
TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 1

CECILIA: A Toolkit for Visual Game Content
Exploration and Modification

Philipp Fleck1, Michael Hochörtler1, David Kastl1, Georg Gotschier1, Johanna Pirker1 and Dieter Schmalstieg2
1Graz University of Technology, 2University of Stuttgart

Abstract—We investigate the idea of a toolkit for visually
exploring and modifying game content, addressing questions such
as how to identify relevant in-game data, how to make use of the
data to create in-game visual representations, and what benefits
these representations have. To that aim, we build a toolkit on top
of the .NET platform employed by Unity in order to explore and
add custom content without access to the game’s source code.
Our visual modifications use live objects in the game as data
sources. The results appear as an integral part of the game world,
which is generated with the original Unity rendering engine. This
capability enables visual exploration for debugging, playtesting,
modding, streaming, and data-driven analysis of games, as we
demonstrate with several examples.

Index Terms—Content exploration, Modifications, Accessibility

I. INTRODUCTION

IT is a known fact that online games acquire extensive
amounts of telemetry data created by users while play-

ing [1]. The collected data is used for analytics procedures
which aim to improve the gameplay experience. Use cases
include operations (e.g., server load balancing in massive
online games) and maintenance (e.g., detecting and fixing
errors in the game code), but also monetization [2] (for
example, marketing research for in-game shops).

In addition to developers and publishers, other stakeholders
have important interests in using in-game data for various
purposes. Players may want to maximize their experience or
training success. Modders create game extensions in a com-
munity effort. Journalists – including bloggers, streamers, and
so on – report on game events, such as e-sports competitions,
and reach out to spectators (who may or may not be players
themselves). In addition, the huge success of computer games
as a mass media has sparked the interest of the research
community. For example, behavioral science [3], [4] and
sociology [5] have discovered games and gamers as a domain
worth investigating. Serious games and gamification [6] are
considered important topics in education research today.

All of these stakeholders have specific needs regarding
the addition of new functions to an existing game. Many of
these needs involve displaying game-related information in a
timely and efficient manner. For this purpose, extending the
standard visual presentation of a game with additional data
visualizations [7] is often the method of choice.

Visual game content exploration and modification have
several compelling use cases throughout the lifecycle of a
game project. For example, developers can benefit from rapid

prototyping tools for game development, especially for in-
game debugging and playtesting. Modders may develop visual
modifications that make the player’s life easier (for example,
accessibility features for the visually impaired) or match the
player’s personal preferences. Journalists may use such tools
to create extended spectator views for live e-sports coverage
or for analytic investigation in retrospect. Researchers can
instrument games for their investigation of player behavior
and social computing.

Many genres of games, such as strategic or business simu-
lations (see Figure 2), already make use of data visualization
as part of their in-game interface. However, these data visual-
izations are hard-coded into the game and usually cannot be
customized beyond the game designer’s intention.

Some online games expose their network streams in a
known format [8], which can be used to visualize game-related
data outside of the actual game. Unfortunately, this approach
is limited to the information sent over the network and does
not lend itself to ”immersive analytics”1 [9] using visual
representations directly embedded (and therefore implicitly
linked to the activities) in the game.

A more powerful method is the use of libraries for game
modifications, or mods. Games that are “moddable” expose an
application programmer interface (API) to load and execute
extensions. By modding, visual modifications can be devel-
oped and deployed on demand, as long as they conform to the
mod API.

Unfortunately, relatively few games include mod sup-
port [10]. In contrast, other software categories, such as
office products, commonly include end-user-friendly scripting
capabilities that require little or no coding skills to customize
or extend the features of the software product. We speculate
that end-users would benefit from a standardized mod API
for games, especially, if it allows the creation of immersive
visualizations directly in the game.

In this paper, we investigate this idea further. As a case
study, we select a leading game engine, Unity, which is
reported to have an estimated market share of approximately
37% [11]–[14], with more than 750.000 games published [15].
We use the case study to address the key questions in creating
visual modifications: (1) How can we explore relevant in-game
data? (2) How can we make use of the in-game data to create
in-game visual modifications? (3) What are the benefits of
visual modifications?

1The term “immersive analytics” is used loosely here, since the games we
consider mostly show 3D worlds on a conventional flat screen and not in
virtual reality.



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 2

Fig. 1. Enhanced versions of games installed from Steam without access to source code: (A) an extension of the game Subnautica with an added game mode
and visualizations for the tracking of creatures, (B) original version without visual modifications, (C) high-contrast accessibility mode added to the game Risk
of Rain 2 (modified version on the right, original game on the left).

Our system, called CECILIA (an acronym for “combin-
ing existing common intermediate language with immersive
analytics”), addresses the first two questions using runtime
code modification (so-called “ weaving”) to generate visual
modifications in Unity games without mod support or access2

to source code.
By weaving into the .NET platform employed by Unity [16],

visual modifications can be conveniently created with our
authoring tools that have been integrated into the Unity editor.
With this toolkit, we demonstrate how to support the entire
workflow that a mod developer must address. In summary,
CECILIA makes the following contributions:

• It supports game content exploration and identifying
relevant game data.

• It enables the creation of visual modification to be dis-
played in the game scene.

• It facilitates interactive control over the visual modifica-
tion and its properties.

We demonstrate our work with a variety of use cases encom-
passing enhancements for debugging, gameplay and accessi-
bility, and we report on a qualitative user study conducted with
Unity developers.

II. RELATED WORK

A good portion of human-computer interaction research
in the last 30 years has focused to some extent on games
and game-related interactions [17]. Games are used not only
to investigate player behavior, but can also serve as a vehi-
cle for other research, for example, on medical conditions
such as Parkinson’s disease [18]. Among the four major
paradigms [19] on how games are used in human-computer
interaction research – operative, epistemological, ontological,
and practice –, CECILIA contributes primarily to operative and
practice research, since it allows studies that involve games
that are otherwise unattainable (i.e., they lack mod support).
For example, CECILIA can help add spectator modes [20] or
improve usability for users with special needs [21]. Without

2Please see Section VII for a discussion of dual use purposes of game
modifications

CECILIA, a game must have built-in mod support to create
such extensions.

A. Game analytics

Without doubt, video games generate a lot of data that
is of value to various stakeholders. Unfortunately, games
often make it difficult to collect data for third-party research
endeavors. Most of the data is collected by the original game
developers using proprietary game mining tools [22]. The
main motivation to use data mining is to look for an optimal
monetization strategy [2].

Other ways of collecting data are surveys, playtesting [23]
or gathering publicly accessible data such as replay files [8].
Games with mod support may also be instrumented to collect
specific data of interest. This approach is sometimes taken by
researchers who want to study the social phenomena around
games [24] or even train an artificial intelligence [8] to play.

For example, Bauckhage et al. [25] use the collected data
to investigate the loss of player interest in games over time.
Drachen et al. [26] analyze player activity, causes of death
and player frustration. Mertens [27] describes the reasons why
games are often released unfinished. Other topics of interest in-
clude the search for an optimal game development process [28]
or modding practices [29], [30]. Wallner and Kriglstein [24]
provide a summary of gameplay analysis research.

In all these cases, the data are collected first and then
analyzed with software tools which are external to the original
game. Such an approach fits a pure analytic tasks, but is less
appropriate for other use cases, such as e-sports broadcasts or
game accessibility, where the main focus lies on the live game.
These and other uses cases clearly benefit from presenting
visualizations directly as oart of the game world.

B. Game mods

The community formed around popular games often has
a strong interest in developing game modifications. Popular
game engines with good mod support are the Unreal en-
gine [31] and the Source engine [32]. In contrast, the widely
used Unity engine [33] does not have built-in mod support,
making modding more difficult [34].



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 3

master of orion - conquer the stars
Simcity 4

Fig. 2. Examplatory visual modifications in games across genres: (A) Debug of Assissin’s Creed Origin; (B) Accessibility enhances of The Last of Us, Part II;
(C) Citizen’s demands visualized as bar charts in SimCity 4; (D) Path to Victory line chart visualization in Master of Orion: Conquer the Stars.

According to Scacchi [35], mods can be categorized into
four different types: User interface customizations enhance the
user’s experience of the game, for example, with additional
convenience functions or stylistic changes. Game conversions
alter the game experience by adding completely new content,
such as new maps or even new game modes. Machinima mods
are built to record and replay game sessions, for documenta-
tion, dissemination, or even for artistic expression. Finally,
hacking mods alter the system around the game, such as to
bypass anti-cheating measures or to enable modding in games
that do not support it out of the box. We classify CECILIA as a
combination of hacking mod and user interface customization,
where the former enables the latter.

Although modding a game shares many characteristics with
debugging it, modders are rarely given access to the game’s
source code and must contend with the capabilities exposed
through a game’s modding API or log files recorded of game
runs [36]. The sheer complexity of a game project can make
it difficult to reproduce a bug and collect data about it [37],
even if a source code-level debugger is available. To make
the mental demands of developing/debugging a visual mod
more manageable [38], CECILIA offers a dedicated workflow
to support content exploration. As explained in Section III-A,
its features are based on DLL manipulation. Other tools like
BepInEx3are technically similar in their code manipulation
abilities, but have no means for exploring the actual game
content.

C. Accessibility Mods

A visual accessibility mode can be considered a special
kind of visual modification for users with low vision or color
blindness. Very few commercial games offer such features,
e.g., configurable text size or high-contrast rendering, as can
be inferred by checking databases from organizations such as
the Family Gaming Database [39]. Yuan et al. and Westin
et al. discuss the low number of games featuring accessibility
modes [40] and point to new concepts [41] in game acces-
sibility. Fortes et al. [41] summarize the evaluation methods
used in game accessibility. Miesenberger et al. [42] elaborate
on the importance of game accessibility for inclusion. The gap
between games released without accessibility features and the
part of the gaming community in need is significant. CECILIA

3https://github.com/BepInEx/BepInEx

can help fill the accessibility gap, as we show in the results
section. Our accessibility examples are inspired by Mangiron
et al. [43] and Garber et al. [44].

D. In-game visualizations

If we want to analyze game data immediately, for example,
during e-sports broadcasts or for game debugging, displaying
data visualizations directly inside the live game is the most
effective approach. The survey by Bowman et al. [7] discusses
several data visualization archetypes that are frequently used
in games to support players. They point out that players tend
to have a high visual literacy and benefit from visual analytics
tools in complex games, such as economic simulations. Dill-
man et al. [45] describe a taxonomy of data visualizations in
games that essentially implement “augmented reality” (AR)
overlays in the game world, serving as examples of how AR
designs could work in the real world.

Researchers and practitioners of in-game visualizations can
benefit from the wide variety of extensions available for Unity,
which include several toolkits for generating 3D data visual-
izations inside Unity. DXR [46] uses a grammar of graphics to
express visualizations of tabular data. The result of the visual
encoding process is stored as conventional game objects in
Unity. IATK [47] and U2VIS [48] take a similar approach.
IATK achieves the best performance by using GPU shaders
instead of static game objects to render the visualization.

Despite such software support, in-game visualizations other
than those built in for playing the game (see Figure 2) are
rare or non-existent. This situation must be expected since
games are mainly designed to entertain the players. However,
alternative uses of games, for example in research, can hugely
benefit from more advanced visualization. With CECILIA, our
aim is to fill this gap.

III. OVERVIEW

CECILIA covers three tasks (Figure 3):

T1 Content exploration: Assuming access to the data stored
in the game objects, the exploration step comprises iden-
tifying the relevant in-game content and preparing it for
later use.

T2 Visual modification creation: The desired views (typi-
cally, new game objects containing data visualizations



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 4

or additional rendering layers) must be defined and con-
nected to the data sources identified in T1 for later display
during game runtime.

T3 Runtime control: The desired views must be instantiated
and their parameters adjusted in response to new game
events and user input, while the game is running.

A developer-friendly interface is provided by integrating the
tools for all three tasks into the Unity IDE. For the creation
of visual modifications, the tasks T1-T3 are commonly carried
out in sequence. For other types of modifications, a single
task may be sufficient (for example, T1 for recording). In
the following, we focus on the main goal of creating visual
modifications.

A. Content exploration

Content exploration (T1), i.e., identifying which game ob-
jects or properties to use in visual modifications, can be chal-
lenging. CECILIA must provide sufficiently powerful abilities
for handling this exploration. In practice, tools similar to those
offered by a conventional visual debugger are required. The
exploration phase starts the game with CECILIA loaded, but
without adding any custom visual modifications yet. In this
phase, the developer’s objective is to become familiar with the
game objects and learn enough about the internal mechanics of
a game to move on to the visual encoding phase. The content
explorer of CECILIA is a kind of runtime visual debugger
that enables the inspection of game objects much like in the
Unity IDE itself, but without access to its source code (see
Section IV for more details). Figure 5 shows an example of the
debugging interface. The main features of the content explorer
are the following:

a) Scene graph and inspector view: A graphical overlay
shows the current scene graph and the properties of game
objects in a manner very similar to that of Unity IDE. The
scene graph view lists the currently selected game objects; the
inspector view enables property modification at runtime.

b) Debug console: The debug console makes it possible
to display Unity’s log messages in the compiled game. The
messages are familiar to Unity developers from within the
IDE, but are not normally accessible outside of the IDE.

c) Pause game: The game can be paused by setting the
game time scale to zero. In pause mode, the scene and its
game objects can be inspected, visual modifications can be
instantiated, etc. Games relying the standard Time object in
Unity will pause as expected. For games that do not use
standard time, other mechanisms, such as hooks into the game
loop, can be used.

d) Debug camera: This feature lets the user freely con-
trol a debug camera with mouse and keyboard to view the
game scene from an arbitrary vantage point. It is best used
after pausing the game, so that the modified camera does not
interfere with other game functions.

e) Game object selection: While the debug camera is
active, the user may select arbitrary game objects in the
scene by clicking, provided that the objects contain collider
components. Selecting an object in the game view will also
mark it as selected in the scene graph hierarchy and disclose

Data 
exploration

Visual 
encoding

View 
rendering

Game engine
(Unity)

Render engine
(Unity render pipeline)

Runtime library 
(.NET)

CECILIA

Code weaving library
(Mono.Cecil)

Visualization library
(IATK, XCharts)

Content 
explorer

Visual mod 
creation

Runtime 
control

Editor
(Unity IDE)

Fig. 3. System overview: The workflow of CECILIA (top row) consists of
three stages: content exploration, visual modification creation and runtime
control. These components are built on the standard elements of Unity
(orange) and as plug-ins (light orange) for code modification (Mono.Cecil)
and visual encoding (IATK, XCharts).

its internals in the inspector view. To visually indicate selected
game objects, they are retrofitted with a halo-like outline upon
selection. Moreover, selections can be saved and loaded to
better support extensive debugging sessions.

f) Data recorder: Changes to property values of game
objects can be recorded and saved in a database for later
analysis or external processing. Filters can be used to identify
the desired data source selected for recording. In addition, the
recording frequency and interval must be specified. Techni-
cally, co-routines are spawned to sample selected data-streams
(e.g., position of the player) concurrently and at different rates.
This might come at the cost of scalability, depending on the
hardware.

B. Creation of visual modifications

CECILIA integrates several ways to create and render visual
modifications in Unity (T2). It supports 2D and 3D data
visualizations as well as general-purpose rendering extensions,
such as adding new layers to Unity’s layered rendering system.

For 2D data visualizations, we integrate XCharts [49],
a chart library for Unity. XCharts allows for the creation
of interactive, real-time updateable data visualizations. If no
integration with the 3D scene structure is required (i.e., the
data about the game to be visualized is of abstract nature,
such as general performance measurements), XCharts provides
a fast way of creating data visualizations.

For 3D data visualizations, we extend IATK, which lets
the user specify a set of 3D graphical marks from one or
more data sources. The generation process uses a grammar
of graphics, which expresses a series of transformations from
raw data to graphical objects. Each transformation consists of a
view-frame in which to place the graphical output, a geometric
object to be generated, and mapping from the properties
of the input data in the graphical properties of the output
object. By stacking multiple such transformations, complex
and compound data visualizations can be built. IATK comes



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 5

Unity DLLs and
System DLLs

External 
Dependencies

Depends-on DLLs

Unity Project

Assets

C# Project

Code

CECILIA Assets

CECILIA

Target Game

Data/Managed

Data/AssetBundles

UnityEngine.CoreModule.dll

Assign Scripts
To Assets

Build Asset Bundles Build DLLs

CECILIA Bundles

Inject Hooks

DLLs

Fig. 4. Workflow of adding visual modifications to an existing game.

with a library of common data visualization patterns, such as
bar charts, scatter plots, parallel coordinates, and visual links.
Moreover, it enables interactions with the data visualization,
such as linking and brushing, for the selection of data points.

For all data visualization, CECILIA supports far-reaching
customization of parameters while the game is running. A data
visualization is connected to one or more game objects for raw
data input, but also refers to additional user-defined parameters
for customization of appearance and styling (e.g., line width
or color gradients). For this purpose, every data visualization
can be equipped with a customization interface.

The customization interface may be created in the Unity
IDE and then added together with its host data visualization
into the target game. However, in most cases, it suffices to
just expose a list of customization parameters for the user
to change in an inspector-style window. For this purpose, we
have developed a utility class that takes a list of properties of
the data visualization prefab, which should be exposed in the
customization interface. The utility class relies on reflection
to identify the properties referred to in the list and builds a
corresponding customization interface at runtime.

Finally, for general-purpose visual modifications, we allow
bypassing XCharts and IATK entirely and using custom ren-
dering primitives and shader code instead. Such code may be
useful for gameplay modifications that are not directly data-
driven (such as in-game cinematics or accessibility interfaces).

C. Runtime control

To instantiate a visual modification at runtime, we provide
a runtime control interface (T3). The interface allows the
user to manage the lifecycle of visual modification. Visual
modifications can be created, connected to game objects,
modified via their customization interface, and finally deleted.

All visual modifications prepared in the previous step are
stored as Unity prefabs, so they can easily be inserted as new

TABLE I
SUMMARY OF UNITY FEATURES USED BY CECILIA.

Feature Description
GameObject Entity in the virtual environment
Scene Scene graph of the virtual environment
Prefab Stored hierarchy of Game Objects
Assets Scenes, game objects, scripts, etc.
Asset bundle Assets compiled into a file
Assembly CIL code in a dynamic link library (DLL) file

game objects at runtime. To establish the connection between a
newly instantiated visual modification and its target game, the
user must specify one or more game objects as parameters,
either to attach visual modification to the game object, or
to track game object properties, or both. For this purpose,
we retrieve and display the hierarchy of game objects in the
scene from the Unity runtime system. After the user selects
an object, we intercept the resulting event and connect visual
modification to the chosen object.

D. Example workflow

Let us look at an example of a moving game entity (e.g.,
the karts described in Section V, for which we want to display
a trail indicating the entity’s recent movement. We add the
CECILIA toolkit to the game, explore the game content with
the CECILIA debug UI, and identify the relevant game object.
The debug UI supports selecting the character by clicking on
the screen or, alternatively, filtering game objects by type or
name. Filtering can be performed interactively in the debug UI,
but also programmatically at runtime (see Figure 9) to connect
visual modifications to dynamic collections of game objects.
Once a game object is identified, reflection is used to reveal
the various components and attributes of the game object. We
select the position element of the transform component of the
character for our visualization.

We set up an IATK visualization displaying a poly-line with
a fixed number of segments. Adding a visualization requires
writing a few lines of C# code that instantiates a prefab
contained in the CECILIA toolkit. The vertices that define
the polyline are connected to the entity’s position. The vertex
array is configured as a fixed-size buffer. When a new vertex
is added, the oldest one is discarded. We connect the vertex
to the game character so a new vertex is added whenever the
character’s position changes. The poly-line is drawn relative to
the character’s feet, slightly above ground. It is rendered with
depth buffering enabled, so that the trail appears as a decal
over the ground, but it properly occluded by other objects or
higher terrain.

The resulting modification consists of additional files that
contain the toolkit and the bespoke modification. These mod-
ifications are stored in a set of files, and the original Unity
application is modified to load these files at startup (see
Section IV-B for more details). In the modified application,
the visual modification is now available and can be invoked
automatically or on demand.



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 6

Debug UI

Fig. 5. Magic the Gathering: Arena was extended using CECILIA. (A) The unaltered game is depicted from the player’s perspective. (B) The debug UI
allows for game object manipulation on the fly. The blue arrows indicate the manipulated colors of the cards. (C) A hidden test menu is presented, which
was dormant in the game and activated by enabling the corresponding game object within the hierarchy. In (B) and (C), we altered the camera to a different
angle than used in the original game.

IV. IMPLEMENTATION

The previous section has outlined the goals and workflow
of CECILIA from a user interface perspective. In this section,
we explain the technical process for creating visual modifi-
cations (Figure 4). CECILIA injects code modifications into
existing Unity applications. The injection leverages the fact
that Unity relies on the common intermediate language (CIL),
a form of byte-code used by .NET or Mono, which has a
known structure. The original application code is modified so
that the CECILIA toolkit is automatically loaded, and event
handlers are added that trigger the creation of custom visual
modifications as in-game objects.

We also considered modifying native C/C++ libraries [50],
which would potentially allow us to target other engines and
platforms (see also the discussion in Section VII). Android and
other mobile platforms rely on IL2CPP4 compilation, which
produces native C/C++ libraries. Decompilers like CPP2IL5

revert native libraries back to managed ones that are accessible
by CECILIA. However, dealing with native libraries is more
difficult, and we considered the wide adoption of Unity
sufficient for the purposes of our study.

We start this section with an overview of Unity’s software
architecture. Then, we explain how to modify Unity assemblies
and how to prepare asset bundles in the required code format.
We conclude the section by reviewing the aspects of our user
interface for code modifications.

A. Unity software architecture

Unity applications use an entity-component design pattern
[51], [52]. This pattern follows a paradigm of composition over
inheritance and is also known as composite reuse principle
(not to be confused with the entity-component-system pattern,
or ECS). Each entity, a so-called game object, aggregates
one or more components which define its behavior. The
game objects populate a three-dimensional environment, the
scene, represented as a hierarchical scene graph. Game objects
typically consist not only of components, but refer to other
game objects to build hierarchical structures. Recurring game
object hierarchies are defined as prefabs. When creating new

4https://docs.unity3d.com/6000.1/Documentation/Manual/scripting-backe
nds-il2cpp.html

5https://github.com/SamboyCoding/Cpp2IL

game objects, their behavior is defined using scripts written
in C#, which call the native API functions of Unity. Scripts
are compiled into assemblies using Mono [16] or .NET in
newer versions. Moreover, game assets, such as game objects,
images, geometric models, materials, etc., are organized into
asset bundles and stored in a proprietary file format. Scripts
are compiled into assemblies, which can be shipped together
with asset bundles. Table I summarizes the features used by
CECILIA.

B. Code modification

“Weaving” is the process of modifying the code of an
existing application that is given as CIL code. Tools such as
Postsharp or Mono.Cecil are commonly used in large software
applications to add patches or enforce save-guards, such as
range checks. However, existing weaving tools only support
the low-level mechanics of code modification, which makes
them hardly suitable for the creative process of generating
visual modifications.

To support a convenient workflow, CECILIA wraps the
weaving mechanics in a simple mechanism. Recall that the
code of .NET/Mono applications is kept in assemblies, while
application data is kept in asset bundles. A visual modification
typically consists of new code and new game content, which
are stored in a new assembly file and asset bundle, respectively.
In addition, we must also add code and content of the
CECILIA library itself to the game. Both can be achieved
by extending the list of files that the original application loads
upon startup. Moreover, existing code must be modified to
invoke the visual modification automatically or on demand.
For that purpose, we intercept certain standard procedures,
such as instantiations of a given class or handling of a given
event, and patch them to invoke the CECILIA functions.

The steps to generate the new and modified files are fully
automated, based on the choices the modder made in the
earlier steps of working with CECILIA (exploring the game
content, defining the visual modification, connecting visual
modification to the game content). When the development
of visual modification is complete, it can be injected with
a single click for testing in the live game. The CECILIA
code itself has negligible impact on the performance of the
target game. However, the custom code introduced to create
a custom visualization or other game modification might



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 7

Fig. 6. Game analytics package adding the analysis overlay in dark gray: (A) shows Risk of Rain 2 in a very peaceful moment with some renders being
active and approx. 6000 game objects are being loaded. The yellow outlines show the selected grass game object. (B) continues in Risk of Rain 2, but with
an enemy shooting at the player causing more mesh renderers and particle renders to spawn. (C) Minon Masters with active mesh shaders, and (D) Ultimate
Chicken Horse, a 2D Jump’n’Run platform mainly using sprites for its visuals.

affect the game performance. While we did not observe any
performance problems with the modifications described in this
paper, introducing heavy computations could potentially slow
down the target game or affect its internal timing.

C. User interface of the code modification process

To support the process described above, we have automated
the process and added code modification tools accessible
through the Unity IDE. Repurposing the IDE for visual mod-
ification creation primarily provides casual developers with a
familiar environment; of course, it does not make the source
code of the target game available. However, even without
source code, the tools added to the IDE make the weaving
procedure rather straightforward: (1) Check the compatibility
of the target game with CECILIA. (2) Import CECILIA pack-
ages into an empty Unity project. (3) Set up target asset bundle
and assembly definition. (4) Select “build and deploy” and pick
the target game executable. (5) Test the modified game. Please
see the accompanying video for a live demonstration of the
process.

V. USE CASES

To test our work, we initially crawled Steam for popular
games made with Unity and identified 235 for which we
owned licenses. About half of these games could not be used
due to versioning conflicts. Minor version conflicts can be
resolved with a Unity update. Major version changes (≥2017)
should also work, though they might require more adaptation.
We lacked the time to resolve these conflicts and instead
concentrated on the over 100 games which were instantly
compatible with CECILIA. From these games, we selected
17 games, covering a wide selection of genres, for use with
CECILIA (Table II). In the remainder of this section, we
discuss a variety of use cases and visual styles.

A. Debugging menus in games

In-game visualizations are particularly interesting to illus-
trate and investigate potential flaws in game design and game
mechanics. As discussed in section III-A, CECILIA provides a
runtime debugger to inspect Unity game objects in a manner
similar to the Unity IDE. The scene graph is presented in

TABLE II
LIST OF GAMES TESTED THAT WERE WITH CECILIA. MORE

INFORMATION ABOUT A GAME CAN BE FOUND ON THE STEAM WEBSITE
VIA HTTPS://STORE.STEAMPOWERED.COM/APP/⟨STEAMID⟩.

Game Title Steam ID Year
Dinkum 1062520 2022
Enter the Gungeon 31169 2016
Getting Over It with Bennett Foddy 240720 2017
Human: Fall Flat 477160 2016
Magic the Gathering Arena 2141910 2022
Minion Masters 489520 2019
Pummel Party 880940 2018
Rain World 312520 2017
Risk of Rain 2 632360 2020
Shellshock Live 326460 2020
Seven Days to Die 251570 2009
Sixty Seconds! Reatomized 012880 2019
Slime Rancher 433340 2020
Subnautica 264710 2018
Unturned 304930 2017
Ultimate Chicken Horse 386940 2016
Valheim 892970 2021

a hierarchy view. With this option, one can select in-game
objects, inspect their properties and change them (e.g., size of
an object, visibility, physics). Furthermore, game objects can
be manipulated. Figure 5B shows the use of the debugging
menu in Magic the Gathering Arena to change the color of
the card border to pink, while Figure 5C shows a hidden test
menu that we enabled. In both views, the default position of
the camera has also been changed.

B. In-game analytics

The built-in profiler and debugger built into the Unity IDE
assume access to the application’s source code. Therefore, pro-
filing and debugging a compiled game (the “release version”)
is not possible with the Unity IDE.

The weaving approach of CECILIA enables profiling and
debugging even when the source code is not available. We
can retrofit profiling functionality after deployment. We relied
on XCharts to create complex 2D charts shown as floating
overlays. For example, we can use standard game engine
features to inject missing functions, such as a frame-per-
second meter, into every game.

We use C# reflection to filter game objects based on their
components and compute their statistics for visual modifi-



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 8

Fig. 7. Visual modifications added to the Kart game. (A) Navigation visualization showing the route on the road and a directional arrow. (B) The bumper
visualization depicts the distance to the surroundings, similar to the parking sensor visualizations in real cars. (C) Trajectories as trail behind karts, where the
acceleration is color-coded and (D) the trajectory and acceleration data of the kart are visualized as 2D screen overlay.

cations. In this example, we implemented a trivial graphics
performance analyzer that reports the variety of rendering
objects used (mesh, sprite, particle, etc.) and the number
of currently active game objects. We took care to only use
basic Unity functions, so the performance meter is compatible
with any game supported by CECILIA. Figure 6 shows a
number of games with the game analytics package enabled
and additionally shows the current resolution and frames per
second (FPS).

C. Prebuilt visualizations

To demonstrate the use of prebuilt data visualizations, we
modified a driving game, which allows the user to steer a taxi
and transport passengers across a nightly city. The game itself
is a total conversion of the “Kart” sample game shipped with
Unity, where a procedurally generated city as well as ambient
traffic in the form of randomly navigating non-player cars has
been added.

a) Distance visualization: The distance visualization
provides a collision warning (Figure 7B). It casts rays outward
from a circle around a game object and intersects them with
the surrounding terrain. The polyline resulting from connecting
the ray intersections with the terrain is shown as colored lines
emitted radially from the game object. The color of the lines
is determined using a color gradient with the distance of the
terrain hit point as an argument. Driving too close to the terrain
turns the line from green to red.

b) Trajectory visualization: The trajectory visualization
shows a visual representation of the path that a game object
has taken through the environment, in the form of a polyline.
The trajectory is created at a given frequency (using a redraw
interval) or by adding a new data point whenever the object
moves further than a threshold. Multiple three-dimensional
trajectory visualizations can be created at once, as shown in
Figure 7C, where every kart has its own trajectory.

c) Radar visualization: The radar visualization attaches
to a game object and draws the objects it tracks as spheres.
For specifying the tracked objects, we use the same filters as
for the trajectory visualization. Multiple distinct sets of objects
can have different colors and sizes.

d) Navigation visualization: We use the data on the
procedurally generated city to provide “Google maps”-style
navigation assistant. The calculated route is directly overlaid

on the streets of the game world to mimic an “augmented
reality” cockpit. When a passenger is picked up or an address
is entered in the customization interface, a route from the
current location in the city to the destination is computed using
standard path finding (A*) algorithm. The route is drawn using
line primitives, as shown in Figure 7A. The path is updated
when a new route is requested or when the player drives too
far from the path.

D. Gameplay mods
We used Subnautica, an underwater adventure game on a

remote planet with alien marine life, to demonstrate the cre-
ation of a mod that extends the gameplay. In Subnautica, many
different fish-like creatures live underwater and have different
behaviors, swimming routines, interactions, and personalities.
The main target of the game is to unwind the story, restore
the space ship and escape the planet. What the original game
does not offer is the ability to analyze the creatures’ behaviors
and their species diversity to get a better understanding of the
planet from the point of view of a behavioral scientist. The
aim of our extension is to see all species and to track their
behavior. We contribute the following enhancements, which
seamlessly integrate with the game mechanics.

a) In-game radar: The radar extends the player’s HUD
to easily visualize the creatures nearby (Figure 8, f). By
tracking the position of creatures (Figure 9), we can filter them
by distance and feed them to IATK. With IATK, we render a
bird-eye view with the player at the center. The north direction
of the radar aligns with the viewing direction of the player.

b) Observation lab: The lab consists of four screens
and a positional tracker. Screen 1 (Figure 8, b) shows the
selected species, where unseen species are blacked out, and
seen species are rendered with their natural appearance. Screen
2 (Figure 8, c) shows all individuals of the selected species
and allows the player to scroll through and select one. Screen
3 (Figure 8, d) shows a third-person surveillance view of the
selected creature. Technically, we add a virtual camera that
follows the selected creatures. Screen 4 (Figure 8, e) depicts
the depth of the selected creature in real time using IATK for
graph visualization. The position tracker is a 3D visualization
of the trajectories of creates of a species, showing the player as
a red dot and the selected creature as a yellow dot (Figure 8C).
We retrieve species by reflection and add a position tracker to
report positions to IATK.



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 9

Fig. 8. Enhanced Subnautica: (A) New exploration area with in-game 3D assets: (a) positional tracker showing the trajectories of selected creatures, (b)
species selection screen, (c) creature selection within a species, (d) surveillance view of a chosen creature, (e) visualization of the current depth as a line chart
using IATK, (f) bird-eye radar aligned with the player to find creatures also using IATK. (B) Screens (b-e) visualize data of a tracked creature. (C) Positional
tracker in action. (D) Question mark glyph above an unseen species .

Fig. 9. Runtime evaluation of an type search added to the game Subnautica to
retrieve all instantiated creatures. The resulting list _creatures can further
be used to access and track the found creatures.

c) Enhanced creatures: A question mark is attached
above unseen species (Figure 8, D). Once observed, the
question mark is replaced by the species name.

E. Accessibility mods

Pummel Party is a tabletop game with embedded
minigames. In this fast-paced game, it is often difficult to
keep track of the player characters. Furthermore, such games
usually do not come with any accessibility feature. By im-
plementing a high-contrast mode and following color-palette
suggestions for easy readability, we add a fully integrated
accessibility mode. Technically, we use Unity’s layer system,
where the player characters are rendered onto a specific layer.
We can produce a stencil texture for a screen-space overlay to
isolate the players by adding a virtual camera to render only
the players. Figure 10 shows the resulting gray background
overlay and green player overlay. The implementation can be
reused in any other game using the layer system.

Risk of Rain 2 is a third-person sci-fi shooter which lets
the player battle against increasing amounts of monsters on
a remote planet. The game is very fast paced, with a lot of
jumping, shooting and running, naturally creating a very busy
environment. The main objective was to apply the package
created with Pummel Party to Risk of Rain 2 and to test how
well it works. Alas, Risk of Rain 2 does not use Unity’s layer
system for rendering.

Therefore, we implemented a slightly slower alternative to
the layer approach. It uses C# reflection to filter for game
objects that contain certain components. To make the filtering
independent of in-game behavior, we add an additional pass
which renders the meshes of filtered objects into a stencil

buffer; the latter is used as before in Pummel Party to create
the screen space overlays. We adopt a colorblindness-friendly
palette with gray background, the player in green, enemies in
purple and interactive objects in yellow (Figure 10B, C). The
only game-specific information required is the list of game
objects that participate in the stencil creation.

Slime Rancher is a first-person adventure game in which
the player needs to catch slimy creatures inhabiting the planet,
collect their slime and make money to expand the slime ranch.
Since the game is already vibrantly colored and uses a lot
of small text [53], we integrate a text-to-speech processor,
UAP [54]. We apply our filtering to find text widgets and
attach the text-to-speech processor to render the text using
the host device’s standard synthetic voice. The only specific
information required to apply this form of accessibility support
is the game object that holds the text to be rendered.

VI. DEVELOPER EVALUATION

The purpose of the study presented in this section was to
obtain an informal first assessment of the usability of our
toolkit in terms of workflow and ease of use. The participating
experts (game developers) had to perform a set of tasks using
CECILIA, with the help of a how-to video that demonstrated
the required workflow. A questionnaire was presented before
(Table III) and after (Table IV) the task (Table V).

A. Procedure

We investigated the suitability of CECILIA for modifying
games with little insight into their workings. For that purpose,
we recruited four software developers (one female, three male)
from the authors’ personal network to complete two tasks
using CECILIA. All developers had experience with game
development in Unity. We started by taking a demographic
questionnaire and asking questions about the experience of
the participants and the background of the developer as stated
in Table III. Then we showed the participants a five-minute
how-to video showcasing working with CECILIA. Participants
used a dual-screen setup, with the video playing on one screen,
while they worked along starting from an empty Unity project.
The participants could stop the video at any time and were
allowed to ask additional questions to the experimenter.



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 10

Fig. 10. High contrast accessibility modes using different techniques: (A) Pummel Party, depiction of the original game on the left and our accessibility
version with the players highlighted in green on the right, (B) a high-contrast mode similar to (A) for Risk of Rain 2, (C) an action scene in Risk of Rain
2 with color projectiles (purple). Both implementations utilize Unity’s layer system for (A) and a secondary render pass for (B) and (C). In both cases, we
render stencils on the overlays.

Fig. 11. Evaluation on Magic the Gathering: Arena: (A, B) before/after the comparison of A1, where the Collection element on the nav-bar has been enabled
(circle in B), (C-F) outcome of A2 for participants D1 to D4, (D) animated in-game texture on the cube, (F) in-game texture on the capsule.

B. Tasks
After viewing the how-to video, participants were asked to

perform two tasks, A1 and A2 (Table V). After looking into
a number of games, we selected the main menu of Magic
the Gathering: Arena (Figure 11). We found the menu to be
a good target for novice users, since it is visually rich, but
without confusing the developer with too much action. Any
changes made by the developer could be immediately observed
without the need to load a specific level or game situation.

Task A1 allowed participants to experience the debugging
UI and code modification. The key operation was the use of
the search function in the hierarchy view to find the element
Nav_Collection (a hidden menu) and activate it. This task
was intended to familiarize the developer with the UI and
its search and scene-hierarchy capabilities, reminiscent of an
exploration step aimed at finding a specific game component.

Task A2 was concerned with introducing new visual ele-
ments into the game. For that purpose, a prefab containing a
cube had to be created and set up correctly with a particle
system, and a material had to be created and applied to the
cube. Both elements had to be added to the asset bundle and
configured for automatic loading.

Finally, we administered another questionnaire about the
workflow and conducted an open discussion about the experi-
ences of the participants. At the end of the study, participants
had to answer a final questionnaire about the workflow.

C. Results
(Q1-8) All participants were developers and researchers

(aged 26-33) and had intermediate or expert knowledge of

TABLE III
DEVELOPER STUDY INITIAL QUESTIONNAIRE

Q01 Are you familiar with the Unity Game Engine?
Q02 Are you familiar with prefabs in Unity?
Q03 Are you familiar with scripts in Unity?
Q04 Are you familiar with Unity’s AssetBundles?
Q05 Are you familiar with how to create AssetBundles?
Q06 Are you familiar with how to load AssetBundles at runtime?
Q07 Are you familiar with scenes in Unity?
Q08 Are you familiar with scene loading in Unity?
Q09 How many years of experience do you have in developing or

coding?
Q10 How many years of experience do you have using a game engine?
Q11 How many years of experience do you have in Unity?
Q12 How many years of experience do you have in C#?
Q13 How often do you use unity?
Q14 Have you compiled your own library?
Q15 Are you aware of managed and native libraries/dll?
Q16 Have you heard of code modification / weaving?
Q17 Have you heard of reflection in C#?
Q18 Are you familiar with mono/.net?
Q19 Are you familiar with assembly definition (asmdef) files in Unity?
Q20 Do you use AssetBundles in your projects?

Unity, covering all essential functions for handling scenes,
game objects, asset bundles, deployment and release, and de-
bugging. (Q9-13) Participant D1 has four years of experience
in C# and Unity, 15 years of general development expertise,
and uses Unity once every two months. Participant D2 has
five years of experience in C# and Unity, overall 10 years of
development expertise, and uses Unity on a monthly basis.
Participant D3 has seven years of experience in 3D engines,
one year in Unity, and one year in C#. Furthermore, D3 has



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 11

TABLE IV
DEVELOPER STUDY FOLLOW-UP QUESTIONNAIRE

F01 Was the workflow video helpful?
F02 Did you find the workflow video complicated?
F03 Did you find the workflow simple?
F04 Do you consider regular use of Cecilia with the presented work-

flow?
F05 How or for what would you use Cecilia?
F06 What would be a specific application?
F07 What did you like about the workflow?
F08 What did you dislike about the workflow?

14 years of development experience, uses Unity daily, and is
selling a Unity-based game on Steam with more than 30K
downloads. Participant D4 has six years of Unity and C#
experience, ten years of general development expertise, and
uses Unity weekly for virtual reality applications. (Q14-15) D1
and D2 work on mobile applications and make extensive use of
Unity’s cross-platform capabilities. (Q16-18) All participants
had heard of code modification and are familiar with C#
reflection. Only D3 and D4 have a deeper understanding of
Unity’s rendering pipelines. (Q19-20) None of the participants
used assembly definition files, but D3 and D4 used asset
bundles sporadically.

All participants conducted the study in less than an hour
and completed both tasks successfully (Figure 11). D1 and D2
had some questions about asset bundles and materials, while
D3 and D4 were very confident, drawing on their extensive
knowledge of Unity. One pitfall was a mismatch between the
standard rendering pipeline used in Magic, which conflicted
with the universal rendering pipeline of the Unity 2020.3
project we provided. This conflict caused a failure to load the
default shader, which was easily fixed by D3 and D4, while
D1 and D2 needed additional hints.

All participants successfully built and deployed CECILIA
into the game. (F1-3) The how-to video was found to be more
than sufficient for the first use; several participants called it
“easy” or “straightforward”. All participants said that they
were impressed by how easy it was to add content to a game or
alter its internals. Participant D1 was noticeably excited when
he first saw the sparkling cube in the game (Figure 11D). (F4-
6) All participants would consider using CECILIA in their
current project, i.e., to post-patch features or fixes (D1-D2) or
to investigate the attack surface of the commercial application
of D3. (F7-8) After finishing, D1 explicitly mentioned the ease
of use of CECILIA and the workflow presented.

One participant mentioned that it was a fast process to add
something to a game. Another participant suggested testing
CECILIA with a virtual reality game as potential future work.
Participant D4 suggested a feature to automatically add created
content to the asset bundle after forgetting to do so on the first
try. We noted that the usability of CECILIA has some room
for improvement, but no major problems were observed during
the study.

Despite the fact that our study has to be taken with a grain
of salt due to its very limited size, we did not uncover any
pitfalls, and our expert participants were instantly capable of
executing a basic code modification workflow with CECILIA.
We are aware that novice users of Unity might face a harder

TABLE V
DEVELOPER STUDY TASKS

A1 Enable the inactive collection menu within the navigation bar of
the game Magic the Gathering: Arena.

A2 Add a colored cube or other 3D object emitting particles to the
game Magic the Gathering: Arena.

time, but this must be expected as a general result of Unity’s
learning curve. Additionally, our how-to video was deemed
helpful as a reference while performing the tasks.

VII. DISCUSSION AND CONCLUSIONS

We contribute the design and implementation of a toolkit
to enhance Unity’s game builds with in-game visual modifi-
cations. It allows users with a wide variety of backgrounds,
such as quality assurance, modders, or game moderators, to
better understand the game content and in-game behaviors.
This paper demonstrates the workflow by modifying the com-
piled source code and how to add different forms of visual
modifications. We present different use cases, including in-
game debugging and analytics, visual and gameplay mods,
and retrofitted accessibility modes.

Although we only had a small number of participants in
our developer-centric evaluation, we could observe promising
responses. Developers with Unity knowledge were surprised
how easy and fast it was to get custom content in a game.
The developer study took around 45 minutes from the first
keystroke to successfully adding the content. In comparison,
the use cases presented in Section V took us between 20 and
40 work hours to build. The time invested was primarily spent
exploring the structure and mechanics of the game, while the
actual process of adding the visual modifications takes little
time once the right elements of the game are identified.

While the current version is designed for the game engine
Unity, we plan to extend this in future work to other leading
game engines, like Unreal [31], CryEngine6 or Lumberyard7.
Both Unreal and CryEngine have extensions8 that support the
.NET framework; Lumberyard supports the Python language,
which uses an intermediate language that could be used for
an approach similar to the one taken by CECILIA with .NET.

The current implementation of CECILIA is tailored to
Unity’s control flow. However, supporting the control flow
of other engines is possible, although it would require some
amount of software engineering: The commonly used game
engines employ similar concepts, such as hierarchical scene
graphs and entity-component patterns. On a conceptual level,
the workflow of CECILIA – data exploration, then visual
encoding and view rendering – remains largely the same across
engines; only the implementation details are engine-specific.

While CECILIA is currently designed for experienced de-
velopers, we plan to further enhance the usability of the toolkit
to support wider audiences. Especially retrofitting desirable

6https://www.crytek.com/cryengine
7https://aws.amazon.com/de/lumberyard
8https://github.com/nxrighthere/UnrealCLR,

https://devblogs.microsoft.com/dotnet/choose-a-net-game-engine



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 12

standard features, such as performance monitoring or accessi-
bility modes, to existing games with minimal effort (or even in
a fully automated manner) would be a worthwhile endeavor.

Like many advanced digital tools, the potential of CECILIA
for dual use raises ethical questions. Manipulating the work of
others without permission is an ethically gray area, where the
interpretation strongly depends on the use case and the status
of the user. It must be assumed that adding mods can interfere
with the author’s intention.

Clearly, publishing modified games violates the terms of
service in most cases and can have legal consequences. In
contrast, applying in-game changes for personal use (e.g.,
enhancing the playability of the game) is ethically less ob-
jectionable and permissible in many legislations, provided
one owns a valid license. Some use cases may be covered
by the “fair use doctrine” covering, among others, scientific,
educational or preservationist goals. The move to online games
makes the topic of game modifications even more complex:
While certain use cases, such as e-sports, crucially depend on
added features such as game streaming, other game mods (e.g.,
the famous “wall hack” letting players in shooter games make
walls transparent to see opponents early) destroy fairness in
games. We assume that most competitive online games have
built-in defenses against unfair mods. CECILIA uses a rather
straightforward weaving approach and does not provide any
special features that could be used to bypass anti-modding
saveguards built into games.

We see the main area of application of CECILIA in personal
uses (such as accessibility) and in games research, the latter
being the original motivation for developing CECILIA. Con-
sequently, we will make CECILIA available to the community
upon paper acceptance.

ACKNOWLEDGMENTS

The authors thank Alexander Plopksi for looking at countless games.
Furthermore, we thank our study participants for taking the time
to participate in the developer evaluation and the Alexander von
Humboldt Foundation funded by the German Federal Ministry of
Education and Research. This research was funded in whole, or in
part, by the Austrian Science Fund (FWF) [10.55776/I5912]. For
the purpose of open access, the author has applied a CC BY public
copyright licence to any Author Accepted Manuscript version arising
from this submission.

REFERENCES

[1] Emerging-India-Analytics, “10 ways: How is data analysis used in
video games?” 2024. [Online]. Available: https://medium.com/@analy
ticsemergingindia/10-ways-how-is-data-analysis-used-in-video-games
-b5db42337b1d

[2] J. Babb and N. Terry, “Comparing video game sales by gaming plat-
form,” Southwestern Economic Review, vol. 40, pp. 25–46, 2013.

[3] N. Männikkö, H. Ruotsalainen, J. Miettunen, H. M. Pontes, and
M. Kääriäinen, “Problematic gaming behaviour and health-related out-
comes: A systematic review and meta-analysis,” Journal of Health
Psychology, vol. 25, no. 1, pp. 67–81, 2020.

[4] L. A. Kort-Butler, “Gamers on gaming: a research note comparing
behaviors and beliefs of gamers, video game players, and non-players,”
Sociological Inquiry, vol. 91, no. 4, pp. 962–982, 2021.

[5] V. C. Gazis, Video gaming: The sociology of a lifeworld. University
of Exeter (United Kingdom), 2012.

[6] R. Dörner, S. Göbel, W. Effelsberg, and J. Wiemeyer, Serious Games –
Foundations, Concepts and Practice. Springer, 2016.

[7] B. Bowman, N. Elmqvist, and T. Jankun-Kelly, “Toward visualization
for games: Theory, design space, and patterns,” IEEE Trans. Vis. Comp.
Graph., vol. 18, no. 11, pp. 1956–1968, 2012.

[8] J.-L. Hsieh and C.-T. Sun, “Building a player strategy model by
analyzing replays of real-time strategy games,” in 2008 IEEE Interna-
tional Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence). IEEE, 2008, pp. 3106–3111.

[9] K. Marriott, F. Schreiber, T. Dwyer, K. Klein, N. Henry Riche, T. Itoh,
W. Stuerzlinger, and B. H. Thomas, Immersive Analytics, ser. Lecture
Notes in Computer Science. Springer International Publishing, 2018.

[10] NexusMods, “Landing page,” 2024. [Online]. Available: https:
//www.nexusmods.com/games

[11] A. E. Soupé, “Game engines market shares on steam (all time, 2022,
2021),” https://www.reddit.com/r/dataisbeautiful/comments/10vcj5e/
oc game engines market shares on steam all time/, 2022, accessed:
2024-03-26.

[12] D. Lars and P. Anthony, “Game engines on steam: The definitive
breakdown,” https://www.gamedeveloper.com/business/game-engine
s-on-steam-the-definitive-breakdown, 2022, accessed: 2024-03-26.

[13] “Steam instant search,” https://steamdb.info/instantsearch/, 2022,
accessed: 2024-03-26.

[14] S. Team, “Did you know that 60% of game developers use game
engines?” https://www.slashdata.co/post/did-you-know-that-60-of-
game-developers-use-game-engines, 2022, accessed: 2024-11-26.

[15] R. Wallace, “Gaming poised to continue accelerated growth according
to unity gaming report 2022,” https://unity.com/our-company/newsroom
/gaming-poised-continue-accelerated-growth-according-unity-gaming-
report-2022, 2022, accessed: 2024-03-26.

[16] M. Menard and B. Wagstaff, “Game development with unity®, second
edition,” 2015. [Online]. Available: https://searcher.com.br/download.h
tml/Game%20Development%20with%20Unity%202nd%20Edition%20
Book%20of%202015%20Year.pdf

[17] K. Hornbæk, A. Mottelson, J. Knibbe, and D. Vogel, “What do we mean
by “interaction”? an analysis of 35 years of chi,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 26, no. 4, pp. 1–30, 2019.

[18] P. J. Bank, M. A. Cidota, P. Ouwehand, and S. G. Lukosch, “Patient-
tailored augmented reality games for assessing upper extremity motor
impairments in parkinson’s disease and stroke,” Journal of medical
systems, vol. 42, pp. 1–11, 2018.

[19] M. Carter, J. Downs, B. Nansen, M. Harrop, and M. Gibbs, “Paradigms
of games research in hci: a review of 10 years of research at chi,” in
Proceedings of the first ACM SIGCHI annual symposium on Computer-
human interaction in play, 2014, pp. 27–36.

[20] S. Kriglstein, G. Wallner, S. Charleer, K. Gerling, P. Mirza-Babaei,
S. Schirra, and M. Tscheligi, “Be part of it: Spectator experience in
gaming and esports,” in Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems, 2020, pp. 1–7.

[21] H. Desurvire and C. Wiberg, “Game usability heuristics (play) for
evaluating and designing better games: The next iteration,” in Online
Communities and Social Computing: Third International Conference,
OCSC 2009, Held as Part of HCI International 2009, San Diego, CA,
USA, July 19-24, 2009. Proceedings 3. Springer, 2009, pp. 557–566.

[22] M. S. El-Nasr, A. Drachen, and A. Canossa, “Telemetry collection
and tools,” in Game Analytics: Maximizing the Value of Player Data.
Springer, 2013, pp. 83–201.

[23] A. de Jongh, “Playtesting: Avoiding evil data,” 2017. [Online]. Available:
https://www.gdcvault.com/play/1024132/Playtesting-Avoiding-Evil

[24] G. Wallner and S. Kriglstein, “Visualization-based analysis of gameplay
data – a review of literature,” Entertainment Computing, vol. 4, 8 2013.

[25] C. Bauckhage, K. Kersting, R. Sifa, C. Thurau, A. Drachen, and
A. Canossa, “How players lose interest in playing a game: An empirical
study based on distributions of total playing times,” in IEEE conference
on computational intelligence and games. IEEE, 2012, pp. 139–146.

[26] A. Drachen, A. Canossa, and J. R. M. Sørensen, “Gameplay metrics in
game user research: Examples from the trenches,” in Game Analytics:
Maximizing the Value of Player Data. Springer, 2013, pp. 285–319.

[27] J. Mertens, “Broken games and the perpetual update culture: Revising
failure with ubisoft’s assassin’s creed unity,” Games and Culture, vol. 17,
no. 1, pp. 70–88, 2022.

[28] R. Ramadan and Y. Widyani, “Game development life cycle guidelines,”
in 2013 International Conference on Advanced Computer Science and
Information Systems (ICACSIS). IEEE, 2013, pp. 95–100.

[29] L. Poretski and O. Arazy, “Placing value on community co-creations:
A study of a video game’modding’community,” in Proceedings of the
2017 ACM Conference on Computer Supported Cooperative Work and
Social Computing, 2017, pp. 480–491.



TRANSACTIONS ON GAMES , VOL. X, NO. Y, AUGUST 2024 13

[30] H. Postigo, “Modding to the big leagues: Exploring the space between
modders and the game industry,” First Monday, 2010.

[31] E. Games, “Unreal engine,” https://www.unrealengine.com/, 2022,
accessed: 2022-04-28.

[32] V. Software, “Source engine,” https://developer.valvesoftware.com/wiki
/Source, 2022, accessed: 2022-04-28.

[33] U. Technologies, “Unity engine,” https://unity.com/, 2022.
[34] L. Schreiner and S. von Mammen, “Modding support of game engines,”

in The 16th International Conference on the Foundations of Digital
Games (FDG) 2021, 2021, pp. 1–9.

[35] W. Scacchi, “Modding as a basis for developing game systems,” in
Proceedings of the 1st international workshop on Games and software
engineering, 2011, pp. 5–8.

[36] D. Spinellis, “Debuggers and logging frameworks,” IEEE software,
vol. 23, no. 3, pp. 98–99, 2006.

[37] “Building the world of assassin’s creed origins,” https://80.lv/articl
es/building- the-world-of-assassins-creed-origins/, 2018, accessed:
2022-05-08.

[38] S. Xu and V. Rajlich, “Cognitive process during program debugging,” in
Proceedings of the Third IEEE International Conference on Cognitive
Informatics, 2004., 2004, pp. 176–182.

[39] Family-Gaming-Database, “Landing page,” 2024. [Online]. Available:
https://www.familygamingdatabase.com/

[40] B. Yuan, E. Folmer, and F. C. Harris, “Game accessibility: a survey,”
Universal Access in the information Society, vol. 10, pp. 81–100, 2011.

[41] R. P. M. Fortes, A. de Lima Salgado, F. de Souza Santos, L. Agostini do
Amaral, and E. A. Nogueira da Silva, “Game accessibility evaluation
methods: a literature survey,” in Universal Access in Human–Computer
Interaction. Design and Development Approaches and Methods: 11th
International Conference. Springer, 2017, pp. 182–192.

[42] K. Miesenberger, R. Ossmann, D. Archambault, G. Searle, and
A. Holzinger, “More than just a game: accessibility in computer games,”
in 4th Symposium of the Workgroup Human-Computer Interaction and
Usability Engineering of the Austrian Computer Society. Springer,
2008, pp. 247–260.

[43] C. Mangiron and X. Zhang, “Game accessibility for the blind: Current
overview and the potential application of audio description as the way
forward,” Researching audio description, pp. 75–95, 2016.

[44] L. Garber, “Game accessibility: enabling everyone to play,” Computer,
vol. 46, no. 06, pp. 14–18, 2013.

[45] K. R. Dillman, T. T. H. Mok, A. Tang, L. Oehlberg, and A. Mitchell,
“A visual interaction cue framework from video game environments for
augmented reality,” in ACM CHI, April 2018.

[46] R. Sicat, J. Li, J. Choi, M. Cordeil, W. K. Jeong, B. Bach, and
H. Pfister, “Dxr: A toolkit for building immersive data visualizations,”
IEEE Transactions on Visualization and Computer Graphics, vol. 25,
pp. 715–725, 1 2019.

[47] M. Cordeil, A. Cunningham, B. Bach, C. Hurter, B. H. Thomas,
K. Marriott, and T. Dwyer, “Iatk: An immersive analytics toolkit,” 2019,
pp. 200–209.

[48] P. Reipschlager, T. Flemisch, and R. Dachselt, “Personal augmented re-
ality for information visualization on large interactive displays,” vol. 27,
no. 2, pp. 1182–1192, 2021.

[49] “Xcharts,” https://github.com/XCharts-Team/XCharts, 2022, accessed:
2023-11-08.

[50] Y. Younan, W. Joosen, and F. Piessens, “Code injection in c and c++,” A
Survey of Vulnerabilities and Countermeasures, Katholieke Universiteit
Leuven, Belgium, 2004.

[51] C. Stoy, “Game object component system,” Game Programming Gems,
vol. 6, no. 393-403, p. 44, 2006.

[52] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns, “Ele-
ments of reusable object-oriented software,” Design Patterns, 1995.

[53] “Slime rancher accessibility report,” https://www.taminggaming.com/e
n-au/accessibility/Slime+Rancher, 2016, accessed: 2023-11-08.

[54] “Ui accessibility plugin (UAP),” https://assetstore.unity.com/packages/to
ols/gui/ui-accessibility-plugin-uap-87935, 2021, accessed: 2023-11-08.

Philipp Fleck is a PostDoc re-
searcher at Graz University of
Technology. His work focuses
on Augmented Reality, Visu-
alization and distributed real-
time systems. He received his
Master’s degree in 2015 and
his PhD in 2024 from TU
Graz.

Michael Hochörtler is a Mas-
ter’s student at Graz Univer-
sity of Technology. Besides
his academic endeavors he
runs an Indie Game Develop-
ment Studio to showcase his
visions.

Georg Gotschier received his
Master’s degree in 2020 in
Computer Science from Graz
University of Technology. He
continues his research on his
games at GameLab in Graz.

David Kastl received his mas-
ter’s degree in 2022 from Graz
University of Technology. His
strong interest in games led
him to computer science and
his focus on game-related re-
search topics.

Johanna Pirker is an assis-
tant professor at TU Graz.
She focuses on game re-
search, human-computer inter-
action, virtual reality, and ed-
ucational technologies. She is
an active and strong voice of
the local indie dev community.

Dieter Schmalstieg (Fellow,
IEEE) is Alexander von
Humboldt Professor of Visual
Computing at the University
of Stuttgart. His research
interests span augmented
reality, virtual reality, and
visualization.


