method and baseline
TR [Voglreiter et al. 2023]. Although the baseline has better PER, SSIM comparisons on the

Table 3. Ablation study on Viking Village. We use r = 30, d = 742
16. For "No OA-CNN" and "VNet", VNet [Milletari et al. 2016] 743
is used instead of OA-CNN. Time and memory for "No RVLoss"
is omitted because the loss does not affect the performance of

687 744

688 745

o image confirm that the errors are minor and almost unnoticeable by humans. inference. e
690 747
601 Seene ms] MB| PER/%|  SSIMT FNR| FPR| ms| MB] 115
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Fig. 8. The five test scenes used in our evaluation, shown with their respective primitive counts.

Figure 9 shows the metrics for an animated camera path of 3,600
frames in the Viking village scene. For keyframes such as the best
and the worst case of FNR, the rendering results of the computed
PVS are shown to better illustrate the performance of the method.
As indicated by the metrics and the rendered images, our method is
robust in handling different geometry distributions and occlusion
relations in the complex scene, with even the worst case in this
challenging scene exhibiting only a small amount of pixel errors.
The corresponding SSIM value confirm our observation that the
error is usually unnoticeable to humans.

Figure 5a shows the evaluation results on all scenes with different
viewcell sizes r. We find that r = 30 cm gives the best performance
in all scenes, while r = 60 cm has a slightly higher false negative
rate. A potential explanation is that the size of the viewcell affects
the subdivided grid shape in the geometry grid, where a too small
grid size likely breaks the global geometry structure and causes the
loss of global information, while a too large grid size makes it harder
to learn the local structures within the grid.

Figure 5b shows the evaluation results on all scenes with different
interleaving grid size d. With different d on the same scene, the
performance can vary significantly. Choosing d = 16 gives the
best performance in most scenes. With a too large interleaving
factor d, too few elements remain after downsampling in the CNN,
which may cause the network to overfit and has a negative effect on
performance. For smaller d, more elements remain after interleaving;
assuming the same training period, the false negative will be higher
due to greater difficulties of converging.

Table 1 shows the SSIM of all scenes with different d. SSIM is
always very close to 1, which indicates that the rendering quality
is very good. Additional perceptual (ALIP [Andersson et al. 2020])
and temporal metrics (VMAF [Li et al. 2016], CGVQM [Jindal et al.
2025]) are provided in the supplementary material, all confirming
a similarly strong performance. Note that all our test scenes are
completely unknown to the CNN, which is exclusively trained on
purely synthetic scenes with simple, randomly generated geometries.
Results show that our method is highly robust and generalizable
to different and unknown data patterns while providing reliable
estimation quality.

5.2 Speed and memory

We measure the runtime speed and memory in various scenes with
different viewcell sizes. Section 4.3 presents the inference time per
frame with the overall statistics and breakdown time per stage, in-
cluding interleaving, CNN inference, and deinterleaving. The overall
time per frame remains at approximately 10 ms (100 Hz), despite
the scene scale and geometry variations. This makes our method
more efficient than a naive depth pre-pass, which is 1.5 ms slower in
our experiments after both methods are averaged between frames.

Following the argument of Voglreiter et al. [2023], a running
speed of 3 m/s translates into 5 cm/s camera movement at 60 Hz. At
this speed of camera motion, the PVS is valid for 6 frames (100 ms),
when r=30 cm, and, for 18 frames (300 ms) when r=90 cm. Amortized
over these valid periods, the PVS inference only takes approximately
3.3% of the computation time for an application that generates new
frames at a rate of 60 Hz. Therefore, we can assume that our method
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Fig. 9. Per-frame PVS estimation performance with key frames images of the Viking Village scene. The sequence has 1800 frames in total, with 410 frames of
PVS computed shown in the figure. The error pixels of the key frames are marked in red on the rendered image.

is very well suited for frame extrapolation or streaming applications
in terms of speed.

Figure 5 shows the time and peak memory allocated during infer-
ence. The adaptive relation convolution of OA-CNN will use more
parameters if we add more feature channels, leading to increased
inference time and memory usage when we use an interleaving fac-
tor of d = 32. Although memory requirements can vary depending
on the occupancy rate of the input G(x), the memory consumption
is largely insensitive to scene geometry, as long as the viewcell con-
figuration remains unchanged. The sparse tensor ensures that only
the positions where geometry exists will be recorded in memory.
Consequently, there is no memory overhead for empty grids.

5.3 Comparisons to the state of the art

To the best of our knowledge, the trim region method of Voglreiter
et al. [2023] is the fastest to date for from-region PVS computation.
We compare our results with those reported in the original paper.
For a fair comparison, we run an experiment using the same GPU
(NVIDIA RTX 4090) and the same scenes as ours, kindly provided
by the authors. Figure 7 shows the comparisons of metrics in these
scenes, namely, Viking Village, Robot Lab, Sponza, and Big City.
Table 2 shows the speed and memory comparisons on these scenes.

Our method outperforms trim regions with respect to per-frame
processing speed. The trim region method delivers 57 Hz (18 ms)
per frame on average, while we achieve over 100 Hz (10 ms) on
average (an improvement of 76%). We also obtain better quantitative
performance, with significantly smaller false negatives and similar
or better false positive rates. Compared to trim regions, our method
has 83.8% less FNR and 63.4% less FPR on average. Although our
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PER is slightly higher, the overall image quality is not noticeably
affected, as shown by the SSIM column in Table 2.

5.4 Ablation studies

To evaluate the effectiveness of the OA-CNN network and the in-
terleaving function, we carried out experiments on the classical
CNN backbone VNet [Milletari et al. 2016] baseline and the original
OA-CNN model with and without the interleaving function, as well
as with and without RVL. Results are shown in Table 3.

The model trained without RVL has a significantly higher false
positive rate, which means that it simply predicts (almost) the whole
scene to be visible. The result shows that RVL is crucial in prevent-
ing the network from overfitting to the local minimum, and thus
maintains a better balance between minimal FNR and reasonable
FPR. Our results indicate that the interleaving function is the key to
efficient inference. Its use increases the inference rate from 39 Hz
to 100 Hz (2.5% speed-up) at 70% reduced memory usage.

The OA-CNN backbone is crucial for the performance of the net-
work. Replacing OA-CNN with VNet leads to with 15% increased
FNR, while the FPR is almost unaffected. OA-CNN also contributes
to decreasing inference time and memory usage. Without the inter-
leaving function and OA-CNN backbone, a completely naive VNet
network is too slow for real-time applications.

5.5 Challenging cases

To better understand the limitations of our method, we list some typ-
ical challenging cases in Figure 10. Like classical heuristic methods,
the neural network also finds it harder to precisely estimate PVS in
edge cases involving complex occlusion relationships (for example,
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Fig. 10. Challenging situations for NeuralPVS model. left column: Multi-layer occlusion from Viking Village scene, 1104 false negative pixels. center column:
complex occlusion structure from Industrial scene, 1152 false negative pixels. right column: almost occluded background from Sponza scene, 1102 false negative

pixels.

multiple thin occluders in the left column). In the center column,
the structure of the metal fence is not covered by our synthetic
dataset and thus causes pixel errors. Further geometry has a lower
resolution due to the geometry grid generation process, far-away
geometry has a larger chance of getting misestimated, as shown in
the right column. Moreover, machine learning methods are always
dependent to some degree on the training data. While we found
our randomized synthetic training set robust for a wide variety of
scenes, fine-tuning our method for specific scenes can potentially
help minimize errors.

5.6 Dynamic scenes

Since our view cell is defined purely in space, visibility changes
caused by a dynamic object require special treatment. A simple
approach unconditionally adds all dynamic objects to the PVS after
visibility computation. However, this approach does not consider
dynamic objects as occluders or occludees. While the first case —
dynamic occluders - is likely too complicated to yield a speed-up,
the second case — dynamic occludees - is rather simple to exploit. We
construct a temporal bounding volume (TBV) for the moving object,

A/_/‘ @//

i~

¢ —'-o’tl

TBVinvisivle

TBVyisibie

Viewcell

Fig. 11. Dynamics scenes visibility computation with temporal bounding
volumes. The yellow vehicle is visible during the period of time #; to t1,
while the grey vehicle is invisible.

which conservatively encloses the object during the predicted period
(Figure 11). At runtime, the TBV is froxelized and tested against the
froxelized PVS. If no froxel occupied by the TVB is deemed visible,
the dynamic object can be pruned.

6 Conclusion and future work

We have presented a novel approach to compute from-regions po-
tentially visible sets using a convolutional neural network. Our
proposed method applies the OA-CNN network design with an
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additional interleaving function and a repulsive visibility loss to
perform end-to-end estimation of the PVS. Our method achieves
high accuracy and fast inference.

We see several directions for future work. With the development
of deep learning, adopting a more featured network design would
potentially bring better accuracy, while balancing the computa-
tional cost could be challenging. Moreover, additional spatial data
structures, such as octrees or hash grids, might bring about further
improvements in both performance and speed. We also consider
replacing the simple froxelization with a more advanced different
feature representation of the local geometry. Finally, it is natural
to expect some performance gain by introducing neural methods
to other rendering tasks related to visibility, e.g. radiance transfer,
shadow rendering, and global illumination.
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