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CNN output Potentially visible set
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100 Hz
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Fig. 1. Overview of the NeuralPVS pipeline. The left side illustrates the overall system and task, where the camera is colored purple, and the white rendering
indicates geometry invisible to the camera. A froxelized representation of the input scene is fed into the neural network with interleaving layers and outputs
the potentially visible set (PVS) in froxelized form, as displayed in the middle. The network is trained with pairs consisting of a froxelized scene and the
corresponding ground-truth PVS in froxelized form. The network runs at 100 Hz (10 ms per frame) on the GPU and generates less than 1% error rate, without
introducing noticeable artifacts in the rendered images. The right side shows the rendered PVS of the frame from a bird’s-eye view.

Real-time visibility determination in expansive or dynamically changing
environments has long posed a significant challenge in computer graphics.
Existing techniques are computationally expensive and often applied as
a precomputation step on a static scene. We present NeuralPVS, the first
deep-learning approach for visibility computation that efficiently determines
from-region visibility in a large scene, running at approximately 100 Hz
processing with less than 1% missing geometry. This approach is possible
by using a neural network operating on a froxelized representation of the
scene. The network’s performance is achieved by combining sparse con-
volution with a 3D volume-preserving interleaving for data compression.
Moreover, we introduce a novel repulsive visibility loss that can effectively
guide the network to converge to the correct data distribution. This loss
provides enhanced robustness and generalization to unseen scenes. Our
results demonstrate that NeuralPVS outperforms existing visibility methods
in terms of both accuracy and efficiency.
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1 Introduction
Visibility computation is one of the fundamental problems in com-
puter graphics, as it enables a broad spectrum of applications such
as shadowmapping, light-field rendering, global illumination, or col-
lision detection. A common approach is to determine a potentially
visible set (PVS), which contains an approximation of the visible por-
tion of a scene [Teller and Séquin 1991]. Many methods have been
proposed for computing a PVS [Cohen-Or et al. 2003], either from a
single viewpoint or from a region (a so-called viewcell). Commercial
game engines frequently determine a from-point PVS before shad-
ing to reduce shading load. Computing a from-region PVS has much
broader use for applications such as frame extrapolation, prefetching
or streaming rendering. Unfortunately, algorithms for from-region
PVS have an inherently high computational complexity [Durand
et al. 2002], and most algorithms rely on precomputation [Bittner
et al. 2009; Mattausch et al. 2006], including solutions used in com-
mercial game engines such as Unreal [Epic Games 2022]. Some
recent work [Hladky et al. 2019; Kim and Lee 2023; Koch and Wim-
mer 2021; Voglreiter et al. 2023] achieves promising online visibility
computation, but the limitations of the underlying algorithms still
restrict their applicability, especially for high resolutions and scenes
with high geometric complexity.

In recent years, neural networks have revolutionized many areas
of computer graphics, such as material representation [Dou et al.
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2024; Sztrajman et al. 2021], denoising [Bako et al. 2017; Chaitanya
et al. 2017], and global illumination [Diolatzis et al. 2022; Ren et al.
2024; Zheng et al. 2024]. Even complex and ill-posed problems can be
successfully handled by neural networks, if enough training data is
available for supervised learning. In computer graphics, the problem
of procuring enough training data can often be solved by generat-
ing synthetic images or datasets. With sufficient optimization, the
resulting trained network may be able to run on a GPU at rates that
are competitive to conventional algorithms. For example, NVIDIA
DLSS [Liu 2020] uses a neural network for frame upsampling.

In this paper, we explore the use of a convolutional neural network
(CNN) to compute a from-region PVS. We rasterize the given scene
into a froxel grid, i.e., a frustum-aligned grid expressed in normalized
device coordinates [Evans 2015]. Then, we compute a ground-truth
PVS as another grid in the same space, by sampling visibility from
many viewpoints in the viewcell. Pairs of geometry grid and ground-
thruth PVS are derived from synthetic scenes and used for training.
At inference time, the network predicts the PVS for the scene as
seen from the current viewpoint.
Our approach, called NeuralPVS, makes use of the most recent

refinements to CNN architectures, which rely on sparse and adaptive
convolutions [Peng et al. 2024]. To boost the speed of our network to
real-time performance, we extend the network with 3D interleaving
of the froxelized input data. Our end-to-end training pipeline allows
the model to learn the visibility patterns directly from synthetic
scenes, which consists of basic geometric primitives with varying
complexity and occlusion patterns. The trained network can be
applied to arbitrary scenes without any need for fine-tuning. This
design makes our network a drop-in replacement for a conventional
PVS generator. We also introduce a novel repulsive visibility loss
function that encourages the model to focus on the most relevant
regions and stay away from invisible regions. Our main technical
contributions can be summarized as follows:

• We propose a novel neural network for from-region PVS
computation, which has significantly improved accuracy
and speed compared to existing methods.

• We explore 3D volumetric interleaving and repulsive visi-
bility loss to enhance the efficiency of the neural network,
while preserving the accuracy of visibility estimation.

• We develop a rendering pipeline and application with our
proposed method, which demonstrates the effectiveness of
our approach through extensive experiments on large scenes,
showing that our method outperforms existing state-of-the-
art methods in terms of both accuracy and efficiency.

2 Background
We begin by surveying prior work on PVS computation, distin-
guishing between offline methods and those designed for real-time
execution. We then review recent advances in integrating deep
learning into the traditional graphics pipeline, highlighting how
neural architectures have been employed to solve graphics tasks. Fi-
nally, we discuss contemporary techniques in 3D geometric learning,
particularly those that inform the backbone network architecture
adopted in our work.

2.1 PVS computation
For performance reasons, computing PVS offline for the region is
a common practice to speed up rendering. The space of possible
viewpoints can be subdivided into static viewcells, and the PVS
per viewcell can be computed and stored [Teller and Séquin 1991].
Early offline PVS computation methods are restricted to handling
2.5D geometry [Wonka et al. 2000] and often imposed additional
constraints such as watertight geometry [Schaufler et al. 2000] or
particular data distribution schemes [Cohen-Or et al. 1998]. Sub-
sequent research aimed to remove these restrictions and address
more general geometric scenarios using various techniques based
on rasterization [Bittner et al. 2005; Nirenstein and Blake 2004] or
raytracing [Bittner et al. 2009]. The main problem of offline methods
remains that they can only work with static scenes.

Modern graphics applications, e.g., 3D streaming and dynamic 3D
scenes, call for PVS computation methods that can operate in real
time. From-point methods often rely on depth buffering to test and
store occlusions. For example, rendering engines can use a geometry
pre-pass to establish visible fragments [Burns and Hunt 2013]. If a
full-resolution geometry pre-pass is considered too expensive, an
efficient software rasterizer working at lower resolution [Hassel-
gren et al. 2016] or a hierarchical depth buffer [Greene et al. 1993]
can be used. The latter can be accelerated with hardware occlusion
queries, although the need for GPU synchronization limits scalabil-
ity [Mattausch et al. 2006]. Another approach reduces the required
geometry processing by replacing complex scene geometry with
simpler occlusion proxies [Koltun et al. 2000]. Finding good proxies
is still an active research topic [Tan et al. 2025].

Only a few methods address online computation of a from-region
PVS. Simple solutions can try to heuristically sample multiple pre-
dicted camera positions [Hladky et al. 2022; Mueller et al. 2018;
Reinert et al. 2016], but this approach is not very scalable.
The camera offset space of Hladky et al. [2019] uses per-pixel

linked lists as a scene representation to determine the PVS. Maintain-
ing sorted lists is expensive and difficult to scale to high resolutions.
Koch et al. [2021] use hardware ray-tracing to find visible surfaces.
Their method is stochastic, and its convergence depends on the
speed of the raytracing hardware. Kim and Lee [2023] propose track
disocclusions through depth peeling. Scalability of depth peeling is
limited by the need to repeatedly rasterize the scene. Voglreiter et
al. [2023] combine traversal of a coarse octree in world space with k-
buffering in image space. Peeling octree layers instead of traditional
depth peeling allows them to build the PVS with a single geometry
pass. However, the scalability of their method is still affected by the
need for GPU synchronization after each layer.
Recently, a disocclusion-based approach was proposed [Anony-

mous 2025], introducing the disocclusion buffer as a sparse, layered
representation that allows order-independent and fully parallel com-
putation of PVS, achieving speed-ups with comparable accuracy.
Although both this concurrent work and ours advance PVS gener-
ation, our neural network-based approach will benefit even more
from future GPU advancements, as improved hardware directly
accelerates inference performance.
Our method builds on the observation that visibility can be effi-

ciently expressed in a froxelized view frustum. A froxel grid requires
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only one bit per froxel to indicate a disoccluded region. Such a froxel
grid can be built much more efficiently than linked lists, k-buffers
or depth peeling layers. We use the froxel grid as input to a CNN,
which has a run-time cost that is only dependent on the froxel grid
resolution. This resolution is independent of both the target image
resolution and the complexity of the scene.

2.2 Deep learning in graphics
With the ability to learn and model complex mappings, deep learn-
ing is increasingly gaining recognition as a new approach to over-
come bottlenecks in computer graphics because of its predictable
computational cost and speed.

Deep Shading [Nalbach et al. 2017] is one of the earliest works to
introduce a CNN into graphics tasks to compute the shading effect
on pixels from shading buffers. A CNN has also been used to effi-
ciently denoise Monte Carlo rendering [Bako et al. 2017; Chaitanya
et al. 2017]. Similar neural network-based techniques are widely
used in post-processing, such as by DLSS [Liu 2020]. BRDF methods
based on deep learning [Dou et al. 2024; Hu et al. 2020; Sztrajman
et al. 2021] use neural layers to represent BRDF to replace the large
tabulated dataset and can achieve a better trade-off between mem-
ory and quality. Neural global illumination [Diolatzis et al. 2022;
Ren et al. 2024; Zheng et al. 2024] can now compete in quality for
dynamic lighting simulation [Ren et al. 2024] and deliver convincing
results on dynamic geometry [Zheng et al. 2024].

To the best of our knowledge, no existingwork addressed visibility
computing with a neural network. In this paper, we will focus on
applying deep learning methods to the field of PVS computation.

2.3 3D geometric learning
Our PVS estimation network combines several key techniques from
3D geometric learning, including sparse 3D convolution and the
latest improvements to the convolutional network design.
Classical 3D convolutional networks [Dai et al. 2017; Tchapmi

et al. 2017] use dense representation to learn 3D geometry patterns.
Dense representations have extremely high memory consumption
and lead to slow inference speed. Most geometric models have
ample empty space and do not require convolutions to be applied
in the empty areas. Therefore, a sparse CNN architecture is usually
preferred for this kind of problem.
Instead of storing the entire space as one tensor, a sparse 3D

convolution network stores its data, the so-called sparse tensor, ei-
ther in an octree [Riegler et al. 2017] or in a hash table [Chen et al.
2022; Choy et al. 2019; Graham and Maaten 2017; Spconv Contrib-
utors 2022]. Sparse 3D convolutions on hash tables are optimized
by placing the kernel center at the activated positions [Graham
and Maaten 2017], dilating to the activated position’s neighbors
[Choy et al. 2019], dynamically dilating the reception field [Chen
et al. 2022], or combinations of these factors [Choy et al. 2019;
Spconv Contributors 2022]. Recent work [Peng et al. 2024] on an
omni-adaptive convolutional neural network (OA-CNN) demon-
strates that advances in transformer networks can be retrofitted to
CNN architectures by adding adaptive receptor fields and a form of
self-awareness. Our method benefits from the speed and efficiency

afforded by these architectures, since a volumetric scene typically
has an occupancy of less than 5% of the froxels.

𝑐′

𝑟
𝑐

𝑟

ℬ

ℱ

𝛽𝜃𝛽

(a) Viewcell

𝑐′

(b) Geometry froxel-grid

Fig. 2. (a) A frustum enclosing all primitives that are potentially visible from
a viewcell (blue area) with radius 𝑟 around the current viewpoint c is created
by displacing the viewpoint backwards to c′. (b) The scene primitives are
conservatively rasterized into a regular grid.

3 Method
Our goal is to significantly improve the performance of PVS com-
putation by replacing previous algorithms operating on analytic
or sampled geometry with a robust neural network operating on a
froxelized scene representation. The network is pre-trainedwith syn-
thetic geometry grids corresponding to random scenes that loosely
resemble the structure of the target scenes. A key advantage of using
a CNN comes from the fact that converting the polygonal scene into
a froxel grid of fixed resolution makes the time needed to compute
a PVS largely independent of geometric scene complexity. Overall,
our pipeline proceeds as follows (Figure 3):

(1) Viewcell definition: build a geometry grid𝐺 by rasterizing
the scene into 𝐺

(2) PVS generation: a single forward pass through the neural
network infers the PVS

(3) Novel view synthesis: rasterize only primitives contained
in the PVS

Step 3 is repeated until the camera leaves the current viewcell, then
the process is restarted with step 1.

3.1 Preliminaries
We represent the scene geometry by a grid 𝐺 (x), x ∈ X, in nor-
malized device coordinates, which is 1 if the froxel at x is occu-
pied, and 0, otherwise. 𝐺 is defined over a discrete domain X ≡
[1..𝑁𝑥 ] × [1..𝑁𝑦] × [1..𝑁𝑧], which splits the view frustum into a
grid of discrete froxels.
The potentially visible set can be defined as the union of visible

polygons for all the viewpoints in a cell [Airey et al. 1990]. Based
on the definition, we represent the PVS in volumetric form as a
grid 𝑉 (x), which is 1 for visible froxels, and 0 otherwise. Let 𝑁 =

𝑁𝑥 · 𝑁𝑦 · 𝑁𝑧 . Our goal is to learn a mapping from 𝐺 to the ground-
truth per-froxel visibilities 𝑉 : {0, 1}𝑁 → {0, 1}𝑁 . We train a 3D
convolutional network 𝑓𝜃 that produces per-froxel probabilities and
obtain 𝑉 = 1(𝑓𝜃 (𝐺)), where 1 is an indicator function [𝑉 (x) ≥ 𝜏]
with a threshold 𝜏 .
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Fig. 3. NeuralPVS pipeline. For each viewcell, the scene’s geometry is froxelized into a GV, which is input to the PVS estimator network. A 3D interleaving
function first compresses the GV channels; a CNN then predicts the visible part of the geometry grid; afterwards, a 3D deinterleaving function reconstructs
the full PVS. Geometric primitives in froxels marked invisible in the PVS are culled from all further rendering computations.

3.2 Pre-processing
Our definition of the viewcell B (Figure 2a) considers a lateral
motion of the camera from an original viewpoint c up to radius
𝑟 [Wonka et al. 2001]. If we assume that the camera has a field of
view of 𝜃 , the view frustum F associated with a viewpoint c′ dis-
placed backward by 𝑟/tan(𝜃/2) encloses the PVS associated with
B. To accommodate camera rotations up to a maximum angle of 𝛽
on either side, we enlarge the field of view to 𝜃 + 2𝛽 .

We rasterize the primitives contained in F into a geometry grid
𝐺 stored as a 3D texture, according to the concept of froxelization
[Evans 2015]. Each fragment (𝑥,𝑦, 𝑧)⊤ in normalized device coordi-
nates is quantized to the froxel coordinates at

(
⌊𝑢 𝑁𝑥 ⌋, ⌊𝑣 𝑁𝑦⌋, ⌊𝑤 𝑁𝑧⌋

)⊤,
and the texture at the corresponding location is set to 1 to indicate an
occupied froxel. To ensure a gap-free rasterization, we supersample
the scene at a resolution of (𝑠𝑁𝑥 , 𝑠𝑁𝑦, 𝑠𝑁𝑧). For storage efficiency,
we pack eight consecutive froxels along the 𝑥-axis into an 8-bit
integer using atomic bitwise-OR for concurrent texture writes. For
the ground-truth generation during training, the fragments are gen-
erated using orthographic projections and then reprojected on the
fly into F to ensure a uniform sample distribution across all dis-
tances from the camera. At test time, we prioritize speed and use a
conventional perspective projection to generate the samples for the
geometry grid.
By construction, supp(𝑉 (x)) ⊆ supp(𝑉 ), which allows imme-

diate occlusion culling: Any fragment mapping to a froxel where
𝑉 = 0 can be discarded. As proposed by Hladky et al. [2019], the
ground truth PVS is computed by dense sampling of the viewcell.
A large number (𝑀 = 1000) of viewpoints c𝑚 ∈ B is selected. For
each viewpoint, the primitives in F are rendered and a depth buffer
is produced. The fragments indicated in the depth buffer are repro-
jected to the coordinate system of c, and the corresponding froxels
in 𝐺 are marked as occupied.

3.3 Neural PVS estimation
Dense volumetric CNN architectures, such as VNet [Milletari et al.
2016], are designed for offline operation, such as segmentation of
medical scans. Even their sparse variants are too slow for applica-
tions in real-time graphics. Therefore, we adopted OA-CNN [Peng
et al. 2024] as a backbone. OA-CNN is built on a highly optimized
kernel for sparse convolution. Furthermore, it introduces adaptive re-
ceptive fields and dynamically adjusts convolutional kernel weights
to deliver performance that reflects modern transformer networks.

The network accepts a geometry grid 𝐺 as input and provides volu-
metric probabilities 𝑉 as output. The complete pipeline is described
in Figure 3.

3D volume-preserving interleaving. The CNN inference time com-
plexity is linearly dependent on the resolution of the input features,
while the number of features has less impact on the speed. To further
improve the inference speed, we adopt a 3D volume-preserving inter-
leaving, generalizing the mechanism proposed by Xiao et al. [2018].
As shown in Figure 3, we place an interleaving function𝑔𝑑 before the
convolutional layers and a corresponding de-interleaving function
after the convolutional layers:

𝑉 = 𝑔−1
𝑑

(𝑓𝜃 (𝑔𝑑 (𝐺))) .

The interleaving function

𝑔𝑑 : R𝑁𝑥×𝑁𝑦×𝑁𝑧 → R
𝑁𝑥
𝑑

× 𝑁𝑦

𝑑
× 𝑁𝑧

𝑑

takes as input a grid of 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 froxels. It divides the grid into
blocks of dimension 𝑑 × 𝑑 × 𝑑 and stacks the froxels in a block into
a one-dimensional feature vector. The de-interleaving function

𝑔−1
𝑑

: R
𝑁𝑥
𝑑

× 𝑁𝑦

𝑑
× 𝑁𝑧

𝑑 → R𝑁𝑥×𝑁𝑦×𝑁𝑧

inverts this process. We choose 𝑑 ∈ {8, 16, 32} for optimal memory
alignment. A value 𝑑 < 8 is not practical, as the setup overhead
becomes too high [Xiao et al. 2018]. The interleaving preserves the
relative positional information of the geometry, while shrinking the
dimension of the input by a factor of 𝑑3. For the typical setup of
𝑑 = 16, the first convolution step after interleaving further shrinks
the size of each input vector from𝑑3 to around 200 elements, leading
to a significantly reduced processing time.

Weighted Dice loss. We adopt a weighted Dice loss, which weighs
false negatives (FN) much more strongly than false positives (FP)
by a factor 𝛼 . In our context, false negatives are froxels included in
the ground truth PVS, but missing from the predicted PVS. False
positives are froxels not included in the ground truth, but included in
the predicted PVS. True positives (TP) are froxels which are included
both in the ground truth and the predicted PVS, and ground truth
positives (GTP) are all froxels marked in the ground truth 𝑉 :

TP(𝑉 ,𝑉 ) =
∑︁
x∈X

𝑉 (x) ·𝑉 (x), FP(𝑉 ,𝑉 ) =
∑︁
x∈X

𝑉 (x) · (1 −𝑉 (x)),

FN(𝑉 ,𝑉 ) =
∑︁
x∈X

(1 −𝑉 (x)) ·𝑉 (x), GTP(𝑉 ) =
∑︁
x∈X

𝑉 (x) .
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Fig. 4. The pipeline of our proposed synthetic 3D data generation. To ensure the data distribution diversity, we applied a multi-step scene generation strategy
in order to cover as many occlusion patterns as possible.

Following the definition of Taha and Hanbury [2015], our modified
Dice loss is given as

L𝑑𝑖𝑐𝑒 (𝑉 ,𝑉 ) = 1 − 2 TP(𝑉 ,𝑉 )
2 TP(𝑉 ,𝑉 ) + 𝛼FP(𝑉 ,𝑉 ) + (1 − 𝛼)FN(𝑉 ,𝑉 )

.

Repulsive visibility loss. Our training data is necessarily very im-
balanced, because the number of visible froxels in real scenes is
usually between 0.5% and 10% and can vary significantly between
scenes and viewpoints. This imbalance makes it difficult to achieve
convergence, as the network can easily get stuck in a local mini-
mum during training. The conditioning to avoid high false negative
counts can lead to overprediction of visibility, or the network never
leaves the initial state.

To overcome these imbalance issues, we propose a repulsive visi-
bility loss (RVL) inspired by the work of Wang et al. [2018]. Unlike
Dice loss, which globally supervises all froxels, RVL aggressively
encourages only prediction in local grids where 𝑉 = 1 to match the
overall distribution of FN/FP. This loss is given as

L𝑟 𝑣 = L𝑎𝑡𝑡𝑟 + L𝑟𝑒𝑝 , L𝑎𝑡𝑡𝑟 = 1 − FN
GTP , L𝑟𝑒𝑝 =

FP
GTP ,

where L𝑎𝑡𝑡𝑟 attracts the prediction to match the ground truth, and
L𝑟𝑒𝑝 pushes the prediction away from non-visible areas. We train
the model by minimizing a combination of L𝑑𝑖𝑐𝑒 and L𝑟 𝑣 :

L = 𝜆 · L𝑑𝑖𝑐𝑒 (𝑉 ,𝑉 ) + (1 − 𝜆) · L𝑟 𝑣 (𝑉 ,𝑉 ).

4 Implementation

4.1 Datasets
The training dataset must include a wide range of geometric vari-
ations to ensure generalization. To achieve this, we use synthetic
data. We randomly place selected objects at varying frequencies and
apply random scales and rotations with a consistent distribution
across the local object dimensions (Figure 4). Each training set is
composed of 1,000 frames.
Our objects consist of primitive and complex shapes, including

cubes, cones, pyramids, cylinders, dodecahedrons, icosahedrons,
and round arches, as well as the monkey head model from Blender,
a wall with a door-shaped cutout, and a cube with a square hole

resembling a window. To simulate architectural structures such
as walls, floors, and ceilings, we scale certain objects significantly
along two of their three dimensions. Finally, we introduce planes
that serve as a global base for the floor, wall, and ceiling, extending
across the scene. These planes are initialized to ensure that they
remain visible within the viewcell. The viewcell is initialized at the
center of the scene, positioned above the floor at a random height,
and randomly rotated for variations.

We generate evaluation datasets using widely used scenes, such
as Viking Village and Robot Lab, for comparison with previous
work. For both the training and evaluation sets, we create pairs of a
geometry grid and ground-truth PVS (Section 3.2).

4.2 Training and evaluation
Our neural network implementation is based on OA-CNN [Pointcept
Contributors 2023] (see supplementary material for details). For
performance reasons, we use an aspect ratio of 1:1 for our viewport.
Specifically, we test grid resolutions of 𝐴 ×𝐴 ×𝐴 with 𝐴 = 256 and
a viewcell size 𝑟 ∈ {30 cm, 60 cm, 90 cm}.
All training was performed on an Oracle Linux 7.9 server with

2 AMD EPYC 7662, 1 TB RAM, and 4 NVIDIA A100 SXM4 GPU;
only one GPU was used for training. All evaluations were run on a
desktop computer running Oracle Linux 9.5, equipped with AMD
Ryzen 9 7900X, 64 GB RAM, and an NVIDIA RTX 5090 GPU. We
optimized the model using 𝜆 = 0.99, with an initial learning rate
0.001, learning rate decay rate 10−10, and batch size 3. We performed
200 epochs of training, which took approximately 15 hours for our
setup. We used 𝜏 = 0.5 throughout all experiments.

4.3 Rendering
We use Unity’s Universal Rendering Pipeline (URP) version 17.0 for
all rendering tasks. The main camera is configured with a resolution
of 1024×1024 pixels, a field of view (FOV) of 60°, a near plane of
0.3 m, and a far plane of 1000 m. For the rendering of GV and PVS,
we employ a wider FOV of 90° to account for up to 15° of camera
rotation within a viewcell. To avoid visibility gaps, we render these
buffers at a higher resolution of 2048×2048.
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(a) Performance metrics for various viewcell size on different scenes. The
horizontal axis is grouped by viewcell size 𝑟 ∈ 30 𝑐𝑚, 60 𝑐𝑚, 90 𝑐𝑚 for each
scene. Given that our network uses a fixed geometry grid size, performance
remains relatively insensitive to changes in 𝑟 .
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(b) Froxel space performance metrics for various interleaving grid size 𝑑 on
different scenes. The horizontal axis is grouped by viewcell size 𝑑 ∈ 8, 16, 32
for each scene. The performance is affected by changes in 𝑑 ; setting 𝑑 = 16
gives the overall best performance.

Fig. 5. Performance for different viewcell sizes and interleaving (Section 3.3)
grid sizes. All metrics were averaged over the entire frame sequence.

The predicted view frustum spans up to a threshold (empirically
chosen at 30 m). For distances larger than the threshold, we render
the far-field scene geometry into a visibility buffer once when the
PVS is created, and add the geometry indicated in the ID attachment
of the visibility buffer to the PVS directly. This optimization allows
the CNN to focus its predictive power in the near- and mid-ranges,
where disocclusions are expected. The ground truth PVS is sampled
using 1000 evenly distributed camera positions per viewcell.

5 Results
We evaluate our method on two indoor scenes (Sponza, Robot Lab)
and three outdoor scenes (Viking Village, Big City, Industrial Set
v3.0), as illustrated in Figure 8. For each scene, we render a 60-second
animation at 60 Hz along a pre-recorded camera path, resulting in
3600 frames per scene.

5.1 Performance metrics
To evaluate the performance of the PVS estimation, we define
the false negative rate FNR=FN/GTP (↓), the false positive rate

0
5

10
15
20

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32
Viking Village Big City Industrial Set RobotLab Sponza

0
200
400
600

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32
Viking Village Big City Industrial Set RobotLab Sponza

Fig. 6. (a) Average inference time (ms) and (b) average peak allocated mem-
ory (MB) for different interleaving factors 𝑑 = {8, 16, 32}.
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FN

R
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at
io

Fig. 7. Comparison of FNR and FPR (false positive as a multiple of the
ground truth) between our results and baseline TR [Voglreiter et al. 2023].
In general, our method produces better FNR, similar or better FPR.

Table 1. Image space performance metrics SSIM for various interleaving
grid size 𝑑 on different scenes.

Scenes SSIM ↑
d=8 d=16 d=32

Viking Village 0.9990 0.9996 0.9985
City 0.9991 0.9988 0.9972
Industrial 0.9963 0.9963 0.9996
Robot Lab 0.9985 0.9984 0.9995
Sponza 0.9998 0.9981 0.9913

FPR=FP/GTP (↓) and the pixel error rate PER (↓) for comparison
with previous work. The pixel error rate reports the pixels showing
incorrect primitives because of primitives missed in the PVS. It is
computed as a fraction of the screen resolution and averaged over a
sequence of frames through the scene. Moreover, we render shaded
scenes from the PVS and the original geometry and compare the
results using SSIM (↑) [Wang et al. 2004], which considers local
luminance, contrast, and structure over a sliding window.
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Table 2. Comparison of time (ms), memory (MB) and pixel error rate (PER) between our
method and Trim Regions [Voglreiter et al. 2023]. "Ours" uses 𝑟 = 30, 𝑑 = 16 and "Ours*" uses
𝑟 = 30, 𝑑 = 8 to reduced memory. Pixel error comparison between our method and baseline
TR [Voglreiter et al. 2023]. Although the baseline has better PER, SSIM comparisons on the
image confirm that the errors are minor and almost unnoticeable by humans.

Scene ms↓ MB↓ PER/%↓ SSIM↑
Ours TR Ours Ours* TR TR Ours Ours

Viking 9.9 19.3 328.8 293.7 359.2 0.006 0.032 0.9996
Robot Lab 9.9 17.2 318.0 285.1 483.8 0.030 0.255 0.9984
Sponza 10.1 17.8 323.4 292.0 563.9 0.021 0.151 0.9981
City 10.3 16.4 333.5 295.3 330.5 0.006 0.142 0.9988

Table 3. Ablation study on Viking Village. We use 𝑟 = 30, 𝑑 =

16. For "No OA-CNN" and "VNet", VNet [Milletari et al. 2016]
is used instead of OA-CNN. Time andmemory for "No RVLoss"
is omitted because the loss does not affect the performance of
inference.

FNR ↓ FPR ↓ ms ↓ MB ↓
Ours 0.00368 0.01683 10.1 328.8
No Interleave 0.00227 0.01940 25.4 1076.2
No OA-CNN 0.01870 0.01677 19.0 509.8
No RVLoss 0.00000 0.61785 - -
VNet 0.03235 0.01771 326.4 2135.9

Viking Village (7.2M) Big City (15.7M) Industrial Set v3.0 (0.1M) Robot Lab (0.5M) Sponza (0.3M)

Fig. 8. The five test scenes used in our evaluation, shown with their respective primitive counts.

Figure 9 shows the metrics for an animated camera path of 3,600
frames in the Viking village scene. For keyframes such as the best
and the worst case of FNR, the rendering results of the computed
PVS are shown to better illustrate the performance of the method.
As indicated by the metrics and the rendered images, our method is
robust in handling different geometry distributions and occlusion
relations in the complex scene, with even the worst case in this
challenging scene exhibiting only a small amount of pixel errors.
The corresponding SSIM value confirm our observation that the
error is usually unnoticeable to humans.

Figure 5a shows the evaluation results on all scenes with different
viewcell sizes 𝑟 . We find that 𝑟 = 30 cm gives the best performance
in all scenes, while 𝑟 = 60 cm has a slightly higher false negative
rate. A potential explanation is that the size of the viewcell affects
the subdivided grid shape in the geometry grid, where a too small
grid size likely breaks the global geometry structure and causes the
loss of global information, while a too large grid size makes it harder
to learn the local structures within the grid.

Figure 5b shows the evaluation results on all scenes with different
interleaving grid size 𝑑 . With different 𝑑 on the same scene, the
performance can vary significantly. Choosing 𝑑 = 16 gives the
best performance in most scenes. With a too large interleaving
factor 𝑑 , too few elements remain after downsampling in the CNN,
which may cause the network to overfit and has a negative effect on
performance. For smaller𝑑 , more elements remain after interleaving;
assuming the same training period, the false negative will be higher
due to greater difficulties of converging.

Table 1 shows the SSIM of all scenes with different 𝑑 . SSIM is
always very close to 1, which indicates that the rendering quality
is very good. Additional perceptual ( FLIP [Andersson et al. 2020])
and temporal metrics (VMAF [Li et al. 2016], CGVQM [Jindal et al.
2025]) are provided in the supplementary material, all confirming
a similarly strong performance. Note that all our test scenes are
completely unknown to the CNN, which is exclusively trained on
purely synthetic sceneswith simple, randomly generated geometries.
Results show that our method is highly robust and generalizable
to different and unknown data patterns while providing reliable
estimation quality.

5.2 Speed and memory
We measure the runtime speed and memory in various scenes with
different viewcell sizes. Section 4.3 presents the inference time per
frame with the overall statistics and breakdown time per stage, in-
cluding interleaving, CNN inference, and deinterleaving. The overall
time per frame remains at approximately 10 ms (100 Hz), despite
the scene scale and geometry variations. This makes our method
more efficient than a naive depth pre-pass, which is 1.5 ms slower in
our experiments after both methods are averaged between frames.
Following the argument of Voglreiter et al. [2023], a running

speed of 3 m/s translates into 5 cm/s camera movement at 60 Hz. At
this speed of camera motion, the PVS is valid for 6 frames (100 ms),
when 𝑟=30 cm, and, for 18 frames (300 ms) when 𝑟=90 cm. Amortized
over these valid periods, the PVS inference only takes approximately
3.3% of the computation time for an application that generates new
frames at a rate of 60 Hz. Therefore, we can assume that our method
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Fig. 9. Per-frame PVS estimation performance with key frames images of the Viking Village scene. The sequence has 1800 frames in total, with 410 frames of
PVS computed shown in the figure. The error pixels of the key frames are marked in red on the rendered image.

is very well suited for frame extrapolation or streaming applications
in terms of speed.

Figure 5 shows the time and peak memory allocated during infer-
ence. The adaptive relation convolution of OA-CNN will use more
parameters if we add more feature channels, leading to increased
inference time and memory usage when we use an interleaving fac-
tor of 𝑑 = 32. Although memory requirements can vary depending
on the occupancy rate of the input 𝐺 (x), the memory consumption
is largely insensitive to scene geometry, as long as the viewcell con-
figuration remains unchanged. The sparse tensor ensures that only
the positions where geometry exists will be recorded in memory.
Consequently, there is no memory overhead for empty grids.

5.3 Comparisons to the state of the art
To the best of our knowledge, the trim region method of Voglreiter
et al. [2023] is the fastest to date for from-region PVS computation.
We compare our results with those reported in the original paper.
For a fair comparison, we run an experiment using the same GPU
(NVIDIA RTX 4090) and the same scenes as ours, kindly provided
by the authors. Figure 7 shows the comparisons of metrics in these
scenes, namely, Viking Village, Robot Lab, Sponza, and Big City.
Table 2 shows the speed and memory comparisons on these scenes.

Our method outperforms trim regions with respect to per-frame
processing speed. The trim region method delivers 57 Hz (18 ms)
per frame on average, while we achieve over 100 Hz (10 ms) on
average (an improvement of 76%). We also obtain better quantitative
performance, with significantly smaller false negatives and similar
or better false positive rates. Compared to trim regions, our method
has 83.8% less FNR and 63.4% less FPR on average. Although our

PER is slightly higher, the overall image quality is not noticeably
affected, as shown by the SSIM column in Table 2.

5.4 Ablation studies
To evaluate the effectiveness of the OA-CNN network and the in-
terleaving function, we carried out experiments on the classical
CNN backbone VNet [Milletari et al. 2016] baseline and the original
OA-CNN model with and without the interleaving function, as well
as with and without RVL. Results are shown in Table 3.
The model trained without RVL has a significantly higher false

positive rate, which means that it simply predicts (almost) the whole
scene to be visible. The result shows that RVL is crucial in prevent-
ing the network from overfitting to the local minimum, and thus
maintains a better balance between minimal FNR and reasonable
FPR. Our results indicate that the interleaving function is the key to
efficient inference. Its use increases the inference rate from 39 Hz
to 100 Hz (2.5× speed-up) at 70% reduced memory usage.

The OA-CNN backbone is crucial for the performance of the net-
work. Replacing OA-CNN with VNet leads to with 15% increased
FNR, while the FPR is almost unaffected. OA-CNN also contributes
to decreasing inference time and memory usage. Without the inter-
leaving function and OA-CNN backbone, a completely naïve VNet
network is too slow for real-time applications.

5.5 Challenging cases
To better understand the limitations of our method, we list some typ-
ical challenging cases in Figure 10. Like classical heuristic methods,
the neural network also finds it harder to precisely estimate PVS in
edge cases involving complex occlusion relationships (for example,
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Fig. 10. Challenging situations for NeuralPVS model. left column: Multi-layer occlusion from Viking Village scene, 1104 false negative pixels. center column:
complex occlusion structure from Industrial scene, 1152 false negative pixels. right column: almost occluded background from Sponza scene, 1102 false negative
pixels.

multiple thin occluders in the left column). In the center column,
the structure of the metal fence is not covered by our synthetic
dataset and thus causes pixel errors. Further geometry has a lower
resolution due to the geometry grid generation process, far-away
geometry has a larger chance of getting misestimated, as shown in
the right column. Moreover, machine learning methods are always
dependent to some degree on the training data. While we found
our randomized synthetic training set robust for a wide variety of
scenes, fine-tuning our method for specific scenes can potentially
help minimize errors.

5.6 Dynamic scenes
Since our view cell is defined purely in space, visibility changes
caused by a dynamic object require special treatment. A simple
approach unconditionally adds all dynamic objects to the PVS after
visibility computation. However, this approach does not consider
dynamic objects as occluders or occludees. While the first case –
dynamic occluders – is likely too complicated to yield a speed-up,
the second case – dynamic occludees – is rather simple to exploit.We
construct a temporal bounding volume (TBV) for the moving object,

𝑡! 𝑡"

𝑡!

𝑡"

Viewcell
	TBV#$%$&'( 	TBV$)#$%$&'(

Fig. 11. Dynamics scenes visibility computation with temporal bounding
volumes. The yellow vehicle is visible during the period of time 𝑡0 to 𝑡1,
while the grey vehicle is invisible.

which conservatively encloses the object during the predicted period
(Figure 11). At runtime, the TBV is froxelized and tested against the
froxelized PVS. If no froxel occupied by the TVB is deemed visible,
the dynamic object can be pruned.

6 Conclusion and future work
We have presented a novel approach to compute from-regions po-
tentially visible sets using a convolutional neural network. Our
proposed method applies the OA-CNN network design with an
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additional interleaving function and a repulsive visibility loss to
perform end-to-end estimation of the PVS. Our method achieves
high accuracy and fast inference.

We see several directions for future work. With the development
of deep learning, adopting a more featured network design would
potentially bring better accuracy, while balancing the computa-
tional cost could be challenging. Moreover, additional spatial data
structures, such as octrees or hash grids, might bring about further
improvements in both performance and speed. We also consider
replacing the simple froxelization with a more advanced different
feature representation of the local geometry. Finally, it is natural
to expect some performance gain by introducing neural methods
to other rendering tasks related to visibility, e.g. radiance transfer,
shadow rendering, and global illumination.

Acknowledgements. This work was supported by the Alexander
von Humboldt Foundation funded by the German Federal Ministry
of Research, Technology and Space, the German Research Founda-
tion DFG (grant 528364066, SFB TRR161), and the Austrian Science
Fund FWF (grant I6663). The authors thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS) for sup-
porting Xiangyu Wang.

References
JohnM. Airey, John H. Rohlf, and Frederick P. Brooks. 1990. Towards image realismwith

interactive update rates in complex virtual building environments. In Proceedings
of the 1990 Symposium on Interactive 3D Graphics - SI3D ’90. ACM Press, Snowbird,
Utah, United States, 41–50. doi:10.1145/91385.91416

Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle
Åström, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020), 15:1–15:23. doi:10.
1145/3406183

Anonymous. 2025. Title Withheld for Anonymous Review. Anonymous submission.
Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill,

Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-
lutional networks for denoising Monte Carlo renderings. ACM Transactions on
Graphics 36, 4 (Aug. 2017), 1–14. doi:10.1145/3072959.3073708

Jiří Bittner, Oliver Mattausch, Peter Wonka, Vlastimil Havran, and Michael Wimmer.
2009. Adaptive global visibility sampling. ACM Trans. Graph. 28, 3 (2009), 94:1–94:10.
doi:10.1145/1531326.1531400

Jiří Bittner, Peter Wonka, and Michael Wimmer. 2005. Fast exact from-region visibility
in urban scenes. In Proceedings of the Sixteenth Eurographics Conference on Rendering
Techniques (EGSR ’05). Eurographics Association, Goslar, DEU, 223–230.

Christopher A Burns and Warren A Hunt. 2013. The visibility buffer: a cache-friendly
approach to deferred shading. Journal of Computer Graphics Techniques (JCGT) 2, 2
(2013), 55–69.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-
tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Trans. Graph. 36, 4 (2017), 98:1–98:12. doi:10.1145/3072959.3073601

Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and Jiaya Jia. 2022. Fo-
cal sparse convolutional networks for 3d object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5428–
5437. http://openaccess.thecvf.com/content/CVPR2022/html/Chen_Focal_Sparse_
Convolutional_Networks_for_3D_Object_Detection_CVPR_2022_paper.html

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4d spatio-temporal
convnets: Minkowski convolutional neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3075–3084. http:
//openaccess.thecvf.com/content_CVPR_2019/html/Choy_4D_Spatio-Temporal_
ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.html

D. Cohen-Or, Y.L. Chrysanthou, C.T. Silva, and F. Durand. 2003. A survey of visibility
for walkthrough applications. IEEE Transactions on Visualization and Computer
Graphics 9, 3 (July 2003), 412–431. doi:10.1109/TVCG.2003.1207447

Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. 1998. Conservative
Visibility and Strong Occlusion for Viewspace Partitioning of Densely Occluded
Scenes. Computer Graphics Forum 17, 3 (1998), 243–253. doi:10.1111/1467-8659.00271

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. 2017. Scannet: Richly-annotated 3d reconstructions of indoor

scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 5828–5839. http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_
ScanNet_Richly-Annotated_3D_CVPR_2017_paper.html

Stavros Diolatzis, Julien Philip, and George Drettakis. 2022. Active Exploration for
Neural Global Illumination of Variable Scenes. ACM Trans. Graph. 41, 5 (2022),
171:1–171:18. doi:10.1145/3522735

Yishun Dou, Zhong Zheng, Qiaoqiao Jin, Bingbing Ni, Yugang Chen, and Junxiang Ke.
2024. Real-Time Neural BRDF with Spherically Distributed Primitives. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4337–
4346. http://openaccess.thecvf.com/content/CVPR2024/html/Dou_Real-Time_
Neural_BRDF_with_Spherically_Distributed_Primitives_CVPR_2024_paper.html

Frédo Durand, George Drettakis, and Claude Puech. 2002. The 3D visibility complex.
ACM Transactions on Graphics 21, 2 (April 2002), 176–206. doi:10.1145/508357.508362

Epic Games. 2022. Precomputed Visibility Volumes. https://docs.unrealengine.com/5.
1/en-US/precomputed-visibility-volumes-in-unreal-engine/

Alex Evans. 2015. Learning from Failure: a Survey of Promising, Unconventional and
Mostly Abandoned Renderers for ‘Dreams PS4’, a Geometrically Dense, Painterly
UGC Game’. https://advances.realtimerendering.com/s2015/

Benjamin Graham and Laurens van der Maaten. 2017. Submanifold Sparse Convolu-
tional Networks. doi:10.48550/arXiv.1706.01307 arXiv:1706.01307 [cs].

Ned Greene, Michael Kass, and Gavin Miller. 1993. Hierarchical Z-buffer visibility.
In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’93). Association for Computing Machinery, New York, NY,
USA, 231–238. doi:10.1145/166117.166147

Jon Hasselgren, Magnus Andersson, and Tomas Akenine-Möller. 2016. Masked Soft-
ware Occlusion Culling. In Eurographics/ ACM SIGGRAPH Symposium on High
Performance Graphics, Ulf Assarsson and Warren Hunt (Eds.). The Eurographics
Association. doi:10.2312/hpg.20161189 ISSN: 2079-8679.

Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger. 2019. The camera offset space:
real-time potentially visible set computations for streaming rendering. ACM Trans.
Graph. 38, 6 (2019), 231:1–231:14. doi:10.1145/3355089.3356530

Jozef Hladky, Michael Stengel, Nicholas Vining, Bernhard Kerbl, Hans-Peter Seidel, and
Markus Steinberger. 2022. QuadStream: AQuad-Based Scene StreamingArchitecture
for Novel Viewpoint Reconstruction. ACM Transactions on Graphics 41, 6 (Dec. 2022),
1–13. doi:10.1145/3550454.3555524

Bingyang Hu, Jie Guo, Yanjun Chen, Mengtian Li, and Yanwen Guo. 2020. DeepBRDF: A
Deep Representation for Manipulating Measured BRDF. Computer Graphics Forum
39, 2 (2020), 157–166. doi:10.1111/cgf.13920

Akshay Jindal, Nabil Sadaka, Manu Mathew Thomas, Anton Sochenov, and Anton
Kaplanyan. 2025. CGVQM+D: Computer Graphics Video Quality Metric and Dataset.
doi:10.48550/arXiv.2506.11546 arXiv:2506.11546 [cs].

Janghun Kim and Sungkil Lee. 2023. Potentially Visible Hidden-Volume Rendering for
Multi-ViewWarping. ACMTransactions on Graphics 42, 4 (2023). doi:10.1145/3592108

Thomas Koch and Michael Wimmer. 2021. Guided Visibility Sampling++. Proceedings
of Computer Graphics and Interactive Techniques 4, 1 (2021). doi:10.1145/3451266
Place: New York.

Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. 2000. Virtual Occluders:
An Efficient Intermediate PVS representation. In Rendering Techniques 2000, Bernard
Péroche and Holly Rushmeier (Eds.). Springer, Vienna, 59–70. doi:10.1007/978-3-
7091-6303-0_6

Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha Manohara.
2016. Toward a practical perceptual video quality metric, 2016. Netflix Techblog
(2016). https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-
metric-653f208b9652

Edward Liu. 2020. DLSS 2.0 – Image Reconstruction for Real-Time Rendering with
Deep Learning. https://developer.download.nvidia.com/video/gputechconf/gtc/
2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-
with-deep-learning.pdf Published: GPU Technology Conference (Session S22698),
NVIDIA.

Oliver Mattausch, Jirí Bittner, and Michael Wimmer. 2006. Adaptive Visibility-Driven
View Cell Construction. The Eurographics Association. https://doi.org/10.2312/
EGWR/EGSR06/195-205 ISSN: 1727-3463.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. 2016. V-Net: Fully Convolu-
tional Neural Networks for Volumetric Medical Image Segmentation. In International
Conference on 3D Vision. arXiv, 565–571. doi:10.1109/3DV.2016.79 shortConference-
Name: 3DV.

Joerg H. Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar, Markus
Steinberger, and Dieter Schmalstieg. 2018. Shading Atlas Streaming. ACM Transac-
tions on Graphics 37, 6 (Dec. 2018). doi:10.1145/3272127.3275087 Place: New York
Publisher: Association for Computing Machinery.

O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P. Seidel, and T. Ritschel. 2017. Deep
Shading: Convolutional Neural Networks for Screen Space Shading. Computer
Graphics Forum 36, 4 (2017), 65–78. doi:10.1111/cgf.13225

S. Nirenstein and E. Blake. 2004. Hardware Accelerated Visibility Preprocessing using
Adaptive Sampling. The Eurographics Association. https://doi.org/10.2312/EGWR/
EGSR04/207-216 ISSN: 1727-3463.

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1145/91385.91416
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/1531326.1531400
https://doi.org/10.1145/3072959.3073601
http://openaccess.thecvf.com/content/CVPR2022/html/Chen_Focal_Sparse_Convolutional_Networks_for_3D_Object_Detection_CVPR_2022_paper.html
http://openaccess.thecvf.com/content/CVPR2022/html/Chen_Focal_Sparse_Convolutional_Networks_for_3D_Object_Detection_CVPR_2022_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.html
https://doi.org/10.1109/TVCG.2003.1207447
https://doi.org/10.1111/1467-8659.00271
http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_ScanNet_Richly-Annotated_3D_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_ScanNet_Richly-Annotated_3D_CVPR_2017_paper.html
https://doi.org/10.1145/3522735
http://openaccess.thecvf.com/content/CVPR2024/html/Dou_Real-Time_Neural_BRDF_with_Spherically_Distributed_Primitives_CVPR_2024_paper.html
http://openaccess.thecvf.com/content/CVPR2024/html/Dou_Real-Time_Neural_BRDF_with_Spherically_Distributed_Primitives_CVPR_2024_paper.html
https://doi.org/10.1145/508357.508362
https://docs.unrealengine.com/5.1/en-US/precomputed-visibility-volumes-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/precomputed-visibility-volumes-in-unreal-engine/
https://advances.realtimerendering.com/s2015/
https://doi.org/10.48550/arXiv.1706.01307
https://doi.org/10.1145/166117.166147
https://doi.org/10.2312/hpg.20161189
https://doi.org/10.1145/3355089.3356530
https://doi.org/10.1145/3550454.3555524
https://doi.org/10.1111/cgf.13920
https://doi.org/10.48550/arXiv.2506.11546
https://doi.org/10.1145/3592108
https://doi.org/10.1145/3451266
https://doi.org/10.1007/978-3-7091-6303-0_6
https://doi.org/10.1007/978-3-7091-6303-0_6
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
https://doi.org/10.2312/EGWR/EGSR06/195-205
https://doi.org/10.2312/EGWR/EGSR06/195-205
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1111/cgf.13225
https://doi.org/10.2312/EGWR/EGSR04/207-216
https://doi.org/10.2312/EGWR/EGSR04/207-216


1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

NeuralPVS: Learned Estimation of Potentially Visible Sets • 11

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Bohao Peng, Xiaoyang Wu, Li Jiang, Yukang Chen, Hengshuang Zhao, Zhuotao Tian,
and Jiaya Jia. 2024. OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Seg-
mentation. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, Seattle, WA, USA, 21305–21315. doi:10.1109/CVPR52733.2024.02013

Pointcept Contributors. 2023. Pointcept: a codebase for point cloud perception research.
https://github.com/Pointcept/Pointcept

Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo, David Chu, and
Hans-Peter Seidel. 2016. Proxy-guided Image-based Rendering for Mobile Devices.
Computer Graphics Forum 35, 7 (Oct. 2016), 353–362. doi:10.1111/cgf.13032

Haocheng Ren, Yuchi Huo, Yifan Peng, Hongtao Sheng, Weidong Xue, Hongxiang
Huang, Jingzhen Lan, Rui Wang, and Hujun Bao. 2024. LightFormer: Light-Oriented
Global Neural Rendering in Dynamic Scene. ACM Trans. Graph. 43, 4 (2024), 75:1–
75:14. doi:10.1145/3658229

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. Octnet: Learning deep 3d
representations at high resolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 3577–3586. http://openaccess.thecvf.com/content_
cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html

Gernot Schaufler, Julie Dorsey, Xavier Decoret, and Francois X. Sillion. 2000. Conser-
vative volumetric visibility with occluder fusion. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00). ACM
Press/Addison-Wesley Publishing Co., USA, 229–238. doi:10.1145/344779.344886

Spconv Contributors. 2022. Spconv: Spatially Sparse Convolution Library. https:
//github.com/traveller59/spconv

Alejandro Sztrajman, Gilles Rainer, Tobias Ritschel, and Tim Weyrich. 2021. Neural
BRDF Representation and Importance Sampling. Computer Graphics Forum 40, 6
(2021), 332–346. doi:10.1111/cgf.14335

Abdel Aziz Taha and Allan Hanbury. 2015. Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC Medical Imaging 15, 1 (Aug. 2015),
29. doi:10.1186/s12880-015-0068-x

Zhipeng Tan, Yongxiang Zhang, Fei Xia, and Fei Ling. 2025. Differentiable Rendering
based Part-Aware Occlusion Proxy Generation. Computer Graphics Forum 44, 2
(2025), e70077. doi:10.1111/cgf.70077

Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese.
2017. Segcloud: Semantic segmentation of 3d point clouds. In 2017 International
Conference on 3D Vision (3DV). IEEE, 537–547. https://ieeexplore.ieee.org/abstract/
document/8374608/

Seth J. Teller and Carlo H. Séquin. 1991. Visibility preprocessing for interactive walk-
throughs. In Proceedings of the 18th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’91). Association for Computing Machinery, New
York, NY, USA, 61–70. doi:10.1145/122718.122725

Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg Hermann Mueller,
Thomas Neff, Markus Steinberger, and Dieter Schmalstieg. 2023. Trim Regions
for Online Computation of From-Region Potentially Visible Sets. ACM Transactions
on Graphics 42, 4 (Aug. 2023), 1–15. doi:10.1145/3592434

Xinlong Wang, Tete Xiao, Yuning Jiang, Shuai Shao, Jian Sun, and Chunhua Shen. 2018.
Repulsion Loss: Detecting Pedestrians in a Crowd. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, UT, 7774–7783.
doi:10.1109/CVPR.2018.00811

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality as-
sessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (April 2004), 600–612. doi:10.1109/TIP.2003.819861

Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. 2000. Visibility Preprocess-
ing with Occluder Fusion for Urban Walkthroughs. In Rendering Techniques 2000,
Bernard Péroche and Holly Rushmeier (Eds.). Springer, Vienna, 71–82. doi:10.1007/
978-3-7091-6303-0_7

Peter Wonka, Michael Wimmer, and Francois X. Sillion. 2001. Instant Visibility. Com-
puter Graphics Forum 20, 3 (2001), 411–421. doi:10.1111/1467-8659.00534

Lei Xiao, Anton Kaplanyan, Alexander Fix, Matthew Chapman, and Douglas Lan-
man. 2018. DeepFocus: learned image synthesis for computational displays. ACM
Transactions on Graphics 37, 6 (Dec. 2018), 1–13. doi:10.1145/3272127.3275032

Chuankun Zheng, Yuchi Huo, Hongxiang Huang, Hongtao Sheng, Junrong Huang,
Rui Tang, Hao Zhu, Rui Wang, and Hujun Bao. 2024. Neural Global Illumination
via Superposed Deformable Feature Fields. In SIGGRAPH Asia 2024 Conference
Papers (SA ’24). Association for Computing Machinery, New York, NY, USA, 1–11.
doi:10.1145/3680528.3687680

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1109/CVPR52733.2024.02013
https://github.com/Pointcept/Pointcept
https://doi.org/10.1111/cgf.13032
https://doi.org/10.1145/3658229
http://openaccess.thecvf.com/content_cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html
https://doi.org/10.1145/344779.344886
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv
https://doi.org/10.1111/cgf.14335
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1111/cgf.70077
https://ieeexplore.ieee.org/abstract/document/8374608/
https://ieeexplore.ieee.org/abstract/document/8374608/
https://doi.org/10.1145/122718.122725
https://doi.org/10.1145/3592434
https://doi.org/10.1109/CVPR.2018.00811
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1007/978-3-7091-6303-0_7
https://doi.org/10.1007/978-3-7091-6303-0_7
https://doi.org/10.1111/1467-8659.00534
https://doi.org/10.1145/3272127.3275032
https://doi.org/10.1145/3680528.3687680

	Abstract
	1 Introduction
	2 Background
	2.1 PVS computation
	2.2 Deep learning in graphics
	2.3 3D geometric learning

	3 Method
	3.1 Preliminaries
	3.2 Pre-processing
	3.3 Neural PVS estimation

	4 Implementation
	4.1 Datasets
	4.2 Training and evaluation
	4.3 Rendering

	5 Results
	5.1 Performance metrics
	5.2 Speed and memory
	5.3 Comparisons to the state of the art
	5.4 Ablation studies
	5.5 Challenging cases
	5.6 Dynamic scenes

	6 Conclusion and future work
	References

