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Figure 1: A minimal example of a Desired Reality. The user is standing at the corner of a virtual crossroad (left). Conventionally,
whether the user can cross the desired direction when arriving at the crossroad at a random instance in time depends on an
observed state of reality. In contrast, with a Desired Reality, observation does not lead to a collapse of possibilities into a single
reality. Hence, green and red are equally possible for pedestrians and cars in all directions (see traffic lights and semi-visible
cars). Depending on the side the user decides to cross the two possibilities collapse into a single reality (right).

Abstract
We introduce Desired Realities, a new type of reality that makes
uncertainty a central part of immersive experiences and interac-
tions. Previous works in different areas, such as touch input or
text entry, aimed to hide uncertainties or let users disambiguate
explicitly whenever the intended outcome of their action is ambigu-
ous. In contrast, we suggest a post-hoc disambiguation approach.
Whenever an action is uncertain, a Desired Reality application splits
into multiple parallel universes, visibly co-existing in real-time in-
side the virtual environment. Users then simply ignore unintended
universes and interact with their desired universe, retaining their
agency without resorting to explicit error recovery. In this work,
we present our concept as well as several illustrative examples.

CCS Concepts
• Human-centered computing → Virtual reality; Mixed / aug-
mented reality; User interface toolkits.
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1 Introduction
Immersiveworlds in Virtual Reality (VR), regardless of whether they
simulate real environments or are fully fictional, conventionally
obey most of the laws of physical reality. However, designers of
virtual environments, in particular VR environments, may choose to
ignore specific laws of physics (e.g., picking up and placing virtual
objects that float in mid-air) or provide unrealistic capabilities to
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the user (e.g., “superpowers” [9, 12, 26, 27]). Selectively ignoring
certain constraints of the physical world while retaining a sense of a
cohesive reality can also enhance human collaboration, e.g., across
space [22, 23, 25, 39, 42], across different virtual realities [40], or
across time [7, 11]. In this context, an often overlooked fundamental
aspect of existence is the effect of observing reality itself. In
physical reality, humans are aware of the many possible outcomes
of real events—before or even without experiencing them. However,
we are used to a single reality once we observe it. This understanding
is also grounded in quantummechanics, which holds that observing
physical entities leads to a collapse of all possibilities into a single
experienced reality, while other possibilities that could have been
are deferred to a parallel universe [3, 21, 31], or simply cease to
exist. This fundamental aspect of reality is mostly unquestioned
and unaltered—even in fully fictional artificial realities such as VR.

In this work, we explore what happens if we challenge the as-
sumption that observation (by users) leads to a collapse into a single
reality. As an alternative trigger for reality collapse, we use desire—
implicitly expressed through the actions a user performs when
presented with multiple possibilities. Figure 1 shows a minimal ex-
ample of what we call a Desired Reality. The example argues that,
before arriving at a crossroad (i.e., before observing it) and without
prior knowledge, any direction could have a green light for cars or
pedestrians, i.e., we can imagine multiple possibilities. Convention-
ally, a single direction has green light when observing the crossroad
upon arrival, so one of the possibilities turns into reality. With a
Desired Reality, however, observation is not enough. Only when
the user expresses a desire by crossing in one direction, all traffic
lights adjust accordingly, as the user must have green. Generalizing
from this simple example, this work proposes the novel Desired
Realities concept. We implemented several illustrative examples
that showcase our concept across several VR application aspects,
namely, physics, menus, and gestures.

2 Related work
2.1 Uncertain or ambiguous input
Conventionally, the goal of systems that deal with uncertain in-
put is to resolve ambiguities as quickly as possible, i.e., during or
right after the ambiguous action [13, 34]. This means that ambi-
guity is either hidden from the user or they can explicitly select
different options, such as word suggestions when using text input
[37]. For instance, Mankoff et al. [20] focus on explicitly resolving
ambiguities after the uncertain input (pen input in their case) and
investigate different ways of displaying and explicitly selecting the
correct input afterwards. Similarly, Zhu et al. [44] hide ambiguity
and resolve it internally using Bayesian methods.

In addition to individual algorithms, researchers developed frame-
works for resolving different types uncertain input, primarily for
2D user interfaces and 2D gestures [6, 17, 18]. In particular, the
motivation of Schwarz et al. [33] is very similar to ours. They aim
to resolve uncertainties not as quickly as possible but during the
direct follow-up interaction (in their case within a 2D UI context).
Later work by Schwarz et al. [35] introduced an architecture to
handle and visualize uncertainty in 2D user interfaces.

Overall, previous toolkits for uncertain input were specifically
designed for 2D user interfaces, meaning that they focus on typical

UI widgets and components. Our work generalizes from uncertain
menu input and also connects it with other aspects of applications
like physics and 3D interaction.

Multimodality. Input based on different modalities such as gaze
and speech is useful as a natural, complementary input. Bolt’s
‘Put-that-there’ approach [4] utilizes multiple modalities at once.
However, some modalities can be error prone when used in isola-
tion [15, 19]. Hence, researchers combined multiple modalities for
disambiguation [1, 38, 43], e.g., using finite state machines [5].

To resolve an ambiguous action, our aim is to use interactions
that are separated from the ambiguous action, which is conceptually
similar to multimodal approaches. However, we take into account
follow-up actions using the same modality instead of simultaneous
actions using different modalities.

2.2 Multiverse simulations
In the context of our work, we interpret anything that runs in
multiple instances with a similar start condition as a ‘multiverse’
(or ‘parallel universes’). Given this terminology, several previous
works have explored the use of multiverses to simulate variations
of the starting conditions. For instance, in the context of statistical
analysis, researchers provided tools for running multiple instances
of statistical tests to improve robustness, reproducibility, and trans-
parency [14, 16]. The ‘multiverse analysis’ by Dragicevic et al. [10]
enables readers to switch between multiple possible statistical tests
within the document, i.e., rendering the document with different
test results based on the same data depending on the chosen test.
Sarma et al. [29] run multiple instances of data analyses tasks in R
while reducing redundant data and processing. Similar concepts can
be applied to other types of analysis or simulation, while account-
ing for uncertainty [30]. Schindler et al. [32] let analysts control
multiple data flow scenarios in a multiverse for a comparative anal-
ysis of time-dependent data, e.g., to deal with uncertainty in flood
simulations [41]. Multiverses can even represent real world entities,
such as physical entities in multiversal digital twins [8, 28].

Overall, multiverses—even though often not referred to as such—
have been used in many different contexts and in different forms,
but have rarely been used as an integral part of the user experience,
i.e., visualized, and resolved inside a real-time 3D environment.

3 Illustrative examples
To illustrate our concept, we implemented several examples, show-
casing Desired Realities across various aspects of real-time applica-
tions such as physics, menus, and gestures.

Crossroad
(Demonstrates: minimal application logic)
The Crossroad example, seen in Figure 1, represents a minimal
instance of a Desired Reality. The user is at the corner of a vir-
tual crossroad. Depending on which side the user chooses to cross
(thereby expressing a desire), the respective reality becomes crisp
(i.e., fully existing without alternative versions in other universes).
As opposed to the subsequent examples, this minimal example fea-
tures only two concurrent universes, both of which are presented
to the user from the start.
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Figure 2: Simple example of a physics-based Desired Reality. 1) The user stands on a virtual basketball field and holds a
ball. 2) When thrown towards the basket, the single crisp ball splits into multiple possible balls, each with slightly different
movement parameters, leading to different trajectories. 3) Only few balls go through the basket. 4) Scoring and not scoring are
both possible at this point (see semi-visible point on score display). 5) Whether or not the user scored (see score displays in a
and b) depends on whether they pick up a ball whose trajectory previously went through the basket. In both cases, all other
balls are impossible and hence dissolve.

Basketball throw
(Demonstrates: physics, retrocausality)
Our second example involves splitting a crisp object into many
similar possible objects (Figure 2). The user picks up a basketball
(Figure 2.1) and throws it towards a basket (Figure 2.2). When throw-
ing, multiple possible basketballs (150 in this example) are spawned,
each with slightly different movement parameters, leading to dif-
ferent trajectories. Some of those balls pass through the basket
(Figure 2.3), which means that it is possible but not certain that the
user scored (indicated by a semi-filled score on the scoreboard in
Figure 2.4). When the user picks up a basketball, this ball becomes
crisp, and all other balls vanish (Figure 2.5). If the user picks up a
ball that has passed through the basket, the score becomes fully
crisp (Figure 2.5a). Otherwise, it disappears (Figure 2.5b). This way
of affecting the earlier scoring event by picking up a ball (a later
event) can be seen as retrocausal.

Sorcery
(Demonstrates: uncertain gestures, sequences of possible actions)
Our approach can also handle nested uncertainties. In the following,
we demonstrate a slightly more complex Sorcery example, which
revolves around gestural interaction sequences (Figure 3). The user
stands at a sorcerer’s desk (Figure 3.1). On the desk are four objects:

two potions (red and blue), a green magic wand for summoning
plants, and a red magic wand for summoning creatures. The user
wants to spawn a specific magical entity. First, the user performs
a quick pinching motion with the right hand to pick up a wand.
However, the blue potion and the two wands are so close to each
other that the system cannot reliably determine which of the three
objects the user meant to pick up. Therefore, all three are superim-
posed in the user’s hand (Figure 3.2). The user stretches the right
arm forward (Figure 3.3). This gesture is typical for using a magic
wand, which implies that the user wanted to pick up one of the
wands and not the potion. Hence, the potion is now crisp and back
at its original location on the table, as it retroactively was never
actually picked up (Figure 3.3 bottom). The two wands summon
different entities, but based on the same gesture, namely, a circular
motion (Figure 3.4), i.e., this gesture still does not lead to a disam-
biguation of the wands. The red wand has an additional function:
Pointing towards a surface with a short dwelling time spawns a
small creature attached to that surface. Since the user sketched the
imaginary circle somewhat slowly, the system does not yet know
whether it was a circular gesture or a pointing gesture. Therefore,
in total three possible entities are spawned: a plant, a creature in
mid-air (Figure 3.4 center), and a creature attached to the wall (Fig-
ure 3.4 top). The user now pinches with the left hand within the
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Figure 3: Example of a sequence of different types of gestures and actions. The user wants to summon a magical entity. 1) The
user stands in front of a table with two magic wands and two potions. The red wand is for summoning creatures and the green
one for plants, both using a circular motion gesture. The red wand can additionally summon creatures by pointing at surfaces
for a few seconds. 2) The user wants to grab a magic wand, but because of input uncertainty, the other wand and one potion are
grabbed as well. 3 & 4) The user simply continues with a magic wand gesture for summoning the intended creature. Besides the
intended entity, two additional unintended entities are summoned due to a misclassified additional gesture and the possible
alternative wand. 5) The user simply ignores the unintended entities and interacts with the intended entity by placing it in the
air (a) or on the table (b).

region of the plant and the flying creature. This gesture implies
that the creature on the wall was not intended (no follow-up with
the wand in that location), and it vanishes. Still, both magic wands
are possible, as their interactions are still identical so far. Therefore,
the existence of the wands and magical entities depends on one
last action. If the user releases the pinch in the air—an action that
does not make sense for the plant—the creature becomes crisp and
only the red wand is held (Figure 3.5.a). In contrast, when the pinch
is released close to a surface, the plant turns crisp and only the
green wand is held (Figure 3.5.b). After this final step, no more
ambiguities remain, i.e., all objects and the magical entity are crisp.

Settings menu
(Demonstrates: uncertain menu input)
We implemented a minimal example akin to a probabilistic 2D user
interface in which two buttons right next to each other summon

two different pop-up menus in mid-air (Figure 4). If there is no un-
certainty (i.e., the user clearly presses one of the buttons), then an
ordinary crisp menu interaction is used (black arrows in Figure 4).
If it is uncertain which of the two buttons was pressed (e.g., due to
tracking inaccuracies or imprecise movements by the user), our sys-
tem superimposes both possible menus. One menu features buttons,
and the other one features sliders. The user continues to interact
with the intended menu while ignoring the other one, i.e., the user
either presses buttons or moves sliders as they normally would. The
type of interaction (pointing gesture for a button press versus pinch
gesture for a slider) can be used to discriminate post-hoc which
menu the user intended to open. Hence, the desired menu becomes
crisp, while the other menu vanishes (Figure 4.C.2). A consequence
of our concept is that menu elements of competing universes must
have distinct input methods when being superimposed. We will
discuss those and other implications in the remainder of this work.
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Figure 4: Minimal example of crisp (black arrows) versus uncertain (gold arrows) menu interaction (camera kept static and
background removed for clarity). Start) Two buttons summon two different menus. If the button presses are clear, the respective
menu is opened and used in a crisp way (A & B paths). A) Pressing ‘Theme’ opens a menu with buttons, and the user presses
one of them. B) Pressing ‘Adjust’ opens a menu with sliders, and the user moves one of them. C) Due to inaccuracies (either by
tracking inaccuracies or the user not aiming precisely) it is not certain, which menu the user wanted to summon. Hence, both
menus are possible (C.1). Depending on the user’s action—pointing for button presses versus pinching for sliders (C.2a or C.2b,
respectively)—our system can resolve post-hoc which menu the user wanted to open. Even with the uncertainty, the amount of
actions is the same as with crisp interaction.

3.1 Summary and implications of examples
In all examples, instead of hiding ambiguous input and present-
ing a single outcome, users retain their agency when resolving
uncertainty without significantly changing how they would act in
a universe. Due to the post-hoc interpretation, a single universe
emerges simply by acting as if only this one universe existed. One
implication of such acting in the desired universe (while ignoring
unintended ones) is that false positives do not necessarily require
error recovery by the user—as they simply continue interacting in-
side the true positive universe. Users can navigate into their desired
reality implicitly instead of choosing options explicitly.

The examples showcased different types of uncertain input and
ambiguous system states. The uncertainties used in the Settings
menu example and the Sorcery example could arise due to inaccurate
tracking or imprecise movements of the user, especially within
potentially cluttered environments and with hard-to-reach targets.
For the sake of clarity, the targets in both examples were directly in
front of the user. However, in practice, the targets to press or pick
up could also be in the periphery or even outside the field of view
[36], which means that movements can be challenging to track or
that users rely on proprioception. Other forms of ambiguity can
result from performative actions (Basketball throw example) or be
a deliberate part of the experience (Crossroad example).

4 State machine perspective
Many VR use cases or processes of physical reality can be expressed
by a state machine, describing a current state of the user and the
environment, with transitions to other states triggered by the user’s
actions. Figure 5 visualizes the difference between conventional
realities1 and our Desired Realities concept from a state machine
perspective. As an example, the sequence of actions in Figure 5.A
could represent a walkthrough of a conventional universe version
of our Sorcery example, which could go as follows: The user wants
to pick up a wand to summon a flying creature, but the pinch is
detected closer to the potion due to inaccuracies, which means that
the user needs to put down the potion again (actions 1 and 2 in
Figure 5.A.1). As a next action, the user picks up the wrong wand,
but does not realize it until a magic plant is summoned, which
means the user has to remove the plan and drop the wand (actions
3–6 in Figure 5.A.2). Eventually, the user picks up the correct wand
and performs the correct circular gesture to summon the intended
flying creature (actions 7 and 8 in Figure 5.A.3).

In contrast, in a Desired Reality (Figure 5.B), a single action leads
to multiple state transitions, letting users interact with multiple
states at once, meaning a multiverse walkthrough of the Sorcery
1With “conventional realities”, we refer to both, physical reality as well as artificial
realities heavily inspired by it, including VR.
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Figure 5: Comparison of state transitions in conventional realities (virtual and real) versus our Desired Realities concept with
an abstraction of an example state machine. Conventionally, virtual system states (UI, physics and so on) are heavily inspired
by physical reality. This does not only include realism but also how we understand getting from an initial state to a desired
state—namely changing the environment through actions, including going back and forth (correcting mistakes) until we reach
the desired outcome. Desired Realities disregards such constraints from physical reality and suggests an interplay of ambiguous
actions and acting in a multiverse as if the desired state has been reached all along—until said state becomes real.

example from a state machine perspective would go as follows:
Action 1 in Figure 5.B.1 represents how the user possibly picks up a
potion (action 1 down), a plant wand (action 1 right), or a creature
wand (action 1 down-right). The potion is quickly discarded because
of the follow-up magic wand gestures in action 2 in Figure 5.B.1.
Action 2 also represents how the plant wand summons a plant in
parallel, independent of the two competing summoned creatures of
the creature wand. Through follow-up interaction (action 3: placing
the flying creature in mid-air), a single path becomes crisp.

5 Conclusion and future work
We presented Desired Realities, a multiverse concept in which users
implicitly choose their experienced reality through their actions.
When presented with multiple possibilities, users simply act as if
only their desired reality is active while ignoring other possibilities,
which yields many challenges and opportunities for future research.

5.1 Implications for menu design
When designing multiverse menus, not only the menu layout but
also the overlap of menu elements must be taken into account. Re-
solving button presses post-hoc enables designers to use smaller
buttons. However, closely spaced buttons should spawn menu el-
ements suited for superposition (as in our Settings menu example
with buttons and sliders). This yields the opportunity of extend-
ing automatic UI optimization methods [2, 24] to multiverse menu
optimization. With multiverse menus, the objective functions ad-
ditionally need to take overlay-compatibility into account when
arranging buttons. UI design considerations can also be combined
with interaction in the virtual environment. For instance, a mul-
tiverse painting application could have a toolbar in which tools

are arranged with an automatic method that favors neighborhood
of buttons with dissimilar follow-up interactions, so that an un-
certain selection can be resolved easily in a post-hoc manner (e.g.,
movements typically differ between a brush and a flood fill tool).

5.2 Human factors
We anticipate that parameters such as number of feasible competing
possibilities vary with the use case. While many possibilities can
be spawned for similar universes (e.g., basketballs), the manageable
number of competing possibilities is likely much lower when they
are semantically different (for instance, spawning different menus).
Furthermore, we anticipate that care must be taken in terms of
novice versus expert usage. For instance, a novice using an appli-
cation for the first time may prefer seeing all functionalities in a
crisp way (even at the cost of error recovery) before they learn to
navigate through the application using only visual hints that repre-
sent possibilities. A multiverse would hence allow expert users to
navigate applications faster, where a loss of accuracy due to faster
movements is then made up for with lenience for false positives
when using post-hoc disambiguation. In other cases, a novice user
could benefit from observing the possibilities in a feedforward style.
Understanding these individual usage aspects (novice versus expert,
semantic similarity of universes, and more) will require multiple
dedicated empirical research undertakings.
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