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Figure 1. (Top row) 3DGS rasterization approaches encounter artifacts in out-of-distribution camera settings: (1) Distortions from 2D splat
approximations in large field-of-view renderings. (2) 3D evaluation specific aliasing artifacts when zooming out. (3) Incorrect culling results
in screen space when the camera is close to objects. (4) Popping due to depth simplifications and global sorting. (Bottom row) Our method
addresses these issues with: (1) 3D Gaussian evaluation, (2) a correct aliasing filter, adapted specifically to Gaussian evaluation in 3D, (3)
accurate and robust bounding, and (4) efficient 3D culling integrated into hierarchical sorting.

Abstract

Although 3D Gaussian Splatting (3DGS) has revolution-
ized 3D reconstruction, it still faces challenges such as alias-
ing, projection artifacts, and view inconsistencies, primarily
due to the simplification of treating splats as 2D entities. We
argue that incorporating full 3D evaluation of Gaussians
throughout the 3DGS pipeline can effectively address these
issues while preserving rasterization efficiency. Specifically,
we introduce an adaptive 3D smoothing filter to mitigate
aliasing and present a stable view-space bounding method
that eliminates popping artifacts when Gaussians extend
beyond the view frustum. Furthermore, we promote tile-
based culling to 3D with screen-space planes, accelerating
rendering and reducing sorting costs for hierarchical ras-
terization. Our method achieves state-of-the-art quality on
in-distribution evaluation sets and significantly outperforms
other approaches for out-of-distribution views. Our quali-
tative evaluations further demonstrate the effective removal
of aliasing, distortions, and popping artifacts, ensuring real-
time, artifact-free rendering.
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1. Introduction

3D Gaussian Splatting (3DGS) [14] has recently revolu-
tionized inverse rendering by enabling fast, differentiable
rasterization of 3D Gaussian point clouds. While 2D splat
evaluation is highly efficient, the projection from 3D to 2D
Gaussians remains an approximation, introducing artifacts
that become particularly noticeable under non-standard cam-
era settings, such as a wide field-of-view in virtual reality
rendering. Additionally, 3DGS further approximates the ren-
dering of 2D splats by assuming them to be parallel to the
current view-plane, leading to blend order inconsistencies
and popping artifacts under simple camera rotations [28]. A
natural solution to overcome these limitations is to render 3D
Gaussians via ray tracing. However, this approach introduces
significant computational overhead, requires additional ac-
celeration structures, and is generally impractical for training
due to the cost of frequent data structure updates [23].
Several works attempt to bridge the gap between 2D splat-
ting and 3D ray tracing by first bounding 3D Gaussians in
screen space and then computing their contributions per
ray in 3D [11, 28, 32, 34, 37]. While these hybrid 2D/3D
approaches address certain limitations of 3DGS, their re-



liance on screen space computations still makes them prone

to artifacts, particularly when rendering out-of-distribution

camera poses—i.e., viewpoints or parameters significantly
different from the training data (cf. Fig. 1): (1) Even when

considering the highest contribution point in 3D [28, 37]

or adjusting transformations per Gaussian [34], distortions

may still occur. (2) Zooming in or out beyond the typical
training views introduces artifacts, especially when evaluat-
ing Gaussians in 3D, as 2D anti-aliasing techniques can no
longer be applied [36]. (3) Despite the use of 3D bounding
planes, screen space computations become unstable when

Gaussians extend behind the image plane, leading to artifacts

at image boundaries [11]. (4) Simplified per-pixel sorting

strategies that focus on high-opacity Gaussians, can result in
inaccurate renderings, particularly for viewpoints far from

the training distribution [11].

We address these shortcomings in our 3D Gaussian raster-
izer, which considers the 3D nature of Gaussians through all
steps of the 3DGS rendering pipeline, making the following
contributions:

* We start by analyzing previous anti-aliasing approaches
and introduce an adaptive 3D smoothing filter that accu-
rately dilates 3D Gaussians and removes aliasing artifacts,
especially for out-of-distribution views.

* We show how bounding of 3D Gaussians can be moved
from screen space to view space for stable bounding of
Gaussians that reach outside the view frustum, removing
disturbing popping artifacts on image boundaries.

* Elevating previous 2D tile-based culling algorithms to 3D
by performing frustum-based culling with screen space
planes, thereby accelerating rendering and reduce sorting
costs for depth-sorted hierarchical rasterization [28].

* A detailed analysis of common 3D Gaussian rendering
artifacts, and ablation of our employed components.

Overall, our method achieves state-of-the-art reconstruction

quality, while enabling artifact-free rendering in real-time.

Our training and rendering source code is publicly available

at https://github.com/DerThomy/A A A-Gaussians.

2. Related Work

In this section, we cover recent radiance field and 3D Gaus-
sian Splatting methods, with a focus on artifact-free render-
ing of 3D Gaussian representations.

2.1. Radiance Fields & 3D Gaussian Splatting

Radiance fields have attracted widespread interest in novel
view synthesis since the publication of Neural Radiance
Fields (NeRF) [22], which use large coordinate-based MLPs
to model view-dependent color and density. Follow-up work
includes improvements in terms of anti-aliasing [1, 3], ex-
tending NeRFs to unbounded scenes [2, 26], more efficient
encodings [25], or fast rendering [7, 10, 31]. Despite the
aforementioned improvements, most NeRF methods still

require multiple costly MLP evaluations for each pixel, man-
ifesting in long training and rendering times.

More recently, 3D Gaussian Splatting (3DGS) [14] ex-
ploded in popularity, replacing the slower implicit represen-
tations of NeRFs with an explicit 3D Gaussian point cloud
representation that can be efficiently rasterized through el-
liptical weighted average (EWA) splatting [39]. The initial
sparse point cloud can either be initialized randomly, from
Structure-from-Motion [29], or from other guidances (e.g., a
pretrained NeRF [27]). To achieve good scene coverage, this
point cloud has to be densified by adding, cloning, or prun-
ing points based on screen space gradients [14], per-view
saliency maps [20], depth supervision [15], or by relocating
low-opacity Gaussians [16]. Additionally, strategies such as
opacity decay [28] and iterative pruning [8, 9] are employed
to reduce the size of the resulting point cloud.

2.2. Artifacts in 3D Gaussian Splatting

The original 3DGS suffers from a number of artifacts
(underlined), which have been addressed in recent related
work. Aliasing artifacts during rasterization can be solved
by approximating the integral over each pixel [18], using
multi-scale 3D Gaussians [35], or by applying a smoothing
filter to both the 3D Gaussian and its projected 2D splat [36].
Popping artifacts occur due to the global sort of primitives
before rasterization, leading to sudden changes in the blend-
ing order. StopThePop [28] resolves this by computing
Gaussian depth values along each view ray and using hier-
archical k-buffers to improve the sort order. Other recent
work relies on hybrid transparency [21], where only impor-
tant contributors are sorted, while low-opacity Gaussians
are blended in a "tail" [11]. Even perfect per-pixel sort-
ing exhibits blending artifacts, due to the non-overlapping
assumption of primitives, however, this cannot be solved
analytically for Gaussians [19] and requires expensive vol-
umetric integration [5, 6]. Furthermore, projection artifacts
occur due to the affine approximation when projecting 3D
Gaussians to 2D splats, resulting in disturbing cloud-like
artifacts and elongated Gaussians, especially at the image
border and for large field of view settings (e.g. in virtual real-
ity [33]). Recent methods solve this by projecting Gaussians
onto the unit sphere tangent plane [13] or using Unscented
Transform [34]. Another way to avoid projection artifacts is
to evaluate Gaussians in 3D. Several methods use ray tracing
for this purpose [4, 19, 24], however, these methods are com-
putationally expensive and require additional acceleration
data structures, as well as specialized ray tracing hardware
to achieve competitive performance. To circumvent this,
several methods propose to bound the Gaussian on screen,
and then evaluate it in 3D by finding its point of maximum
contribution along the ray. However, these methods rely on
inaccurate 2D bounds from the approximate affine projec-
tion [28, 32, 37] or Unscented Transform [34]. Only recently,
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Hahlbohm et al. [11] computed accurate 2D bounds through
plane fitting to the 3D Gaussian ellipsoid [30].

Despite the large body of work addressing artifact-free
3D Gaussians rendering, many of the aforementioned works
imply significant performance penalties, still exhibit errors
in extreme configurations or focus only on a single artifact.
To the best of our knowledge, our method is the first to tackle
all artifacts in a single, unified framework.

3. Method

This section covers necessary preliminary knowledge, and
the components of our artifact-free 3D Gaussian renderer.
Our rasterizer utilizes hierarchical sorting [28] and 3D Gaus-
sian evaluation through screen space planes [11] to remove
popping and projection artifacts. Sec. 3.2 introduces our
novel adaptive 3D filter that removes aliasing artifacts; Sec.
3.3 contains our perspective correct bounding approach that
prevents pop-in of Gaussians from outside the view-frustum;
Finally, Sec. 3.4 proposes our novel frustum-based culling,
a crucial component that improves both performance and
sort-order through hierarchical culling.

3.1. Preliminaries

Gaussian Splatting. Following Kerbl et al. [14], we model
the scene as a collection of anisotropic 3D Gaussians that
serves as an approximation of the scene’s geometric structure.
Each Gaussian is parameterized by its 3D mean p € R3,
scaling factor s € R3, and rotation quaternion q € R*.
The probability density function of a Gaussian at a position
x € R3 is defined as

G(x) = exp (—;p(x)2> , using (€))

p(x) = /(x — W) TS 1(x — ). @
The covariance matrix 3 is given by
»=RSS'R', (©)

where S = diag(s) is a diagonal scaling matrix and R is
the rotation matrix obtained from q. For rendering, the 3D
Gaussians are projected onto the 2D image plane. Since
Gaussian distributions are not inherently preserved under
nonlinear transformations, Kerbl ef al. [14] employ a local
affine approximation [39].

Evaluation in 3D. This approximation introduces a pro-
jection error that leads to rendering artifacts, especially at
image borders [13]. To circumvent these issues, Hahlbohm
et al. [11] evaluate Gaussians directly in 3D: They repre-
sent the ray through each pixel (z,y) as the intersection
of the two screen space planes 7, = (1,0,0,—2)" and
m, = (0,1,0, —y)T, which are then transformed into each

Gaussian’s normalized space, where the distance to the ori-
gin is equal to p(x):

T = M,,PVT using T = (E{TS | > . @
where T is the transformation from Gaussian space to world
space, while M,;,, P and V correspond to the viewport, pro-
jection and view matrices, respectively. The transformation
of the planes is therefore given by

-T
-1

By computing the distance of the intersection line formed
by the two planes to the origin, the Gaussian’s contribution to
the pixel ray is determined. In this formulation, the integral is
no longer evaluated to determine the Gaussian contribution;
instead, only the maximum contribution along the ray is
considered. This formulation avoids the use of the inverse
covariance X!, which can become numerically instable for
degenerate Gaussians (any s; ~ 0).

Anti Aliasing. Aliasing artifacts arise when the sampling
rate during rendering deviates from the one used during
training, e.g. changes in image resolution, focal length, or
viewing distance (c¢f. Fig. 2). To address this, Yu et al.
[36] combine a 3D smoothing filter with a 2D screen space
Mip filter. The 3D smoothing filter prevents high-frequency
sampling artifacts by applying a low-pass Gaussian filter
to each Gaussian, where the filter size is determined by
the maximum sampling frequency observed during training
across all N, training cameras, given by

birain = max ({012, ), with 6= g, ©6)
where f denotes the camera’s focal length in pixels and d
represents the z-component of the Gaussian’s mean p in
view space. The smoothing filter is defined by covariance
I S k/32 1, where k controls the size of the filter. The
smoothed Gaussian is then given by

7 (x) = |2|ex fle TS (x—
600 = |15 e (50 wTE e w)) )

To prevent low-frequency sampling artifacts—e.g. when in-
creasing the camera distance—they replace the screen space
dilation filter of Kerbl ez al. [14] with a 2D Mip filter, which
approximates a 2D box filter in image space.

Tile-Based Rendering. To optimize rendering efficiency,
3DGS partitions the image into tiles. Each Gaussian is eval-
uated for overlap with these tiles and assigned accordingly,
ensuring that each tile processes only the Gaussians that in-
tersect with it during rendering. To determine overlap, Kerbl
et al. [14] compute a screen space bounding box based on
the eigenvalues of the 2D covariance matrix.



Figure 2. (Left) Aliasing artifacts manifest when camera positions
deviate significantly from training distances: (1) Gaussians become
too thin due to over-sampling when moving close. (2) Gaussians
become too small due to under-sampling when moving farther away.
(Right) By dynamically adjusting to varying view conditions, our
adaptive 3D filter effectively removes these artifacts, preserving
fine details and ensuring consistent image quality.

Blending Sort Order. Kerbl et al. [14] approximate the
blending order based on the global depth of each Gaussian’s
view space mean. This strategy eliminates the need for a
computationally expensive per-pixel sorting of Gaussians,
but introduces popping artifacts when the camera rotates.
To address this issue, Radl et al. [28] introduce an efficient
hierarchical rasterization approach that approximates a pixel-
perfect sorting, significantly reducing visual artifacts while
maintaining computational efficiency by interleaving hierar-
chical sorting with repeated culling.

3.2. 3D Gaussian Anti-Aliasing

Aliasing is one of the most pressing challenges in 3D Gaus-
sian evaluation, particularly when rendering scenes at vary-
ing distances. While the 3D smoothing filter introduced by
Yu et al. [36] is inherently compatible with 3D evaluation,
the 2D screen space Mip filter cannot be directly applied. As
a result, recent approaches that rely on 3D evaluation omit
the screen space filter and depend solely on the 3D smooth-
ing filter [11, 37]. While this effectively mitigates artifacts
when moving the camera closer, it remains susceptible to
aliasing when increasing the viewing distance, as fine details
are not adequately filtered, leading to flickering and loss of
visual stability.

To address this limitation, we replace the 2D screen space
Mip filter by a full 3D filtering approach that seamlessly
integrates with 3D evaluation methods, effectively prevent-
ing low-frequency aliasing. A naive approach would be to
recompute the 3D smoothing filter for each rendering view,
but this proves insufficient, as it causes Gaussians to become
overly transparent (cf. Fig. 3). This issue arises because the

Figure 3. Improvement due to our adaptive 3D dilation filter:
Whereas previous methods adjust amplitudes based solely on the
change of volume of the 3D Gaussian, often leading to excessive
transparency (top left), our method adapts based on the area per-
pendicular to the viewing ray.

amplitude in Eq. (7) decreases according to the change in
volume, while Gaussians are evaluated only at their point
of maximum contribution along a ray d, rather than being
fully integrated along the ray. Consequently, incorporating
the scaling change along the ray overestimates amplitude
scaling for highly anisotropic Gaussians, which leads to an
excessively small normalization factor

®)

in Eq. (7). Notably, this reduction occurs even when the
scale change perpendicular to d is minimal, highlighting the
need for a more robust filtering approach. Therefore, we
reformulate the normalization to only factor in the change of
scale perpendicular to d (c¢f. Fig. 3), that is

5 _ 12| « —lx— T$H-1(x _
6100 =[5 e (50w B M)

©))
where d is the normalized vector between p and the camera
origin o, and 3 denotes the 2 X 2 covariance matrix pro-
jected onto the subspace orthogonal to d. It can be shown
(cf. the supplementary material for a derivation) that the
perpendicular scaling factor is given by

b)) ¥|dTE-1d
B j2ld=7d (10)
|32 | [X|dT¥-1d
Since the inverse covariance matrix is given by 71 =
RS2R.T, we can express the directional quadratic form as

12
di

2 b
S;

3
d'2"'d=d"RS?R"d = Z (11)
=1
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Figure 5. (Left) Hahlbohm et al. [11] compute the screen bounds of
a Gaussian by fitting planes in screen space. However, they discard
Gaussians whose z-bounds (2min,max) are outside the near/far-
planes, which can lead to popping. (Right) We instead compute
view space angles 6 2, leading to a more robust computation and
bounding.

where d’ = R"d. Using the determinant factorization from
Eq. (8), we can simplify Eq. (10) to

\/d/l2 s3s2+dPs?s?+dfs?s3 (12)

d/12 So 83 + d/22 S1 83+ déQ S1 89

where the updated scaling factors are given by §; = s7 +#/o>.
This formulation enables efficient computation while avoid-
ing explicit matrix inversion, ensuring numerical stability.
To address artifacts when moving the camera close to a
Gaussian, we integrate the 3D smoothing filter of Yu e al.
[36] with our proposed 3D kernel: We store the maximum
sampling frequency observed across all training cameras
Dwrain. During rendering, the effective sampling frequency is
defined as

'lA)/ = min(ﬁtraina f}) s (13)

where ¢ corresponds to the sampling frequency used for
our filter. This formulation ensures that Gaussians do not
shrink excessively when the camera moves closer, while still
providing effective anti-aliasing when the camera moves
farther away.

3.3. Perspective Correct Bounding

Efficient evaluation of 3D Gaussians in a software raster-
izer requires accurate bounding in screen space to avoid
unnecessary evaluations. Following Sigg et al. [30],
Hahlbohm et al. [11] perform exact plane fitting to the
ellipsoid, defined by the 3D Gaussian’s level set at 7,
in projective space, which fails when a Gaussian’s ex-
tent reaches behind the image plane. To mitigate this,
they discard these Gaussians, leading to noticeable pop-
ping (c¢f. Fig. 5). Instead, we perform the plane fitting in
view space with planes 7ty = (cos(f), 0, —sin(6),0) ", and
mt, = (0,cos(¢), —sin(¢),0) ", and solving for ¢ and ¢:

culling criterion: A@

p(xmax)2 <T,

Figure 6. Our frustum culling algorithm finds the maximum contri-
bution point inside a 3D frustum, via projection of the origin onto
the transformed planes and edges in Gaussian space. Comparing
p(x) at this maximum point against the threshold 7,, we can cull
away a whole Gaussian against the view frustum (Left), as well as
individual tiles for a single Gaussian (Right).

L[ 53 + \/8%73 — 51,153,3
(14)

9172 = tan y
53,3
+,/834—
1 52,3 85,3 — 52,2533
$1,2 = tan ) 15)
53,3

with s; 5 = (t, T (view,i) © T(view,j))» t = (Tps Tp, T, -7,
and T'(yiew,;) denoting the i-th row of transformation matrix
from Gaussian space to view space Tyiew = VT (cf. the
supplementary material for a derivation). We additionally
compute the angles 6,,, ¢,, of the view space Gaussian mean
in x/y-direction. This is followed by a rotation step, where
we ensure that

(Gufﬂ')<91<9“<92<(0u+ﬂ)a (16)

and a bounding step to the range [—(5 —¢), 5 — €] (witha

small e € R.;) to translate those bounds to the screen
f; = max (—g + 6,91) ,05 = min (g — 6702> . (17

If the camera center is inside the Gaussian’s ellipsoid, no
valid solution exists, in which case we discard this Gaussian.
Additionally, if the ellipsoid intersects the z-axis, it cannot
be bounded in the screen space y-axis, and vice-versa. In
these cases, the term inside the square root becomes negative,
and we conservatively set the bounds to the entire screen
for the affected axis. In the next step, tile-based culling
removes all tiles that receive negligible contribution from
the Gaussian or where the Gaussian’s depth remains closer
than the near plane across the entire tile.

3.4. Frustum-Based Culling

Accurate screen space bounding with axis-aligned bounding
boxes (AABBs) of the ellipsoids helps to reduce the per-
pixel workload, however, it delivers bad bounds for highly



non-axis-aligned ellipsoids. Additionally, Gaussians could
receive valid screen bounds, but never contribute to any
pixel. To mitigate this, Radl et al. [28] perform per-tile
culling of the projected 2D ellipse, which drastically re-
duces the number of Gaussian/tile combinations, and also
prevents them from performing unnecessary sorting opera-
tions in their hierarchical sort. We translate this tile-based
culling approach to 3D by constructing a per-tile frustum
F from 4 planes 7, , = (1,0,0, =Z(min,max)) Ty » =
(03 1; 0, 7y(min,max))v where Z(min,max)s Y(min,max) define
the tile boundaries in pixel coordinates. We then compute
the point of maximum contribution of the Gaussian inside
this 3D frustum and discard tiles where p(x)? is above the
threshold 7, i.e.
. 2

xmelgp(x) < Tp. (18)

In the trivial case where the Gaussian’s mean is already
inside this frustum, it is consequently the point of maximum
contribution. Otherwise, this point has to lie on the planes
and edges of the frustum. We find the maximum contribution
point on the planes by transforming them into the normalized
Gaussian space, and finding the point closest to the origin.
A naive solution is to do this for each plane and edge, and
ensuring that the projected point lies within the bounds of the
frustum and in front of the camera. Instead, we only project
onto the x/y-planes (and their corresponding edges) that are
closest to the Gaussian’s mean in screen space, limiting the
evaluations to 2 planes and 3 edges (instead of 4 planes and
4 edges for the naive approach). This can be implemented
efficiently, which is critical as this routine has to be executed
for many tiles per Gaussian.

Additionally, we cull Gaussians during pre-processing
against the entire view frustum to discard all non-
contributing Gaussians (cf. Fig. 6). In contrast to our exact
frustum culling, other methods discard Gaussians only based
on their mean (e.g., if it lies behind the image plane [14])
or based on the screen space z-bounds [11], which results
in incorrect culling of contributing Gaussians and popping
artifacts at the image borders.

4. Evaluation

Following prior work, we evaluate our method on 13 out-
door and indoor scenes from three different datasets: Mip-
NeRF 360 [2], Tanks & Temples [17], and Deep Blend-
ing [12].

Implementation Details. We use the pre-downscaled im-
ages of Mip-NeRF 360 [2] for training and evaluation, fol-
lowing the setup of 3DGS [14]. For densification, we adopt
Markov Chain Monte Carlo (MCMC) [16] with identical
parameter settings. Our approach builds on the hierarchical
rasterizer of Radl et al. [28], retaining their per-ray sorting

and queuing strategies while replacing the bounding, culling,
depth evaluation, contribution estimation, and anti-aliasing
with our 3D-aware implementations. All compared methods
optimize to the same number of primitives, with the ex-
ception of Hybrid Transparency [1 1], where we re-evaluate
image metrics from their original results, as their training
code was unavailable at the time of writing. Following pre-
vious works [14, 36, 39] we use a kernel size of £ = 0.3 for
our adaptive 3D filter.

4.1. Image Metrics

We compare our method against 3DGS [14], MCMC [16],
and Taming 3DGS [20], which all use different densification
approaches. Additionally, we compare against StopThe-
Pop [28] and Mip-Splatting [36], both of which build on the
original 3DGS densification but specifically target artifact
removal. For Hybrid Transparency [11], we re-evaluate im-
age metrics on their provided results for the Mip-NeRF360
dataset. Our evaluation considers PSNR, SSIM, and LPIPS
[38], with LPIPS computed on unnormalized images to main-
tain consistency with prior work.

Standard Datasets. We begin by evaluating standard
datasets, which represent in-distribution camera and view pa-
rameters. As shown in Tab. 1, our method outperforms others
in nearly all metrics and matches MCMC in overall quality—
while suffering from none of the artifacts. Notably, our
approach prevents the optimizer from "cheating per-view"
inconsistencies via popping which explains the slightly lower
PSNR in Tanks & Temples. In this dataset, MCMC relies on
distorted Gaussians and popping to compensate for large ex-
posure changes, effectively "faking" full-screen adjustments.
However, as shown in Fig. 7, this strategy breaks down for
out-of-distribution viewing configurations.

Ablation. We analyze the impact of our components in
Tab. 2. While standard image metrics remain largely un-
affected for in-distribution test views, disabling individual
components leads to distinct artifacts. Our anti-aliasing en-
sures stability across resolution changes and distance to the
observed scene content (Tab. 4). Removing hierarchical
per-pixel sorting introduces popping artifacts and allows
the method to cheat with a view-inconsistent representation
(again see Radl et al. [28]). Finally, disabling 3D evalua-
tion results in projection artifacts, particularly noticeable
when increasing the field of view (Fig. 7). Frustum-based
culling has no impact on reconstruction quality, but it plays
a significant role in improving performance (cf. Tab. 5).

4.2. View-Consistent Rendering

Densification primarily impacts image metrics on in-
distribution test views, as inconsistencies are implicitly
learned during training. However, for out-of-distribution
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é '% E Mip-NeRF 360 Tanks & Temples Deep Blending

2 T 5 PSNR' SSIM' LPIPS* PSNR'T SSIM'T LPIPS* PSNR' SSIM' LPIPS*
3DGS [14] X X X 27443 0814 0215 237734 0.847 0.175 29.510 0.902  0.237
StopThePop [28] X X 27304 0.815 0211 23226 0.846 0.171 29929 0.908 0.231
Mip-Splatting [36] X X 27540 0817 0.216 23.821 0.852 0.176  29.660 0.905 0.243
MCMC [16] X X X 28.027 0.836 0.187 24.642 0.872 0.147 29.727 0906 0.233
Taming 3DGS [20] X X X 27.826 0.823 0.207 24.067 0.855 0.168 29.878 0.910 0.235
Hybrid Transparency® [11] * = 27.169 0.822  0.195 - - - - - -
Ours 27.835 0.836 0.188 23.582 0.867 0.145 30485 0913 0.222

Table 1. Standard image metrics for our method and related work for in-distribution views. Even though we focus on out-of-distribution
effects, our approach matches the state-of-the-art for in-distribution views. We also include an overview of the artifacts each method exhibits.
*While Hybrid Transparency [1 1] does not suffer from classical popping, they still experience "pop-in" at image borders due to incorrect
culling, as well as aliasing due to undersampling of their fixed 3D filter. "Numbers were re-evaluated on the original evaluation images.

[=)
en on O
g '% g Mip-NeRF 360 Tanks & Temples Deep Blending
g8 & = PSNRT SSIM" LPIPS* PSNR' SSIMT LPIPS' PSNRT SSIM' LPIPS*
Ours 27.835 [ 0.836 0.188 23.582 0.867 0.145 30485 0913 0.222
Ours w/o hier. sort X 27.898 0.836 0.189 23.561 0.865 0.148 30.325 0912 0.226
Ours w/o AA X 27.811 0.836 | 0.185 23.648 0.867 = 0.141 | 30.344 0910 0.224
Ours w/o 3D eval. X 27874 0836 0.189 24.119 0.869 0.150 30.444 0912 0.223

Table 2. Ablation study on the effect of our components for in-distribution views. Removing individual features may actually increase image
metrics, as method can better overfit to the data set views. See the out-of-distribution evaluation for the benefits of our contributions.

views—e.g. with a larger field of view (FOV) or changed
resolution—these inconsistencies become more apparent in
evaluation metrics.

Dataset Mip-NeRF 360 Tanks & Temples

PSNRT SSIMT LPIPS+ PSNRT SSIMT LPIPS+

Mip-Splatting  26.053 0.784 0245 17314 0737 0256
3DGS 26.820 0.804 0219 17.112 0741  0.229
StopThePop  27.040 0.812 0213 20.241 0.809 0.192
Mip-Splatting  26.053 0.784 0.245 17314 0.737 0256
MCMC 23347 0779 0213 14369 0.668 0.296
Taming 3DGS 23.296 0.763 0231 11.545 0534 0.448
Ours 27.836 0.836 0.188 23.583 0.867 0.145

Larger Field of View. We assess FOV robustness by ar-
tificially increasing the FOV and resolution of test views
while extracting a pixel-perfect cutout from the original im-
age for ground truth comparison. Our setup follows Huang
et al. [13] but decreases focal length by 3x and increases
resolution by 3x. As shown in Tab. 3, our method remains
unaffected by these changes, whereas all other approaches
suffer significant quality degradation due to distortion arti-
facts. A visual comparison is provided in Fig. 7.

Deep Blending
PSNRT SSIMT LPIPSY

3DGS 26.192  0.875 0.247
StopThePop  27.553 0.889 0.243
Mip-Splatting 25.592 0.854  0.296
MCMC 18.315 0.782  0.355
Taming 3DGS 20.328 0.823  0.282
Ours 30.488 0.913 0.222

Changing Resolution. To assess our method’s anti-

aliasing capability, we perform a multi-resolution evaluation
using the original training resolution (1 x), half resolution
(% %), and double resolution (2x). In Tab. 4, we compare
results for two Mip-NeRF 360 scenes against the provided
pre-downscaled (or original size) images. While all methods
perform similarly at 1x resolution, our anti-aliasing 3D fil-
ter preserves quality across lower and higher resolutions (cf.
supplementary material for visual comparisons).

Table 3. The large FOV evaluation shows that 3D Gaussian evalua-
tion leads to more faithful reconstruction and rendering. Compared
to related work which relies on evaluating 2D splats on the image
plane, our method gracefully retains its image quality in this chal-
lenging out-of-distribution rendering scenario.

Close to Scene Camera Location. Popping artifacts
caused by incorrect culling when moving close to scene



Bonsai Bicycle

Res. PSNRT SSIM™ LPIPS* PSNRT SSIMT LPIPS‘
MCMC 28.98 0941 0.099 21.15 0774 0.171
1x Ours 32.12 0953 0.095 2673 0.854 0.123
Ours w/o AA 2854 0939 0.097 2099 0.771 0.174
MCMC 32.65 0.948 0.191 25.69 0.799 0.168
1x Ours 3232 0948 0.189 2574 0.801 0.171
Ours w/o AA 32,13 0947 0.189 2565 0.801 0.165
MCMC 3149 0936 0279 2213 0.689 0.288
2% Ours 32.09 0.940 0276 2452 0728 0.264

Ours w/o AA 3099 0.935 0.278 21.90 0.687 0.288

Table 4. Multi-resolution evaluation ablation of MCMC and our
method, with and without anti-aliasing. Ours gives clearly better
results when changing the resolution during test time, highlighting
the benefits of the 3D anti-aliasing filter.

Train Playroom Flowers

StopThePop

ﬁ,, . - %
Figure 7. Example results with PSNR when rendering with a larger

FOV, comprising out-of-distribution view settings. Clearly, other
methods suffer from severe distortion artifacts.

23.87

content—which our method resolves—are difficult to evalu-
ate quantitatively, as ground truth data cannot be generated
from existing evaluation views. An example for this kind of
popping is shown in Fig. 1. For more examples, please see
the supplemental video.

4.3. Performance Timings

We evaluate the runtime performance of our components
and MCMC in Tab. 5, using an NVIDIA RTX 4090 with
timings averaged over an interpolated camera path across
all available camera poses. Our method is only slightly
slower than MCMC (with standard 3DGS bounding) and

M360 M360
Timings in ms Indoor Outdoor 1&T DB
Ours 7.72 10.66 7.03 5.81
Ours w/o culling 14.40 2298 12.78 8.88
Ours w/o hier. sort 4.11 6.29 3.69 347
Ours w/o 3D 7.64 10.30 7.52  6.32
MCMC 6.79 8.81 8.28 443

Table 5. Average performance timings for different configuration
of our method and MCMC. As expected, hierarchical sorting in-
troduces the largest performance cost. However, accurate culling
compensates for a significant portion of the cost, demonstrating the
high efficiency of our 3D culling. Notably, our 3D evaluation is as
fast as or even faster than 2D splat approximations.

even outperforms it on the Tanks and Temples dataset. When
removing culling, performance drops significantly, as the
hierarchical sort heavily relies on culling to reduce its sorting
overhead. Disabling hierarchical sorting improves speed
beyond MCMC but introduces noticeable popping artifacts.
Lastly, disabling our 3D evaluation results in similar or worse
performance, indicating that our 3D evaluation is as fast or
even faster than 2D splat variants.

5. Conclusion, Limitations, And Future Work

In this work, we addressed the limitations of current 3D
Gaussian Splatting methods and made several key contribu-
tions to enable fast, artifact-free rendering of 3D Gaussians.
Our method introduces a novel 3D smoothing filter that effec-
tively removes aliasing artifacts when evaluating Gaussians
in 3D, along with stable 3D bounding and culling that per-
forms consistently across various viewing scenarios. We
thoroughly evaluated the effectiveness of our components,
showing that our method is robust to out-of-distribution cam-
era views while maintaining standard image metrics on par
with the current 3DGS state-of-the-art. To our knowledge,
we are the only rasterization-based approach capable of de-
livering artifact-free rendering of 3D Gaussians, with fram-
erates exceeding 100 FPS on consumer-grade hardware.

While achieving more view-consistent results, we ob-
serve that standard image metrics do not show significant
improvement when evaluation views stay within the training
distribution. Although our view-space bounding approach is
less tied to the perspective projection, it remains closely tied
to the pinhole camera model, which limits its adaptability to
other camera models. Furthermore, as our method exhibits
stronger view consistency and less room for exploiting view-
dependent effects, it would benefit disproportionately from
a more expressive view-dependent encoding.
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