22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

NeuralPVS: Learned Estimation of Potentially Visible Sets

XIANGY U WANG, University of Stuttgart, Germany

THOMAS KOHLER and JUN LIN QIU, Graz University of Technology, Austria

SHOHEI MORI, University of Stuttgart, Germany

MARKUS STEINBERGER, Graz University of Technology, Austria

DIETER SCHMALSTIEG, University of Stuttgart, Germany

Pre-processing

Viewcell definition l

v

Build geometry froxel-grid l

________ /|- ——F-—-" Supervision

rSynthetic dataset!
generation

t___

Ground Truth

4

]

| \
_____ eval/train f = = — = =

NeuralPVS Pipeline

3D Scene Geometry

I
1
1
-+ {pomeeme > EY
1
I
1

CNN output Potentially visible set
\

PVS from bird-view

Fig. 1. Overview of the NeuralPVS pipeline. The left side illustrates the overall system and task, where the camera is colored purple, and the white rendering
indicates geometry invisible to the camera. A froxelized representation of the input scene is fed into the neural network with interleaving layers and outputs
the potentially visible set (PVS) in froxelized form, as displayed in the middle. The network is trained with pairs consisting of a froxelized scene and the
corresponding ground-truth PVS in froxelized form. The network runs at 100 Hz (10 ms per frame) on the GPU and generates less than 1% error rate, without
introducing noticeable artifacts in the rendered images. The right side shows the rendered PVS of the frame from a bird’s-eye view.

Real-time visibility determination in expansive or dynamically changing
environments has long posed a significant challenge in computer graphics.
Existing techniques are computationally expensive and often applied as
a precomputation step on a static scene. We present NeuralPVS, the first
deep-learning approach for visibility computation that efficiently determines
from-region visibility in a large scene, running at approximately 100 Hz
processing with less than 1% missing geometry. This approach is possible
by using a neural network operating on a froxelized representation of the
scene. The network’s performance is achieved by combining sparse con-
volution with a 3D volume-preserving interleaving for data compression.
Moreover, we introduce a novel repulsive visibility loss that can effectively
guide the network to converge to the correct data distribution. This loss
provides enhanced robustness and generalization to unseen scenes. Our
results demonstrate that NeuralPVS outperforms existing visibility methods
in terms of both accuracy and efficiency.

Authors’ Contact Information: Xiangyu Wang, xiangyu.wang@visus.uni-stuttgart.
de, University of Stuttgart, Stuttgart, Germany; Thomas Kohler, t.koehler@tugraz.at;
Jun Lin Qiu, qiu@student.tugraz.at, Graz University of Technology, Graz, Austria;
Shohei Mori, s.mori.jp@ieee.org, University of Stuttgart, Stuttgart, Germany; Markus
Steinberger, markus.steinberger@icg.tugraz.at, Graz University of Technology, Graz,
Austria; Dieter Schmalstieg, dieter.schmalstieg@visus.uni-stuttgart.de, University of
Stuttgart, Stuttgart, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2025/9-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS Concepts: « Computing methodologies — Visibility.

Additional Key Words and Phrases: Convolutional neural network

1 Introduction

Visibility computation is one of the fundamental problems in com-
puter graphics, as it enables a broad spectrum of applications such
as shadow mapping, light-field rendering, global illumination, or col-
lision detection. A common approach is to determine a potentially
visible set (PVS), which contains an approximation of the visible por-
tion of a scene [Teller and Séquin 1991]. Many methods have been
proposed for computing a PVS [Cohen-Or et al. 2003], either from a
single viewpoint or from a region (a so-called viewcell). Commercial
game engines frequently determine a from-point PVS before shad-
ing to reduce shading load. Computing a from-region PVS has much
broader use for applications such as frame extrapolation, prefetching
or streaming rendering. Unfortunately, algorithms for from-region
PVS have an inherently high computational complexity [Durand
et al. 2002], and most algorithms rely on precomputation [Bittner
et al. 2009; Mattausch et al. 2006], including solutions used in com-
mercial game engines such as Unreal [Epic Games 2022]. Some
recent work [Hladky et al. 2019; Kim and Lee 2023; Koch and Wim-
mer 2021; Voglreiter et al. 2023] achieves promising online visibility
computation, but the limitations of the underlying algorithms still
restrict their applicability, especially for high resolutions and scenes
with high geometric complexity.

In recent years, neural networks have revolutionized many areas
of computer graphics, such as material representation [Dou et al.

, Vol. 1, No. 1, Article . Publication date: September 2025.

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114

HTTPS://ORCID.ORG/0009-0005-0067-2688
HTTPS://ORCID.ORG/0009-0004-2685-0502
HTTPS://ORCID.ORG/0009-0002-2782-1549
HTTPS://ORCID.ORG/0000-0003-0540-7312
HTTPS://ORCID.ORG/0000-0001-5977-8536
HTTPS://ORCID.ORG/0000-0003-2813-2235
https://orcid.org/0009-0005-0067-2688
https://orcid.org/0009-0004-2685-0502
https://orcid.org/0009-0002-2782-1549
https://orcid.org/0000-0003-0540-7312
https://orcid.org/0000-0001-5977-8536
https://orcid.org/0000-0001-5977-8536
https://orcid.org/0000-0003-2813-2235
https://doi.org/10.1145/nnnnnnn.nnnnnnn

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

160
161
162
163

164

166
167
168

169

171

2 + Wangetal

2024; Sztrajman et al. 2021], denoising [Bako et al. 2017; Chaitanya
et al. 2017], and global illumination [Diolatzis et al. 2022; Ren et al.
2024; Zheng et al. 2024]. Even complex and ill-posed problems can be
successfully handled by neural networks, if enough training data is
available for supervised learning. In computer graphics, the problem
of procuring enough training data can often be solved by generat-
ing synthetic images or datasets. With sufficient optimization, the
resulting trained network may be able to run on a GPU at rates that
are competitive to conventional algorithms. For example, NVIDIA
DLSS [Liu 2020] uses a neural network for frame upsampling.

In this paper, we explore the use of a convolutional neural network
(CNN) to compute a from-region PVS. We rasterize the given scene
into a froxel grid, i.e., a frustum-aligned grid expressed in normalized
device coordinates [Evans 2015]. Then, we compute a ground-truth
PVS as another grid in the same space, by sampling visibility from
many viewpoints in the viewcell. Pairs of geometry grid and ground-
thruth PVS are derived from synthetic scenes and used for training.
At inference time, the network predicts the PVS for the scene as
seen from the current viewpoint.

Our approach, called NeuralPVS, makes use of the most recent
refinements to CNN architectures, which rely on sparse and adaptive
convolutions [Peng et al. 2024]. To boost the speed of our network to
real-time performance, we extend the network with 3D interleaving
of the froxelized input data. Our end-to-end training pipeline allows
the model to learn the visibility patterns directly from synthetic
scenes, which consists of basic geometric primitives with varying
complexity and occlusion patterns. The trained network can be
applied to arbitrary scenes without any need for fine-tuning. This
design makes our network a drop-in replacement for a conventional
PVS generator. We also introduce a novel repulsive visibility loss
function that encourages the model to focus on the most relevant
regions and stay away from invisible regions. Our main technical
contributions can be summarized as follows:

e We propose a novel neural network for from-region PVS
computation, which has significantly improved accuracy
and speed compared to existing methods.

e We explore 3D volumetric interleaving and repulsive visi-
bility loss to enhance the efficiency of the neural network,
while preserving the accuracy of visibility estimation.

e We develop a rendering pipeline and application with our
proposed method, which demonstrates the effectiveness of
our approach through extensive experiments on large scenes,
showing that our method outperforms existing state-of-the-
art methods in terms of both accuracy and efficiency.

2 Background

We begin by surveying prior work on PVS computation, distin-
guishing between offline methods and those designed for real-time
execution. We then review recent advances in integrating deep
learning into the traditional graphics pipeline, highlighting how
neural architectures have been employed to solve graphics tasks. Fi-
nally, we discuss contemporary techniques in 3D geometric learning,
particularly those that inform the backbone network architecture
adopted in our work.

, Vol. 1, No. 1, Article . Publication date: September 2025.

2.1 PVS computation

For performance reasons, computing PVS offline for the region is
a common practice to speed up rendering. The space of possible
viewpoints can be subdivided into static viewcells, and the PVS
per viewcell can be computed and stored [Teller and Séquin 1991].
Early offline PVS computation methods are restricted to handling
2.5D geometry [Wonka et al. 2000] and often imposed additional
constraints such as watertight geometry [Schaufler et al. 2000] or
particular data distribution schemes [Cohen-Or et al. 1998]. Sub-
sequent research aimed to remove these restrictions and address
more general geometric scenarios using various techniques based
on rasterization [Bittner et al. 2005; Nirenstein and Blake 2004] or
raytracing [Bittner et al. 2009]. The main problem of offline methods
remains that they can only work with static scenes.

Modern graphics applications, e.g., 3D streaming and dynamic 3D
scenes, call for PVS computation methods that can operate in real
time. From-point methods often rely on depth buffering to test and
store occlusions. For example, rendering engines can use a geometry
pre-pass to establish visible fragments [Burns and Hunt 2013]. If a
full-resolution geometry pre-pass is considered too expensive, an
efficient software rasterizer working at lower resolution [Hassel-
gren et al. 2016] or a hierarchical depth buffer [Greene et al. 1993]
can be used. The latter can be accelerated with hardware occlusion
queries, although the need for GPU synchronization limits scalabil-
ity [Mattausch et al. 2006]. Another approach reduces the required
geometry processing by replacing complex scene geometry with
simpler occlusion proxies [Koltun et al. 2000]. Finding good proxies
is still an active research topic [Tan et al. 2025].

Only a few methods address online computation of a from-region
PVS. Simple solutions can try to heuristically sample multiple pre-
dicted camera positions [Hladky et al. 2022; Mueller et al. 2018;
Reinert et al. 2016], but this approach is not very scalable.

The camera offset space of Hladky et al. [2019] uses per-pixel
linked lists as a scene representation to determine the PVS. Maintain-
ing sorted lists is expensive and difficult to scale to high resolutions.
Koch et al. [2021] use hardware ray-tracing to find visible surfaces.
Their method is stochastic, and its convergence depends on the
speed of the raytracing hardware. Kim and Lee [2023] propose track
disocclusions through depth peeling. Scalability of depth peeling is
limited by the need to repeatedly rasterize the scene. Voglreiter et
al. [2023] combine traversal of a coarse octree in world space with k-
buffering in image space. Peeling octree layers instead of traditional
depth peeling allows them to build the PVS with a single geometry
pass. However, the scalability of their method is still affected by the
need for GPU synchronization after each layer.

Recently, a disocclusion-based approach was proposed [Anony-
mous 2025], introducing the disocclusion buffer as a sparse, layered
representation that allows order-independent and fully parallel com-
putation of PVS, achieving speed-ups with comparable accuracy.
Although both this concurrent work and ours advance PVS gener-
ation, our neural network-based approach will benefit even more
from future GPU advancements, as improved hardware directly
accelerates inference performance.

Our method builds on the observation that visibility can be effi-
ciently expressed in a froxelized view frustum. A froxel grid requires

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285

only one bit per froxel to indicate a disoccluded region. Such a froxel
grid can be built much more efficiently than linked lists, k-buffers
or depth peeling layers. We use the froxel grid as input to a CNN,
which has a run-time cost that is only dependent on the froxel grid
resolution. This resolution is independent of both the target image
resolution and the complexity of the scene.

2.2 Deep learning in graphics

With the ability to learn and model complex mappings, deep learn-
ing is increasingly gaining recognition as a new approach to over-
come bottlenecks in computer graphics because of its predictable
computational cost and speed.

Deep Shading [Nalbach et al. 2017] is one of the earliest works to
introduce a CNN into graphics tasks to compute the shading effect
on pixels from shading buffers. A CNN has also been used to effi-
ciently denoise Monte Carlo rendering [Bako et al. 2017; Chaitanya
et al. 2017]. Similar neural network-based techniques are widely
used in post-processing, such as by DLSS [Liu 2020]. BRDF methods
based on deep learning [Dou et al. 2024; Hu et al. 2020; Sztrajman
et al. 2021] use neural layers to represent BRDF to replace the large
tabulated dataset and can achieve a better trade-off between mem-
ory and quality. Neural global illumination [Diolatzis et al. 2022;
Ren et al. 2024; Zheng et al. 2024] can now compete in quality for
dynamic lighting simulation [Ren et al. 2024] and deliver convincing
results on dynamic geometry [Zheng et al. 2024].

To the best of our knowledge, no existing work addressed visibility
computing with a neural network. In this paper, we will focus on
applying deep learning methods to the field of PVS computation.

2.3 3D geometric learning

Our PVS estimation network combines several key techniques from
3D geometric learning, including sparse 3D convolution and the
latest improvements to the convolutional network design.

Classical 3D convolutional networks [Dai et al. 2017; Tchapmi
et al. 2017] use dense representation to learn 3D geometry patterns.
Dense representations have extremely high memory consumption
and lead to slow inference speed. Most geometric models have
ample empty space and do not require convolutions to be applied
in the empty areas. Therefore, a sparse CNN architecture is usually
preferred for this kind of problem.

Instead of storing the entire space as one tensor, a sparse 3D
convolution network stores its data, the so-called sparse tensor, ei-
ther in an octree [Riegler et al. 2017] or in a hash table [Chen et al.
2022; Choy et al. 2019; Graham and Maaten 2017; Spconv Contrib-
utors 2022]. Sparse 3D convolutions on hash tables are optimized
by placing the kernel center at the activated positions [Graham
and Maaten 2017], dilating to the activated position’s neighbors
[Choy et al. 2019], dynamically dilating the reception field [Chen
et al. 2022], or combinations of these factors [Choy et al. 2019;
Spconv Contributors 2022]. Recent work [Peng et al. 2024] on an
omni-adaptive convolutional neural network (OA-CNN) demon-
strates that advances in transformer networks can be retrofitted to
CNN architectures by adding adaptive receptor fields and a form of
self-awareness. Our method benefits from the speed and efficiency

NeuralPVS: Learned Estimation of Potentially Visible Sets « 3

afforded by these architectures, since a volumetric scene typically
has an occupancy of less than 5% of the froxels.

’

e C

(a) Viewcell

(b) Geometry froxel-grid

Fig. 2. (a) A frustum enclosing all primitives that are potentially visible from
a viewcell (blue area) with radius r around the current viewpoint c is created
by displacing the viewpoint backwards to ¢’. (b) The scene primitives are
conservatively rasterized into a regular grid.

3 Method

Our goal is to significantly improve the performance of PVS com-
putation by replacing previous algorithms operating on analytic
or sampled geometry with a robust neural network operating on a
froxelized scene representation. The network is pre-trained with syn-
thetic geometry grids corresponding to random scenes that loosely
resemble the structure of the target scenes. A key advantage of using
a CNN comes from the fact that converting the polygonal scene into
a froxel grid of fixed resolution makes the time needed to compute
a PVS largely independent of geometric scene complexity. Overall,
our pipeline proceeds as follows (Figure 3):

(1) Viewcell definition: build a geometry grid G by rasterizing
the scene into G

(2) PVS generation: a single forward pass through the neural
network infers the PVS

(3) Novel view synthesis: rasterize only primitives contained
in the PVS

Step 3 is repeated until the camera leaves the current viewcell, then
the process is restarted with step 1.

3.1 Preliminaries

We represent the scene geometry by a grid G(x),x € X, in nor-
malized device coordinates, which is 1 if the froxel at x is occu-
pied, and 0, otherwise. G is defined over a discrete domain X =
[1..Nx] X [1..Ny] X [1..N,], which splits the view frustum into a
grid of discrete froxels.

The potentially visible set can be defined as the union of visible
polygons for all the viewpoints in a cell [Airey et al. 1990]. Based
on the definition, we represent the PVS in volumetric form as a
grid V(x), which is 1 for visible froxels, and 0 otherwise. Let N =
Nx - Ny - N;. Our goal is to learn a mapping from G to the ground-
truth per-froxel visibilities V{0, 11N - {0,1}N. We train a 3D
convolutional network fy that produces per-froxel probabilities and
obtain V = 1(f»(G)), where 1 is an indicator function [V (x) > 7]
with a threshold 7.

, Vol. 1, No. 1, Article . Publication date: September 2025.

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

314

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

369

379

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

4 + Wangetal

Fig. 3. NeuralPVS pipeline. For each viewcell, the scene’s geometry is froxelized into a GV, which is input to the PVS estimator network. A 3D interleaving
function first compresses the GV channels; a CNN then predicts the visible part of the geometry grid; afterwards, a 3D deinterleaving function reconstructs
the full PVS. Geometric primitives in froxels marked invisible in the PVS are culled from all further rendering computations.

3.2 Pre-processing

Our definition of the viewcell 8 (Figure 2a) considers a lateral
motion of the camera from an original viewpoint ¢ up to radius
r [Wonka et al. 2001]. If we assume that the camera has a field of
view of 6, the view frustum ¥ associated with a viewpoint ¢’ dis-
placed backward by r/tan(6/2) encloses the PVS associated with
8. To accommodate camera rotations up to a maximum angle of
on either side, we enlarge the field of view to 6 + 2.

We rasterize the primitives contained in ¥ into a geometry grid
G stored as a 3D texture, according to the concept of froxelization
[Evans 2015]. Each fragment (x, y,z) " in normalized device coordi-
nates is quantized to the froxel coordinates at ([u Ny |, [0 Ny], [w NZJ)T,
and the texture at the corresponding location is set to 1 to indicate an
occupied froxel. To ensure a gap-free rasterization, we supersample
the scene at a resolution of (sNy, sNy, sNz). For storage efficiency,
we pack eight consecutive froxels along the x-axis into an 8-bit
integer using atomic bitwise-OR for concurrent texture writes. For
the ground-truth generation during training, the fragments are gen-
erated using orthographic projections and then reprojected on the
fly into ¥ to ensure a uniform sample distribution across all dis-
tances from the camera. At test time, we prioritize speed and use a
conventional perspective projection to generate the samples for the
geometry grid.

By construction, supp(V(x)) C supp(V), which allows imme-
diate occlusion culling: Any fragment mapping to a froxel where
V = 0 can be discarded. As proposed by Hladky et al. [2019], the
ground truth PVS is computed by dense sampling of the viewcell.
A large number (M = 1000) of viewpoints ¢, € B is selected. For
each viewpoint, the primitives in # are rendered and a depth buffer
is produced. The fragments indicated in the depth buffer are repro-
jected to the coordinate system of ¢, and the corresponding froxels
in G are marked as occupied.

3.3 Neural PVS estimation

Dense volumetric CNN architectures, such as VNet [Milletari et al.
2016], are designed for offline operation, such as segmentation of
medical scans. Even their sparse variants are too slow for applica-
tions in real-time graphics. Therefore, we adopted OA-CNN [Peng
et al. 2024] as a backbone. OA-CNN is built on a highly optimized
kernel for sparse convolution. Furthermore, it introduces adaptive re-
ceptive fields and dynamically adjusts convolutional kernel weights
to deliver performance that reflects modern transformer networks.

, Vol. 1, No. 1, Article . Publication date: September 2025.

The network accepts a geometry grid G as input and provides volu-
metric probabilities V as output. The complete pipeline is described
in Figure 3.

3D volume-preserving interleaving. The CNN inference time com-
plexity is linearly dependent on the resolution of the input features,
while the number of features has less impact on the speed. To further
improve the inference speed, we adopt a 3D volume-preserving inter-
leaving, generalizing the mechanism proposed by Xiao et al. [2018].
As shown in Figure 3, we place an interleaving function g4 before the
convolutional layers and a corresponding de-interleaving function
after the convolutional layers:

V =g3"(fo(9a(G))).

The interleaving function
Nx o Ny _ N,
94 : RNxXNyxNz _, RTXTyXTZ
takes as input a grid of Ny X Ny X N froxels. It divides the grid into
blocks of dimension d X d X d and stacks the froxels in a block into
a one-dimensional feature vector. The de-interleaving function

Ny N,
ggl:R%XTyxf_)RNxxNnyz

inverts this process. We choose d € {8, 16,32} for optimal memory
alignment. A value d < 8 is not practical, as the setup overhead
becomes too high [Xiao et al. 2018]. The interleaving preserves the
relative positional information of the geometry, while shrinking the
dimension of the input by a factor of d>. For the typical setup of
d = 16, the first convolution step after interleaving further shrinks
the size of each input vector from d* to around 200 elements, leading
to a significantly reduced processing time.

Weighted Dice loss. We adopt a weighted Dice loss, which weighs
false negatives (FN) much more strongly than false positives (FP)
by a factor «. In our context, false negatives are froxels included in
the ground truth PVS, but missing from the predicted PVS. False
positives are froxels not included in the ground truth, but included in
the predicted PVS. True positives (TP) are froxels which are included
both in the ground truth and the predicted PVS, and ground truth
positives (GTP) are all froxels marked in the ground truth V:

TP(V,V) = z V(x)-V(x), FP(V,V) = Z V(x) - (1-V(x),

xeX xeX

EN(V,V) = 2(1 -V(x)-V(x), GTP(V) = Z V(x).

xeX xeX

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
4438
449
450

452

453

454

456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

494

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

513

NeuralPVS: Learned Estimation of Potentially Visible Sets « 5

l, \\ g \1 [’

1 [[

1 ['

1 ['

1 ['

1 1 : 1

| | ol

1 [1

1 [1

1 ['

1 ['

1 [1

1 [1

" Basic object J Object with hole) ' Multi-face object

\ ___________________ g
)
\ 4

Scene init: Floor & wall init: Camera init:
Randomly pick Pick & extreme stretch Randomly above floor

Fig. 4. The pipeline of our proposed synthetic 3D data generation. To ensure the data distribution diversity, we applied a multi-step scene generation strategy

in order to cover as many occlusion patterns as possible.

Following the definition of Taha and Hanbury [2015], our modified
Dice loss is given as
2 TP(V,V)

Ldice(V: V) =1- = = —.
2TP(V,V) + aFP(V,V) + (1 — a)FN(V, V)

Repulsive visibility loss. Our training data is necessarily very im-
balanced, because the number of visible froxels in real scenes is
usually between 0.5% and 10% and can vary significantly between
scenes and viewpoints. This imbalance makes it difficult to achieve
convergence, as the network can easily get stuck in a local mini-
mum during training. The conditioning to avoid high false negative
counts can lead to overprediction of visibility, or the network never
leaves the initial state.

To overcome these imbalance issues, we propose a repulsive visi-
bility loss (RVL) inspired by the work of Wang et al. [2018]. Unlike
Dice loss, which globally supervises all froxels, RVL aggressively
encourages only prediction in local grids where V = 1 to match the
overall distribution of FN/FP. This loss is given as

FN _ PP
ﬁ, -Crep = ﬁ,
where L4, attracts the prediction to match the ground truth, and
Lyep pushes the prediction away from non-visible areas. We train
the model by minimizing a combination of L., and L,,:

L= Laice(V,V) + (1= 1) - Lro(V, V).

Lro = Lapr + Lrep, Lattr =1-

4 Implementation
4.1 Datasets

The training dataset must include a wide range of geometric vari-
ations to ensure generalization. To achieve this, we use synthetic
data. We randomly place selected objects at varying frequencies and
apply random scales and rotations with a consistent distribution
across the local object dimensions (Figure 4). Each training set is
composed of 1,000 frames.

Our objects consist of primitive and complex shapes, including
cubes, cones, pyramids, cylinders, dodecahedrons, icosahedrons,
and round arches, as well as the monkey head model from Blender,
a wall with a door-shaped cutout, and a cube with a square hole

resembling a window. To simulate architectural structures such
as walls, floors, and ceilings, we scale certain objects significantly
along two of their three dimensions. Finally, we introduce planes
that serve as a global base for the floor, wall, and ceiling, extending
across the scene. These planes are initialized to ensure that they
remain visible within the viewcell. The viewcell is initialized at the
center of the scene, positioned above the floor at a random height,
and randomly rotated for variations.

We generate evaluation datasets using widely used scenes, such
as Viking Village and Robot Lab, for comparison with previous
work. For both the training and evaluation sets, we create pairs of a
geometry grid and ground-truth PVS (Section 3.2).

4.2 Training and evaluation

Our neural network implementation is based on OA-CNN [Pointcept
Contributors 2023] (see supplementary material for details). For
performance reasons, we use an aspect ratio of 1:1 for our viewport.
Specifically, we test grid resolutions of A X A X A with A = 256 and
a viewcell size r € {30 cm, 60 cm, 90 cm}.

All training was performed on an Oracle Linux 7.9 server with
2 AMD EPYC 7662, 1 TB RAM, and 4 NVIDIA A100 SXM4 GPU;
only one GPU was used for training. All evaluations were run on a
desktop computer running Oracle Linux 9.5, equipped with AMD
Ryzen 9 7900X, 64 GB RAM, and an NVIDIA RTX 5090 GPU. We
optimized the model using 4 = 0.99, with an initial learning rate
0.001, learning rate decay rate 10~1°, and batch size 3. We performed
200 epochs of training, which took approximately 15 hours for our
setup. We used 7 = 0.5 throughout all experiments.

4.3 Rendering

We use Unity’s Universal Rendering Pipeline (URP) version 17.0 for
all rendering tasks. The main camera is configured with a resolution
of 1024x1024 pixels, a field of view (FOV) of 60°, a near plane of
0.3 m, and a far plane of 1000 m. For the rendering of GV and PVS,
we employ a wider FOV of 90° to account for up to 15° of camera
rotation within a viewcell. To avoid visibility gaps, we render these
buffers at a higher resolution of 2048x2048.

, Vol. 1, No. 1, Article . Publication date: September 2025.

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

552

559

561
562
563
564
565
566
567
568
569
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

627

6 « Wangetal.

0.035
FPR mFNR
0.03
0.025
0.02
0.015
0.01
= kWl b Wl
, M in
30 60 90 30 60 90 30 60 90 30 60 90 30 60 90
Viking Village Big City Industrial Set RobotLab Sponza

(a) Performance metrics for various viewcell size on different scenes. The
horizontal axis is grouped by viewcell size r € 30 cm, 60 cm, 90 cm for each
scene. Given that our network uses a fixed geometry grid size, performance
remains relatively insensitive to changes in r.

0.035

FPR mFNR
0.03
0.025
0.02
0.015
0.01
> Wl i ol ol
. Wi |
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32
Viking Village Big City Industrial Set RobotLab Sponza

(b) Froxel space performance metrics for various interleaving grid size d on
different scenes. The horizontal axis is grouped by viewcell size d € 8, 16,32
for each scene. The performance is affected by changes in d; setting d = 16
gives the overall best performance.

Fig. 5. Performance for different viewcell sizes and interleaving (Section 3.3)
grid sizes. All metrics were averaged over the entire frame sequence.

The predicted view frustum spans up to a threshold (empirically
chosen at 30 m). For distances larger than the threshold, we render
the far-field scene geometry into a visibility buffer once when the
PVS is created, and add the geometry indicated in the ID attachment
of the visibility buffer to the PVS directly. This optimization allows
the CNN to focus its predictive power in the near- and mid-ranges,
where disocclusions are expected. The ground truth PVS is sampled
using 1000 evenly distributed camera positions per viewcell.

5 Results

We evaluate our method on two indoor scenes (Sponza, Robot Lab)
and three outdoor scenes (Viking Village, Big City, Industrial Set
v3.0), as illustrated in Figure 8. For each scene, we render a 60-second
animation at 60 Hz along a pre-recorded camera path, resulting in
3600 frames per scene.

5.1 Performance metrics

To evaluate the performance of the PVS estimation, we define
the false negative rate FNR=FN/GTP (]), the false positive rate

, Vol. 1, No. 1, Article . Publication date: September 2025.

20
15
10
5
0
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32
Viking Village Big City Industrial Set RobotLab Sponza
600
400
200
0
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32
Viking Village Big City Industrial Set RobotLab Sponza

Fig. 6. (a) Average inference time (ms) and (b) average peak allocated mem-
ory (MB) for different interleaving factors d = {8, 16,32}.

Ours mTR
0.047
0.038
=4 0.019 0.022
E 0.004 - 0.005 0.006 0.006 .
Viking Village RobotLab Sponza Big City
3.45
2.32
2
K]
g 0.65 0.60 (.45 0.61 0.6 0.64
-_— |
Viking Village RobotLab Sponza Big City

Fig. 7. Comparison of FNR and FPR (false positive as a multiple of the
ground truth) between our results and baseline TR [Voglreiter et al. 2023].
In general, our method produces better FNR, similar or better FPR.

Table 1. Image space performance metrics SSIM for various interleaving
grid size d on different scenes.

Scenes SSIM T
d=8 d=16 d=32
Viking Village 0.9990 0.9996 0.9985
City 0.9991 0.9988 0.9972
Industrial 0.9963 0.9963 0.9996
Robot Lab 0.9985 0.9984 0.9995
Sponza 0.9998 0.9981 0.9913

FPR=FP/GTP (|) and the pixel error rate PER (|) for comparison
with previous work. The pixel error rate reports the pixels showing
incorrect primitives because of primitives missed in the PVS. It is
computed as a fraction of the screen resolution and averaged over a
sequence of frames through the scene. Moreover, we render shaded
scenes from the PVS and the original geometry and compare the
results using SSIM (T) [Wang et al. 2004], which considers local
luminance, contrast, and structure over a sliding window.

628
629
630

631

633
634
635
636
637
638

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

NeuralPVS: Learned Estimation of Potentially Visible Sets « 7

685 Table 2. Comparison of time (ms), memory (MB) and pixel error rate (PER) between our
636 method and Trim Regions [Voglreiter et al. 2023]. "Ours" uses r = 30, d = 16 and "Ours*" uses
r =30,d = 8 to reduced memory. Pixel error comparison between our method and baseline
TR [Voglreiter et al. 2023]. Although the baseline has better PER, SSIM comparisons on the

Table 3. Ablation study on Viking Village. We use r = 30, d = 742
16. For "No OA-CNN" and "VNet", VNet [Milletari et al. 2016] 743
is used instead of OA-CNN. Time and memory for "No RVLoss"
is omitted because the loss does not affect the performance of

687 744

688 745

o image confirm that the errors are minor and almost unnoticeable by humans. inference. e
690 747
601 Seene ms] MB| PER/%| SSIMT FNR| FPR| ms| MB] 115
092 Ours TR ‘ Ours Ours* TR ‘ TR Ours Ours Ours 0.00368 0.01683 10.1 328.8 749
693 750
o Viking 99 1193|3288 2937 359.2 | 0.006 0.032 0.999 E" glgercl:‘;\’]e 0.00227°0.01940 254 10762 .
. RobotLab 9.9 17.2 | 3180 2851 4838 | 0.030 0255 0.9984 e g'géigg g'gig;; 1905098 -
oo Sponza 101 17.8 | 3234 2920 563.9 | 0.021 0.151 0.9981 V; 088 : : - R s
City 103 164 | 3335 2953 3305 | 0.006 0.142 0.9988 et 0.03235 001771 3264 21359

697 754

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

Viking Village (7.2M)

Big City (15.7M)

Industrial Set v3.0 (0.1M)

Robot Lab (0.5M) Sponza (0.3M)

Fig. 8. The five test scenes used in our evaluation, shown with their respective primitive counts.

Figure 9 shows the metrics for an animated camera path of 3,600
frames in the Viking village scene. For keyframes such as the best
and the worst case of FNR, the rendering results of the computed
PVS are shown to better illustrate the performance of the method.
As indicated by the metrics and the rendered images, our method is
robust in handling different geometry distributions and occlusion
relations in the complex scene, with even the worst case in this
challenging scene exhibiting only a small amount of pixel errors.
The corresponding SSIM value confirm our observation that the
error is usually unnoticeable to humans.

Figure 5a shows the evaluation results on all scenes with different
viewcell sizes r. We find that r = 30 cm gives the best performance
in all scenes, while r = 60 cm has a slightly higher false negative
rate. A potential explanation is that the size of the viewcell affects
the subdivided grid shape in the geometry grid, where a too small
grid size likely breaks the global geometry structure and causes the
loss of global information, while a too large grid size makes it harder
to learn the local structures within the grid.

Figure 5b shows the evaluation results on all scenes with different
interleaving grid size d. With different d on the same scene, the
performance can vary significantly. Choosing d = 16 gives the
best performance in most scenes. With a too large interleaving
factor d, too few elements remain after downsampling in the CNN,
which may cause the network to overfit and has a negative effect on
performance. For smaller d, more elements remain after interleaving;
assuming the same training period, the false negative will be higher
due to greater difficulties of converging.

Table 1 shows the SSIM of all scenes with different d. SSIM is
always very close to 1, which indicates that the rendering quality
is very good. Additional perceptual (ALIP [Andersson et al. 2020])
and temporal metrics (VMAF [Li et al. 2016], CGVQM [Jindal et al.
2025]) are provided in the supplementary material, all confirming
a similarly strong performance. Note that all our test scenes are
completely unknown to the CNN, which is exclusively trained on
purely synthetic scenes with simple, randomly generated geometries.
Results show that our method is highly robust and generalizable
to different and unknown data patterns while providing reliable
estimation quality.

5.2 Speed and memory

We measure the runtime speed and memory in various scenes with
different viewcell sizes. Section 4.3 presents the inference time per
frame with the overall statistics and breakdown time per stage, in-
cluding interleaving, CNN inference, and deinterleaving. The overall
time per frame remains at approximately 10 ms (100 Hz), despite
the scene scale and geometry variations. This makes our method
more efficient than a naive depth pre-pass, which is 1.5 ms slower in
our experiments after both methods are averaged between frames.

Following the argument of Voglreiter et al. [2023], a running
speed of 3 m/s translates into 5 cm/s camera movement at 60 Hz. At
this speed of camera motion, the PVS is valid for 6 frames (100 ms),
when r=30 cm, and, for 18 frames (300 ms) when r=90 cm. Amortized
over these valid periods, the PVS inference only takes approximately
3.3% of the computation time for an application that generates new
frames at a rate of 60 Hz. Therefore, we can assume that our method

, Vol. 1, No. 1, Article . Publication date: September 2025.

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

8 + Wangetal

0.996

0.992
: I FNR FPR
0.024

0.02
0.016
0.012

0.008

PER=0, SSIM=1

PER=0.032%, SSIM=0.9965 PER=1.95e-5%, SSIM=0.9999

PER=1.45e-3%, SSIM=0.9998

VLT T

PER M ssm

s

PER=0.075%, SSIM=0.9930 PER=9.76e-6%, SSIM=0.9999

Fig. 9. Per-frame PVS estimation performance with key frames images of the Viking Village scene. The sequence has 1800 frames in total, with 410 frames of
PVS computed shown in the figure. The error pixels of the key frames are marked in red on the rendered image.

is very well suited for frame extrapolation or streaming applications
in terms of speed.

Figure 5 shows the time and peak memory allocated during infer-
ence. The adaptive relation convolution of OA-CNN will use more
parameters if we add more feature channels, leading to increased
inference time and memory usage when we use an interleaving fac-
tor of d = 32. Although memory requirements can vary depending
on the occupancy rate of the input G(x), the memory consumption
is largely insensitive to scene geometry, as long as the viewcell con-
figuration remains unchanged. The sparse tensor ensures that only
the positions where geometry exists will be recorded in memory.
Consequently, there is no memory overhead for empty grids.

5.3 Comparisons to the state of the art

To the best of our knowledge, the trim region method of Voglreiter
et al. [2023] is the fastest to date for from-region PVS computation.
We compare our results with those reported in the original paper.
For a fair comparison, we run an experiment using the same GPU
(NVIDIA RTX 4090) and the same scenes as ours, kindly provided
by the authors. Figure 7 shows the comparisons of metrics in these
scenes, namely, Viking Village, Robot Lab, Sponza, and Big City.
Table 2 shows the speed and memory comparisons on these scenes.

Our method outperforms trim regions with respect to per-frame
processing speed. The trim region method delivers 57 Hz (18 ms)
per frame on average, while we achieve over 100 Hz (10 ms) on
average (an improvement of 76%). We also obtain better quantitative
performance, with significantly smaller false negatives and similar
or better false positive rates. Compared to trim regions, our method
has 83.8% less FNR and 63.4% less FPR on average. Although our

, Vol. 1, No. 1, Article . Publication date: September 2025.

PER is slightly higher, the overall image quality is not noticeably
affected, as shown by the SSIM column in Table 2.

5.4 Ablation studies

To evaluate the effectiveness of the OA-CNN network and the in-
terleaving function, we carried out experiments on the classical
CNN backbone VNet [Milletari et al. 2016] baseline and the original
OA-CNN model with and without the interleaving function, as well
as with and without RVL. Results are shown in Table 3.

The model trained without RVL has a significantly higher false
positive rate, which means that it simply predicts (almost) the whole
scene to be visible. The result shows that RVL is crucial in prevent-
ing the network from overfitting to the local minimum, and thus
maintains a better balance between minimal FNR and reasonable
FPR. Our results indicate that the interleaving function is the key to
efficient inference. Its use increases the inference rate from 39 Hz
to 100 Hz (2.5% speed-up) at 70% reduced memory usage.

The OA-CNN backbone is crucial for the performance of the net-
work. Replacing OA-CNN with VNet leads to with 15% increased
FNR, while the FPR is almost unaffected. OA-CNN also contributes
to decreasing inference time and memory usage. Without the inter-
leaving function and OA-CNN backbone, a completely naive VNet
network is too slow for real-time applications.

5.5 Challenging cases

To better understand the limitations of our method, we list some typ-
ical challenging cases in Figure 10. Like classical heuristic methods,
the neural network also finds it harder to precisely estimate PVS in
edge cases involving complex occlusion relationships (for example,

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

912

945
946
947
9438
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

NeuralPVS: Learned Estimation of Potentially Visible Sets « 9

Fig. 10. Challenging situations for NeuralPVS model. left column: Multi-layer occlusion from Viking Village scene, 1104 false negative pixels. center column:
complex occlusion structure from Industrial scene, 1152 false negative pixels. right column: almost occluded background from Sponza scene, 1102 false negative

pixels.

multiple thin occluders in the left column). In the center column,
the structure of the metal fence is not covered by our synthetic
dataset and thus causes pixel errors. Further geometry has a lower
resolution due to the geometry grid generation process, far-away
geometry has a larger chance of getting misestimated, as shown in
the right column. Moreover, machine learning methods are always
dependent to some degree on the training data. While we found
our randomized synthetic training set robust for a wide variety of
scenes, fine-tuning our method for specific scenes can potentially
help minimize errors.

5.6 Dynamic scenes

Since our view cell is defined purely in space, visibility changes
caused by a dynamic object require special treatment. A simple
approach unconditionally adds all dynamic objects to the PVS after
visibility computation. However, this approach does not consider
dynamic objects as occluders or occludees. While the first case —
dynamic occluders - is likely too complicated to yield a speed-up,
the second case — dynamic occludees - is rather simple to exploit. We
construct a temporal bounding volume (TBV) for the moving object,

A/_/‘ @//

i~

¢ —'-o’tl

TBVinvisivle

TBVyisibie

Viewcell

Fig. 11. Dynamics scenes visibility computation with temporal bounding
volumes. The yellow vehicle is visible during the period of time #; to t1,
while the grey vehicle is invisible.

which conservatively encloses the object during the predicted period
(Figure 11). At runtime, the TBV is froxelized and tested against the
froxelized PVS. If no froxel occupied by the TVB is deemed visible,
the dynamic object can be pruned.

6 Conclusion and future work

We have presented a novel approach to compute from-regions po-
tentially visible sets using a convolutional neural network. Our
proposed method applies the OA-CNN network design with an

, Vol. 1, No. 1, Article . Publication date: September 2025.

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

1050

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083

10 « Wangetal.

additional interleaving function and a repulsive visibility loss to
perform end-to-end estimation of the PVS. Our method achieves
high accuracy and fast inference.

We see several directions for future work. With the development
of deep learning, adopting a more featured network design would
potentially bring better accuracy, while balancing the computa-
tional cost could be challenging. Moreover, additional spatial data
structures, such as octrees or hash grids, might bring about further
improvements in both performance and speed. We also consider
replacing the simple froxelization with a more advanced different
feature representation of the local geometry. Finally, it is natural
to expect some performance gain by introducing neural methods
to other rendering tasks related to visibility, e.g. radiance transfer,
shadow rendering, and global illumination.

Acknowledgements. This work was supported by the Alexander
von Humboldt Foundation funded by the German Federal Ministry
of Research, Technology and Space, the German Research Founda-
tion DFG (grant 528364066, SFB TRR161), and the Austrian Science
Fund FWF (grant 16663). The authors thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS) for sup-
porting Xiangyu Wang.

References

John M. Airey, John H. Rohlf, and Frederick P. Brooks. 1990. Towards image realism with
interactive update rates in complex virtual building environments. In Proceedings
of the 1990 Symposium on Interactive 3D Graphics - SI3D ’90. ACM Press, Snowbird,
Utah, United States, 41-50. doi:10.1145/91385.91416

Pontus Andersson, Jim Nilsson, Tomas Akenine-Moller, Magnus Oskarsson, Kalle
Astrom, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020), 15:1-15:23. doi:10.
1145/3406183

Anonymous. 2025. Title Withheld for Anonymous Review. Anonymous submission.

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NovaK, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-
lutional networks for denoising Monte Carlo renderings. ACM Transactions on
Graphics 36, 4 (Aug. 2017), 1-14. doi:10.1145/3072959.3073708

Jifi Bittner, Oliver Mattausch, Peter Wonka, Vlastimil Havran, and Michael Wimmer.
2009. Adaptive global visibility sampling. ACM Trans. Graph. 28, 3 (2009), 94:1-94:10.
doi:10.1145/1531326.1531400

Jifi Bittner, Peter Wonka, and Michael Wimmer. 2005. Fast exact from-region visibility
in urban scenes. In Proceedings of the Sixteenth Eurographics Conference on Rendering
Techniques (EGSR ’05). Eurographics Association, Goslar, DEU, 223-230.

Christopher A Burns and Warren A Hunt. 2013. The visibility buffer: a cache-friendly
approach to deferred shading. Journal of Computer Graphics Techniques (JCGT) 2, 2
(2013), 55-69.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-
tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Trans. Graph. 36, 4 (2017), 98:1-98:12. doi:10.1145/3072959.3073601

Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and Jiaya Jia. 2022. Fo-
cal sparse convolutional networks for 3d object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5428—
5437. http://openaccess.thecvf.com/content/CVPR2022/html/Chen_Focal _Sparse_
Convolutional Networks_for_3D_Object_Detection_CVPR_2022_paper.html

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4d spatio-temporal
convnets: Minkowski convolutional neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3075-3084. http:
//openaccess.thecvf.com/content_ CVPR_2019/html/Choy_4D_Spatio-Temporal
ConvNets_Minkowski_Convolutional_Neural Networks_CVPR_2019_paper.html

D. Cohen-Or, Y.L. Chrysanthou, C.T. Silva, and F. Durand. 2003. A survey of visibility
for walkthrough applications. IEEE Transactions on Visualization and Computer
Graphics 9, 3 (July 2003), 412-431. doi:10.1109/TVCG.2003.1207447

Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. 1998. Conservative
Visibility and Strong Occlusion for Viewspace Partitioning of Densely Occluded
Scenes. Computer Graphics Forum 17, 3 (1998), 243-253. doi:10.1111/1467-8659.00271

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Niefiner. 2017. Scannet: Richly-annotated 3d reconstructions of indoor

, Vol. 1, No. 1, Article . Publication date: September 2025.

scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 5828-5839. http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_
ScanNet_Richly-Annotated_3D_CVPR_2017_paper.html

Stavros Diolatzis, Julien Philip, and George Drettakis. 2022. Active Exploration for
Neural Global Illumination of Variable Scenes. ACM Trans. Graph. 41, 5 (2022),
171:1-171:18. doi:10.1145/3522735

Yishun Dou, Zhong Zheng, Qiaogiao Jin, Bingbing Ni, Yugang Chen, and Junxiang Ke.
2024. Real-Time Neural BRDF with Spherically Distributed Primitives. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4337~
4346. http://openaccess.thecvf.com/content/CVPR2024/html/Dou_Real-Time_
Neural_BRDF_with_Spherically_Distributed_Primitives_CVPR_2024_paper.html

Frédo Durand, George Drettakis, and Claude Puech. 2002. The 3D visibility complex.
ACM Transactions on Graphics 21, 2 (April 2002), 176-206. doi:10.1145/508357.508362

Epic Games. 2022. Precomputed Visibility Volumes. https://docs.unrealengine.com/5.
1/en-US/precomputed-visibility-volumes-in-unreal-engine/

Alex Evans. 2015. Learning from Failure: a Survey of Promising, Unconventional and
Mostly Abandoned Renderers for ‘Dreams PS4’, a Geometrically Dense, Painterly
UGC Game’. https://advances.realtimerendering.com/s2015/

Benjamin Graham and Laurens van der Maaten. 2017. Submanifold Sparse Convolu-
tional Networks. doi:10.48550/arXiv.1706.01307 arXiv:1706.01307 [cs].

Ned Greene, Michael Kass, and Gavin Miller. 1993. Hierarchical Z-buffer visibility.
In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’93). Association for Computing Machinery, New York, NY,
USA, 231-238. doi:10.1145/166117.166147

Jon Hasselgren, Magnus Andersson, and Tomas Akenine-Moller. 2016. Masked Soft-
ware Occlusion Culling. In Eurographics/ ACM SIGGRAPH Symposium on High
Performance Graphics, Ulf Assarsson and Warren Hunt (Eds.). The Eurographics
Association. doi:10.2312/hpg.20161189 ISSN: 2079-8679.

Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger. 2019. The camera offset space:
real-time potentially visible set computations for streaming rendering. ACM Trans.
Graph. 38, 6 (2019), 231:1-231:14. do0i:10.1145/3355089.3356530

Jozef Hladky, Michael Stengel, Nicholas Vining, Bernhard Kerbl, Hans-Peter Seidel, and
Markus Steinberger. 2022. QuadStream: A Quad-Based Scene Streaming Architecture
for Novel Viewpoint Reconstruction. ACM Transactions on Graphics 41, 6 (Dec. 2022),
1-13. doi:10.1145/3550454.3555524

Bingyang Hu, Jie Guo, Yanjun Chen, Mengtian Li, and Yanwen Guo. 2020. DeepBRDF: A
Deep Representation for Manipulating Measured BRDF. Computer Graphics Forum
39, 2 (2020), 157-166. doi:10.1111/cgf.13920

Akshay Jindal, Nabil Sadaka, Manu Mathew Thomas, Anton Sochenov, and Anton
Kaplanyan. 2025. CGVQM+D: Computer Graphics Video Quality Metric and Dataset.
d0i:10.48550/arXiv.2506.11546 arXiv:2506.11546 [cs].

Janghun Kim and Sungkil Lee. 2023. Potentially Visible Hidden-Volume Rendering for
Multi-View Warping. ACM Transactions on Graphics 42,4 (2023). doi:10.1145/3592108

Thomas Koch and Michael Wimmer. 2021. Guided Visibility Sampling++. Proceedings
of Computer Graphics and Interactive Techniques 4, 1 (2021). doi:10.1145/3451266
Place: New York.

Vladlen Koltun, Yiorgos Chrysanthou, and Daniel Cohen-Or. 2000. Virtual Occluders:
An Efficient Intermediate PVS representation. In Rendering Techniques 2000, Bernard
Péroche and Holly Rushmeier (Eds.). Springer, Vienna, 59-70. doi:10.1007/978-3-
7091-6303-0_6

Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha Manohara.
2016. Toward a practical perceptual video quality metric, 2016. Netflix Techblog
(2016). https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-
metric-653f208b9652

Edward Liu. 2020. DLSS 2.0 - Image Reconstruction for Real-Time Rendering with
Deep Learning. https://developer.download.nvidia.com/video/gputechconf/gtc/
2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-
with-deep-learning.pdf Published: GPU Technology Conference (Session $22698),
NVIDIA.

Oliver Mattausch, Jiri Bittner, and Michael Wimmer. 2006. Adaptive Visibility-Driven
View Cell Construction. The Eurographics Association. https://doi.org/10.2312/
EGWR/EGSR06/195-205 ISSN: 1727-3463.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. 2016. V-Net: Fully Convolu-
tional Neural Networks for Volumetric Medical Image Segmentation. In International
Conference on 3D Vision. arXiv, 565-571. doi:10.1109/3DV.2016.79 shortConference-
Name: 3DV.

Joerg H. Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar, Markus
Steinberger, and Dieter Schmalstieg. 2018. Shading Atlas Streaming. ACM Transac-
tions on Graphics 37, 6 (Dec. 2018). doi:10.1145/3272127.3275087 Place: New York
Publisher: Association for Computing Machinery.

O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P. Seidel, and T. Ritschel. 2017. Deep
Shading: Convolutional Neural Networks for Screen Space Shading. Computer
Graphics Forum 36, 4 (2017), 65-78. doi:10.1111/cgf.13225

S. Nirenstein and E. Blake. 2004. Hardware Accelerated Visibility Preprocessing using
Adaptive Sampling. The Eurographics Association. https://doi.org/10.2312/EGWR/
EGSR04/207-216 ISSN: 1727-3463.

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

1140

https://doi.org/10.1145/91385.91416
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/1531326.1531400
https://doi.org/10.1145/3072959.3073601
http://openaccess.thecvf.com/content/CVPR2022/html/Chen_Focal_Sparse_Convolutional_Networks_for_3D_Object_Detection_CVPR_2022_paper.html
http://openaccess.thecvf.com/content/CVPR2022/html/Chen_Focal_Sparse_Convolutional_Networks_for_3D_Object_Detection_CVPR_2022_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.html
https://doi.org/10.1109/TVCG.2003.1207447
https://doi.org/10.1111/1467-8659.00271
http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_ScanNet_Richly-Annotated_3D_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_ScanNet_Richly-Annotated_3D_CVPR_2017_paper.html
https://doi.org/10.1145/3522735
http://openaccess.thecvf.com/content/CVPR2024/html/Dou_Real-Time_Neural_BRDF_with_Spherically_Distributed_Primitives_CVPR_2024_paper.html
http://openaccess.thecvf.com/content/CVPR2024/html/Dou_Real-Time_Neural_BRDF_with_Spherically_Distributed_Primitives_CVPR_2024_paper.html
https://doi.org/10.1145/508357.508362
https://docs.unrealengine.com/5.1/en-US/precomputed-visibility-volumes-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/precomputed-visibility-volumes-in-unreal-engine/
https://advances.realtimerendering.com/s2015/
https://doi.org/10.48550/arXiv.1706.01307
https://doi.org/10.1145/166117.166147
https://doi.org/10.2312/hpg.20161189
https://doi.org/10.1145/3355089.3356530
https://doi.org/10.1145/3550454.3555524
https://doi.org/10.1111/cgf.13920
https://doi.org/10.48550/arXiv.2506.11546
https://doi.org/10.1145/3592108
https://doi.org/10.1145/3451266
https://doi.org/10.1007/978-3-7091-6303-0_6
https://doi.org/10.1007/978-3-7091-6303-0_6
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
https://doi.org/10.2312/EGWR/EGSR06/195-205
https://doi.org/10.2312/EGWR/EGSR06/195-205
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1145/3272127.3275087
https://doi.org/10.1111/cgf.13225
https://doi.org/10.2312/EGWR/EGSR04/207-216
https://doi.org/10.2312/EGWR/EGSR04/207-216

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1197

Bohao Peng, Xiaoyang Wu, Li Jiang, Yukang Chen, Hengshuang Zhao, Zhuotao Tian,
and Jiaya Jia. 2024. OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Seg-
mentation. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, Seattle, WA, USA, 21305-21315. doi:10.1109/CVPR52733.2024.02013

Pointcept Contributors. 2023. Pointcept: a codebase for point cloud perception research.
https://github.com/Pointcept/Pointcept

Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo, David Chu, and
Hans-Peter Seidel. 2016. Proxy-guided Image-based Rendering for Mobile Devices.
Computer Graphics Forum 35, 7 (Oct. 2016), 353-362. doi:10.1111/cgf.13032

Haocheng Ren, Yuchi Huo, Yifan Peng, Hongtao Sheng, Weidong Xue, Hongxiang
Huang, Jingzhen Lan, Rui Wang, and Hujun Bao. 2024. LightFormer: Light-Oriented
Global Neural Rendering in Dynamic Scene. ACM Trans. Graph. 43, 4 (2024), 75:1-
75:14. doi:10.1145/3658229

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. Octnet: Learning deep 3d
representations at high resolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 3577-3586. http://openaccess.thecvf.com/content
cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html

Gernot Schaufler, Julie Dorsey, Xavier Decoret, and Francois X. Sillion. 2000. Conser-
vative volumetric visibility with occluder fusion. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques (SSIGGRAPH *00). ACM
Press/Addison-Wesley Publishing Co., USA, 229-238. doi:10.1145/344779.344886

Spconv Contributors. 2022. Spconv: Spatially Sparse Convolution Library. https:
//github.com/traveller59/spconv

Alejandro Sztrajman, Gilles Rainer, Tobias Ritschel, and Tim Weyrich. 2021. Neural
BRDF Representation and Importance Sampling. Computer Graphics Forum 40, 6
(2021), 332-346. doi:10.1111/cgf.14335

Abdel Aziz Taha and Allan Hanbury. 2015. Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC Medical Imaging 15, 1 (Aug. 2015),
29. doi:10.1186/s12880-015-0068-x

Zhipeng Tan, Yongxiang Zhang, Fei Xia, and Fei Ling. 2025. Differentiable Rendering
based Part-Aware Occlusion Proxy Generation. Computer Graphics Forum 44, 2
(2025), €70077. doi:10.1111/cgf.70077

NeuralPVS: Learned Estimation of Potentially Visible Sets « 11

Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese.
2017. Segcloud: Semantic segmentation of 3d point clouds. In 2017 International
Conference on 3D Vision (3DV). IEEE, 537-547. https://ieeexplore.icee.org/abstract/
document/8374608/

Seth J. Teller and Carlo H. Séquin. 1991. Visibility preprocessing for interactive walk-
throughs. In Proceedings of the 18th Annual Conference on Computer Graphics and
Interactive Techniques (SSIGGRAPH '91). Association for Computing Machinery, New
York, NY, USA, 61-70. doi:10.1145/122718.122725

Philip Voglreiter, Bernhard Kerbl, Alexander Weinrauch, Joerg Hermann Mueller,
Thomas Neff, Markus Steinberger, and Dieter Schmalstieg. 2023. Trim Regions
for Online Computation of From-Region Potentially Visible Sets. ACM Transactions
on Graphics 42, 4 (Aug. 2023), 1-15. doi:10.1145/3592434

Xinlong Wang, Tete Xiao, Yuning Jiang, Shuai Shao, Jian Sun, and Chunhua Shen. 2018.
Repulsion Loss: Detecting Pedestrians in a Crowd. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, UT, 7774-7783.
doi:10.1109/CVPR.2018.00811

Zhou Wang, A.C. Bovik, HR. Sheikh, and E.P. Simoncelli. 2004. Image quality as-
sessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (April 2004), 600-612. doi:10.1109/TIP.2003.819861

Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. 2000. Visibility Preprocess-
ing with Occluder Fusion for Urban Walkthroughs. In Rendering Techniques 2000,
Bernard Péroche and Holly Rushmeier (Eds.). Springer, Vienna, 71-82. doi:10.1007/
978-3-7091-6303-0_7

Peter Wonka, Michael Wimmer, and Francois X. Sillion. 2001. Instant Visibility. Com-
puter Graphics Forum 20, 3 (2001), 411-421. doi:10.1111/1467-8659.00534

Lei Xiao, Anton Kaplanyan, Alexander Fix, Matthew Chapman, and Douglas Lan-
man. 2018. DeepFocus: learned image synthesis for computational displays. ACM
Transactions on Graphics 37, 6 (Dec. 2018), 1-13. doi:10.1145/3272127.3275032

Chuankun Zheng, Yuchi Huo, Hongxiang Huang, Hongtao Sheng, Junrong Huang,
Rui Tang, Hao Zhu, Rui Wang, and Hujun Bao. 2024. Neural Global Illumination
via Superposed Deformable Feature Fields. In SIGGRAPH Asia 2024 Conference
Papers (SA "24). Association for Computing Machinery, New York, NY, USA, 1-11.
doi:10.1145/3680528.3687680

, Vol. 1, No. 1, Article . Publication date: September 2025.

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

1254

https://doi.org/10.1109/CVPR52733.2024.02013
https://github.com/Pointcept/Pointcept
https://doi.org/10.1111/cgf.13032
https://doi.org/10.1145/3658229
http://openaccess.thecvf.com/content_cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html
https://doi.org/10.1145/344779.344886
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv
https://doi.org/10.1111/cgf.14335
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1111/cgf.70077
https://ieeexplore.ieee.org/abstract/document/8374608/
https://ieeexplore.ieee.org/abstract/document/8374608/
https://doi.org/10.1145/122718.122725
https://doi.org/10.1145/3592434
https://doi.org/10.1109/CVPR.2018.00811
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1007/978-3-7091-6303-0_7
https://doi.org/10.1007/978-3-7091-6303-0_7
https://doi.org/10.1111/1467-8659.00534
https://doi.org/10.1145/3272127.3275032
https://doi.org/10.1145/3680528.3687680

	Abstract
	1 Introduction
	2 Background
	2.1 PVS computation
	2.2 Deep learning in graphics
	2.3 3D geometric learning

	3 Method
	3.1 Preliminaries
	3.2 Pre-processing
	3.3 Neural PVS estimation

	4 Implementation
	4.1 Datasets
	4.2 Training and evaluation
	4.3 Rendering

	5 Results
	5.1 Performance metrics
	5.2 Speed and memory
	5.3 Comparisons to the state of the art
	5.4 Ablation studies
	5.5 Challenging cases
	5.6 Dynamic scenes

	6 Conclusion and future work
	References

