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Abstract—Diminished Reality (DR) propagates pixels from a keyframe to subsequent frames for real-time inpainting. Keyframe
selection has a significant impact on the inpainting quality, but untrained users struggle to identify good keyframes. Automatic selection
is not straightforward either, since no previous work has formalized or verified what determines a good keyframe. We propose a novel
metric to select good keyframes to inpaint. We examine the heuristics adopted in existing DR inpainting approaches and derive multiple
simple criteria measurable from SLAM. To combine these criteria, we empirically analyze their effect on the quality using a novel
representative test dataset. Our results demonstrate that the combined metric selects RGBD keyframes leading to high-quality
inpainting results more often than a baseline approach in both color and depth domains. Also, we confirmed that our approach has a
better ranking ability of distinguishing good and bad keyframes. Compared to random selections, our metric selects keyframes that
would lead to higher-quality and more stably converging inpainting results. We present three DR examples, automatic keyframe
selection, user navigation, and marker hiding.

Index Terms—Diminished reality, inpainting, keyframe, good keyframes to inpaint, SLAM.
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1 INTRODUCTION

D IMINISHED reality (DR) removes physical objects from
the user’s view by estimating the color and geometry

of the background [1]. DR can be beneficial in a variety of
use cases, from reducing visual pollution by hiding mark-
ers [2] and scene instrumentation [3] to X-ray visualization
by rearranging objects in the scene [4].

Two approaches can be distinguished to remove a region
of interest (ROI). First, if the background behind the ROI
can be directly observed, DR can make use of real back-
ground pixels. This approach is only feasible if it has access
to recorded or streamed images where the background is
exposed [3], [5], [6]. Otherwise, pixels close to the ROI in
the current frame or a keyframe observed in the past must
be used. This approach has no special prerequisites, but it
requires real-time image inpainting [7], [8], [9].

The quality of the final result can only be as good
as the keyframes allow, since it initiates the subsequent
inpainting. However, not all keyframes are equally suitable.
For example, good keyframes contain sufficient pixels with a
high similarity to the background, which is usually assumed
to resemble the surrounding of the ROI. Consequently, in-
painting algorithms generate better results on images where
the ROI is small, so that enough of the scene is visible.

Existing DR methods relying on keyframes depend on
the user to select a set of suitable frames. However, this
assumption can introduce a substantial bias. The resulting
quality either depends on the user’s experience in identify-
ing good keyframes or on the time spent on adjusting the
selection until a sufficient result has been generated.

We address this problem by introducing an approach for
the automatic selection of keyframes. Thus, we introduce a
metric for determining good keyframes for inpainting; a phrase
that was inspired by seminal work in feature detection [10].
We identify multiple criteria that have an impact on the
inpainting result, such as the image size to ROI ratio, and
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the pixel similarity in the vicinity of the ROI. We further
introduce a set of weights to balance the impact of each
individual criteria to the final score of a keyframe. We find
the weighting based on an evaluation of the corresponding
inpainting quality in a dataset that we generated from cap-
turing real environments. More specifically, we determine
the weights from combinations between the parameters and
the inpainting quality, as observed in a collection of 360
image pairs.

The resulting metric enables the automatic selection of
keyframes among the images encountered along a recorded
camera path. To further improve the inpainting result, we
provide user guidance towards suitable keyframes which is
based on the proposed metric.

Fig. 1 shows two example keyframes in a scene and
their good keyframes to inpaint scores together with the in-
painting results using the keyframes. The highest scoring
keyframe can be expected to yield high quality inpainting,
as demonstrated in the corresponding inpainting result,
while the lowest scoring keyframe results in a low quality
inpainting result (e.g., the metal support is unnecessarily
repeated, and the seams, especially at the rear, are discon-
nected). The proposed scoring enables the system to select
good keyframes automatically, or, otherwise, it guides the
user to a good keyframe. While Fig. 1 demonstrates RGBD
inpainting, the proposed scoring can be applied to planar
inpainting commonly used in existing DR systems [11].

In summary, our work significantly contributes to the
state of the art in DR. Specifically, it presents the following
three major contributions:

• We introduce a metric for estimating the suitability of a
keyframe for inpainting a certain ROI.

• We introduce an importance ranking of our criteria, and
we determine how to best balance evaluation metrics.

• We demonstrate the impact of the proposed approach
on real application cases.

https://www.icg.tugraz.at/
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Fig. 1. The proposed good keyframes to inpaint method scores keyframe candidates. (left) A keyframe with a high score can be expected to yield
inpainting with high quality in both color (top) and depth (bottom) domains. (right) A keyframe with a low score may end up with low quality inpainting.
With the proposed scoring, the DR system is able to navigate the user to a good keyframe or select it automatically.

2 RELATED WORK

DR can be categorized into approaches using multiple views
and approaches relying on inpainting. Multi-view DR builds
on 3D vision [5], [12] and image-based rendering tech-
niques [3] to reconstruct the background occluded by the
ROI object via information contained in the 3D reconstruc-
tion obtained from many other camera views [13]. While
real-time video streams, for example, from surveillance
cameras, can serve a similar purpose without requiring an
offline reconstruction step [6], the number of live cameras is
typically very limited in practice. Another source for views
of the background are large public image databases [14].

DR inpainting fills in pixels within the ROI with only a
single live camera as the image sources. Pixels in the vicinity
of the ROI are rearranged to cover the ROI [8], [9], [15]. Our
method falls into this latter category of DR.

A key insight of DR inpainting is prudent use of
keyframes. Since the search for matching pixels to cover the
ROI is costly, previous real-time approaches run inpainting
only once on a keyframe (typically, in a background thread
amortized over several frames) and warp the keyframe to
the next frames. The warped keyframe is used to avoid
repeated bootstrapping of the inpainting process and to
preserve the appearance over multiple frame. Therefore, the
first keyframe inpainting determines the overall quality.

A popular implementation trick for keyframe inpainting
is to identify a dominant background plane and resam-
ple the keyframe to rectify this plane, thereby exposing
candidate pixel clusters for inpainting with reduced per-
spective distortion. Such automatic background rectification
relieves the user of having to choose a keyframe where
the background is oriented in parallel to the image plane,
but it can only be applied in near-planar scenes [9], [16],
[17] and for known foreground object sizes [7], [18], [19].
In general scenes, rectifications cannot be applied [8], [15],
making keyframe selection much more brittle. Our approach
avoids these drawbacks and directly indicates to the user if
a keyframe candidate is suitable for inpainting.

Alas, results of inpainting algorithms can be frustrat-
ingly unpredictable. One reason lies in the choice of random
seeds used to bootstrap the inpainting algorithm [8], [20].
Since brute-force pixel searching of all pixels in the ROI is
infeasible, practical solutions can provide, at best, local min-
ima of plausible pixel combinations resulting from searching
near the random seeds. Although it is hardly mentioned
in the literature, previous inpainting methods commonly
rely on the user to select good results from a gallery [21]
or, otherwise, repeat the process. Such a user-in-the-loop
workflow may be acceptable for image editing applications,
but hardly for ”immersive” DR experiences. In contrast, the
objective of our method is to increase chances to deliver
high-quality results in a manner that is largely independent
of the choice of random seeds by making sure the keyframe
used as source is sufficient even if only heuristic searching
is feasible.

Finally, it is worth noting that all recent DR inpainting
systems rely on exemplar-based inpainting. Recent neural
network-based inpainting has not yet been applied to DR,
likely, because the learning is highly dependent on the used
dataset and prone to overfitting. One possible approach
to mitigate such issues is to use observed neural features
within the field of view (FOV) [22], [23], which can be
interpreted as being inspired by exemplar-based inpainting.
Because of this similarly, we expect that our metric may also
be applicable to neural network methods. Having usable
pixels within the FOV is a fundamental requirement for all
inpainting methods, independent of how pixels are chosen.

3 GUIDELINES FOR KEYFRAME SELECTION

This section gives an overview of our method, which fo-
cuses on a single keyframe [2], [8], [9], [16], [19], [24];
an extension to multiple keyframes [15] is discussed in
the outlook. Our metric for measuring the suitability of a
keyframe combines several criteria. We start with heuristic
guidelines for keyframe selection, from which we derive
mathematical models describing criteria of our metric. We
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Fig. 2. Regions to define the keyframe suitability criteria. Within the
FOV, we distinguish ROI and its surrounding areas as ΩROI and ΩS,
respectively. Further, we separate ΩS into ΩS1 and ΩS2, which denote
boundary pixels of ROI with a margin, and the rest, respectively. ΩB is
a margin surrounding the FOV. The colored points represent areas ΩR

where scene reconstruction is completed.

conclude this section with the description of the weights
required to adjust the impact of the criteria.

In addition to the six rules, which all specify geometric
criteria, we also require photometric consistency. For exam-
ple, motion blur due to a fast camera motion should be
avoided, since it is baked into a keyframe and would be
used indiscriminately for images that may or may not come
from a fast moving camera. However, we do not discuss
this further, since solutions can easily be embedded in the
capturing process itself. For example, the user may be asked
to stop for taking a keyframe, or a keyframe may be ignored
when fast motion occurs.

Our method is on the basis of the state-of-the-art DR
inpainting method for generic 3D scenes [15]. As such, we
assume access to RGBD frames, a 3D bounding object, and
surfels reconstructed by the internal SLAM system [25].
Fig. 2 depicts the regions we use. We define regions in a
frame to calculate the proposed criteria as follows: Given a
ROI, ΩROI, within the FOV, the inpainting algorithm fills
the ROI using the pixels from the region surrounding the
ROI, ΩS. We separate ΩS into two regions to distinguish
close pixels to the ROI, ΩS1, and the others, ΩS2 (i.e.,
ΩS = ΩS1∪ΩS2). Also, ΩB defines a margin surrounding the
FOV. ΩR defines pixel areas of the projected SLAM surfels.

3.1 Keep ROI fully in sight (rule 1)
The ROI must be within the FOV, so we can completely
inpaint all pixels of the target region. If a part of the
ROI is clipped by the view frustum of the keyframe, no
inpainting can be prepared for the clipped portion, leaving
it uninitialized in the final image. Fig. 3 shows two inpainted
keyframes; one successfully captures the entire ROI within
the FOV, while the other fails to do so. The former can use
pixels near the ROI in every direction, while the latter loses
pixels on the bottom left, resulting in the pixel leaking from
the wall to the washstand. Even if the ROI is not clipped,
pixels of the ROI located near the image borders are more
difficult to inpaint, since there are fewer potential source
pixels in the vicinity.

Therefore, the first rule, keep ROI fully in sight, is consid-
ered mandatory. To enforce the rule, we define cB ∈ {0, 1},
a predicate that invalidates other criteria when it is 0. We
detect if ROI pixels are located at the image border, ΩB (i.e.,

Fig. 3. “Keep ROI fully in sight” (rule 1). The top and bottom rows show
good and bad keyframes according to rule 1, respectively. The yellow
lines in the left images indicate the ROI. With the bad keyframe, the
algorithm propagates the wall pixels, invading the sink.

Fig. 4. “Secure source areas” (rule 2). The top and bottom rows show
good and bad keyframes according to rule 2. In the bad keyframe, the
algorithm distorts the straight lines on the wall. As the ROI is too large,
the source pixel connections are lost repeatedly during the optimization,
and new pixel candidates are found, which distort the lines.

pixels at all sides of the image rectangle; see Fig. 2). When
ΩROI touches ΩB or is outside the image, 0 is assigned;
otherwise, 1 is assigned. In our implementation, we set the
border width to 1 pixel.

cB =

{
0, if |ΩROI ∩ ΩB| ≥ 1 or |ΩROI| = 0

1, otherwise
(1)

3.2 Secure source areas (rule 2)

Inpainting methods fill the ROI with pixels copied from
the vicinity [8], [20], [26] or, otherwise, use them as a
clue for improving the inpainting quality [22], [23]. For
example, PatchMatch [20] finds pixel clusters at random
locations near the ROI and copies such clusters to fill the
ROI. Therefore, it is important to secure as many resource
pixels, i.e., pixels in the vicinity of the ROI, as possible. A
shortage of resource pixels leads to conspicuously repeated
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Fig. 5. “Secure similar pixel resources” (rule 3). The top and bottom rows
show good and bad keyframes with respect to rule 3. While the green
mat occupies the majority of the vicinity pixels in the top scene, the ROI
touches the wooden locomotive in the bottom scene. Such a harmful
configuration could be avoided by changing the viewpoint.

patterns and other artifacts. Most DR inpainting methods
perform poorly on views close to the diminished object,
as the ROI occupies too much of the FOV. Fig. 4 shows
two keyframe inpainting results with different ROI size in
image space. The smaller ROI finds enough usable pixels
in the source area (Fig. 4, top), while with the larger ROI
almost occupies the entire FOV, forcing certain pixel chunks
to appear repeatedly (Fig. 4, bottom).

To represent the balance of ROI and source region, we
calculate a ratio cS ∈ [0, 1] of the number of pixels of ΩROI

over the number of pixels of the entire image, ΩFOV:

cS = 1− |ΩROI|
|ΩFOV|

. (2)

Here, ΩFOV is the entire FOV of the keyframe. This criterion
indicates the relative source region size, ΩS = ΩFOV \ΩROI.

3.3 Secure similar pixel resources (rule 3)

Inpainting methods find similar texture patterns or similar
neural features and reproduce them in a ROI, and such
similar features should connect the boundaries of the ROI.
Therefore, finding good matches depends on the availability
of pixel resources which are similar to the pixels at the
border of the ROI. Fig. 5 demonstrates how the choice of
viewpoint influences what appears at the ROI border and,
consequently, if rule 3 can be addressed. When the ROI is
surrounded only by the pixels of the uniform green rug,
the majority of the source area has similar pixels, making
inpainting easy. Conversely, when the ROI touches distinct
pixel clusters (e.g., the floor and the toy train), inpainting
has difficulties connecting these clusters with other pixels.

To keep useful source pixels in the camera FOV, we
measure similarities of pixels around the ROI borders to
those in the other source pixels. We separate the source
region into two regions: ΩS1 surrounds the ROI with a
certain width. It is obtained by dilating the ROI 20 times

Fig. 6. “Minimize perspective distortion” (rule 4). The top and bottom
rows show good and bad keyframes according to rule 4. The strong
perspective distortion in the bad keyframe lets differently distorted pixel
clusters jostle in the ROI.

with a 3× 3 kernel and intersecting the dilation result with
the source region. ΩS2 contains the remaining pixels.

ΩS1 = ΩDilated
ROI ∩ ΩS, ΩS2 = ΩS \ ΩS1 (3)

We use the histogram correlation between pixels in ΩS1

and in ΩS2 to find pixels p ∈ ΩS2 that can potentially
connect border pixels surrounding the ROI, i.e., p ∈ ΩS2.
We calculate the pixel correlations in color C and normal
N maps obtained by dense SLAM [25]. We denote such
correlations as follows:

cC = (corr(H(CS1), H(CS2)) + 1)/2, (4)
cN = (corr(H(NS1), H(NS2)) + 1)/2, (5)

where H(X) is a histogram of an image X , and
corr(H1, H2) calculates correlations between two image
histograms H1 and H2. For normal vectors, we uniformly
discretize the 3-channel values into 255 bins as in C.

3.4 Minimize perspective distortion (rule 4)

It is challenging to handle perspective distortion in image
inpainting without knowing scene geometry [27]. Some
DR methods remove distortions via homography warp-
ing when a dominant plane is known from flat marker
placement [2], [18] or from a sparse 3D reconstruction [9].
However, such an approach is limited to planar scenes.
Without compensating for perspective, pixel clusters copied
from a source region will appear in a different size and
with arbitrary distortions. Also, depth variations in the FOV
result in nonuniform pixel resolutions when the camera
moves from the keyframe location, resulting in more notice-
able interpolation artifacts [17]. Consequently, a keyframe
should largely avoid all perspective distortions. Fig. 6 com-
pares inpainting results with low (top) and high (bottom)
distortion. Note how perspective distortion introduces un-
naturally compressed textures at the back of the ROI.

When DR inpainting is applied to planar scenes [2], [9],
the planes are warped to a canonical space facing towards
the camera. In a similar manner, we prefer a keyframe
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Fig. 7. “Avoid depth discontinuities” (rule 5) The top and bottom rows
show good and bad keyframes according to rule 5. A large depth
discontinuity wrongly connects the wall edges. The far wall on the left
gnaws into the front wall on the right.

containing many normal vectors facing the camera, thereby
increasing the chances to observe pixels under low distor-
tion. Therefore, we measure the fraction of scene normal
vectors in ΩS that are facing the camera. Our criterion

cZ =
1

|ΩS ∩ ΩR|
∑
Nz(p)

p∈ΩS∩ΩR

(6)

sums the z-coordinate Nz(p) of a normal vector at a pixel
p, normalized to [0, 1] by the number of eligible pixels.

Note that this metric is inspired by inpainting ap-
proaches for planar scenes [2], [9], [18]. In fact, we found
that it performs as intended for 2D inpainting approaches
[8], [20], [28] and counter-intuitively for a 3D inpainting
approach that works in 3D scenes [15] (see Sections 3.7 and
5.3).

3.5 Avoid depth discontinuity (rule 5)

3D scene completion, especially from a single shot, is a
challenging computer vision problem. Existing methods are
limited either to simple textures and geometries or to small
resolutions [29], [30]. Applying texture deformation after
inpainting on a plane may handle smooth depth changes
due to a curved surface or small bumps [19]. The state of
the art in DR inpainting method applies RGBD inpainting
in multiple keyframes by propagating the first inpainting
results to the others [15]. However, more depth discontinu-
ity requires more keyframe inpainting, leading to artifacts
induced by incomplete pixel propagation. Therefore, depth
continuities around ROI should be avoided. Fig. 7 compares
inpainting results in keyframes with few depth differences
around the ROI and with a strong depth discontinuity in the
same scene.

We measure depth discontinuities in ΩS1 to find view-
points where less depth discontinuities are observed. The
depth discontinuity dD is calculated according to the liter-
ature [31]. We count pixels having depth discontinuity and

Fig. 8. “Reconstruct the scene fully” (rule 6). The top and bottom rows
show good and bad keyframes with respect to rule 6. The left column
shows keyframes with a SLAM reconstruction overlay. SLAM needs to
explore the scene to collect sufficient depth samples. Note that pixels
that have not been covered by SLAM are fully filled with a diffusion-
based inpainting algorithm [32] before running the main depth inpainting
[15]. However, real observations are more reliable than the convoluted
depth taken from adjacent pixels.

normalize the sum with the valid pixel count within ΩS1 to
keep the value within 0 to 1, i.e., cD ∈ [0, 1],

cD = 1− 1

|ΩS1 ∩ ΩR|
∑

dD(p),
p∈ΩS1∩ΩR

(7)

where dD(p) =

{
1, if |∇D(p)|

D(p) ≥ tD,
0, otherwise,

(8)

and the threshold tD = 0.1 was empirically determined.

3.6 Reconstruct the scene fully (rule 6)
We assume that scene reconstruction is obtained using
SLAM. In this case, it is unrealistic to assume the 3D re-
construction will be complete. Thus, we must consider how
much of the relevant scene has been covered by SLAM. Note
that depth inpainting gets more reliable when diffusion-
based depth inpainting [32] is applied before sampling the
depth values from SLAM to finalize the depth inpainting
[15]. However, diffusion-based depth inpainting becomes
less accurate when the holes to fill in are large.

We label pixels in a keyframe candidate that are covered
by any region of a projected scene reconstruction (i.e., SLAM
map) in a frame as ΩR (see Fig. 2 for an example) and use it
for calculating the reconstruction reliability,

cR =
|ΩR|
|ΩFOV|

, (9)

Fig. 8 compares two depth inpainting results with different
reconstruction coverage. The sufficient reconstructed depths
increase the chance to find smoother depth connections
within the FOV (Fig. 8, top), while shortage of depth sam-
ples suffers from finding related depths (Fig. 8, bottom).
Especially, when the surrounding pixels lack the depth
values, those depth pixels are filled with the diffusion-based
inpainting. As the Poisson solver-based depth inpainting
[15], [33] connects depth gradients from the outer to the
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Fig. 9. Dataset and procedure for calculating the weights. (a) We collected pairs of color and depth images in nine scenes. As represented in the
example frames, those scenes consist of various colors and geometries. (b) We run a SLAM method to obtain the global map in all scenes. (c)
Each keyframe in the dataset is randomly selected and contains the calculated measures. A 3D bounding object is registered in the scene, and the
projection of the object defines the ROI. (d) Given the color and depth images, the keyframe is inpainted. (e) The inpainted color and depth images
are rated using a perceptual score (LPIPS), and the weights representing the contribution of each measure to the inpainting quality are calculated.
(f) Finally, the resulting weights are used as balancing parameters of the measures.

inner ROI, surrounding depth pixels should have observed
depth pixels. Therefore, checking valid depth pixels within
ΩS2 would be an interesting future extension.

3.7 Balancing the Metrics
The six criteria need to be combined into a single metric
c measuring the overall suitability of keyframes for DR.
However, it is not clear how one criteria performs better
than the others. Some may even work counter-intuitively
because all change jointly from one frame to the next
candidate. Therefore, we analyze the contributions of each
criteria through an evaluation using a real dataset. Since
the relationships between metrics are unknown, we use a
simple and robust linear combination,

c = cB ·
∑

wkck,
k∈{S,C,N,Z,D,R}

(10)

where wk are the weighting parameters corresponding to
our criteria, cS, cC, cN, cZ, cD, and cR. To determine the
weighting parameters wk, we collect pairs consisting of an
RGBD image and a mask image. The RGBD images are
considered the ground truth of inpainting results, as RGBD
images with blank pixels in the masked area are the input
to our inpainting system.

We choose LPIPS [34] as an image quality measure, as
it mimics human perceptual behavior well. After running
an inpainting method, we calculate vLPIPS by comparing
the ground truth image and the inpainted image in multiple
scenes and conditions. We expect that those measures which
strongly contribute to reducing the error will have high
weights correlating with image quality. Therefore, we solve
the following equation for the six unknown weights wk that
best describes vscore = 1− vLPIPS.∥∥∥∥∥vscore −

∑
wkck

k∈{S,C,N,Z,D,R}

∥∥∥∥∥→ min (11)

Fig. 9 illustrates the entire procedure. For depth image
scores, we apply LPIPS to inverse depth images. The inten-
tion here is that we wish to evaluate the “plausibility” of

inpainted depth values instead of absolute differences. This
approach relies on how the depth images are visualized. We
normalize each depth image by its minimum and maximum
values and treat it as a grayscale image.

As discussed in literature [35], inpainted areas can show
arbitrary content, as long as the content is acceptable. There-
fore, there is no need for measuring absolute errors in this
context. As no unique ground truth exists for a given in-
painting problem, quality will be subjective and application-
dependent. However, to obtain quantitative results, we use
the original image content (before the mask is applied)
as our reference image. Alternatively, one could employ
human subjects to grade the quality of inpainting, using a
Likert scale or a similar rating system. However, we take
advantage of our automated approach, making applying
our framework to different inpainting methods easier. We
found that using the original image content as reference
works well as long as the sample size is large enough.

4 EVALUATIONS

We derive the weighting parameters using a real dataset
and evaluate the effectiveness of the proposed metric to find
good keyframes to inpaint. This section describes the weight
computation, the collected dataset, and how we evaluate the
proposed approach with the balanced weighting parameters
by comparing it with baseline approaches.

4.1 System implementation
Our system consists of two modules, inpainting and SLAM.
Inspired by the work of Mori et al. [15], we track and
reconstruct scenes with a dense SLAM method [25] and
inpaint a selected keyframe. The SLAM system provides
depth and normal maps that we use as D and N described
in the previous section. The inpainting algorithm finds an
optimal transformation f∗ : ΩROI → ΩS by minimizing
the sum of squared difference (SSD) of color and normal
patches, denoted as RC and RN , respectively,

f∗ = arg min
f

∑
p∈ΩROI

αRC(f,p) + (1− α)RN (f,p), (12)
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TABLE 1
Statistics of the measures of 360 keyframes in nine scenes.

Measures Statistics

Mean Std. dev. Min Max

Source ratio 0.94 0.07 0.56 1.00
Color correlation 0.72 0.13 0.45 0.97
Normal correlation 0.75 0.12 0.56 0.99
Facing normal ratio 0.63 0.09 0.33 0.86
Depth continuity 0.97 0.04 0.84 1.00
Reconstruction reliability 0.83 0.11 0.40 1.00

Color variation [36] 50.4 20.3 19.4 106.0
Gaussian curvature [37] (×10−5) -0.96 0.97 -8.1 0.14

Both color and normal channels are normalized to the [0, 1]
range and balanced with a fixed weight α = 0.95. We
recover the inpainted depth map described by f∗ from the
depth gradient samples [15]. Compared to PixMix [8], we
excluded the spatial term and added a random sampling
step [20] to make the pixel search more flexible.

We tested our system on a notebook computer (Intel
Core i7-6567U with 3.3 GHz, 16 GB RAM, external NVIDIA
GeForce GTX1080Ti connected via Thunderbolt 3, Windows
10). The calculation of the measures takes 10.3 ms on aver-
age for an image at 640 × 480 pixel resolution (cB: 0.14 ms,
cS: 0.01 ms, cC: 0.89 ms, cB: 4.35 ms, cB: 2.98 ms, cB: 1.85
ms, cB: 0.08 ms).

4.2 Dataset

We used Intel RealSense SR300 as an RGBD sensor to record
our dataset. After the recording, we smoothed the depth and
normal maps over all frames in each scene to obtain D and
N . For each image, we generated a mask of a registered 3D
bounding box overlaid in the scene. We manually placed the
3D bounding box in each scene to ensure that reasonable
pixel sources were available and could be found by our
algorithm (i.e., we did not include any pathological exam-
ples). We prepared two variations of the 3D bounding box
by changing size, position, and orientation in each scene.

Then, we randomly selected 20 keyframes per scene and
per bounding box condition and generated 100 inpainting
results per keyframe to minimize variations in inpainting
results due to random seed placement. Consequently, we
obtained 36, 000 keyframe inpainting results in total (9
scenes × 2 mask object conditions × 20 keyframes × 100
inpainting results). TABLE 1 summarizes our dataset.

4.3 Analysis of weighting

Fig. 10 summarizes the calculated weights across all com-
binations of measured parameters. Using a Pearson corre-
lation analysis we found that color and depth scores are
highly correlated (ρ = 0.67, p < 0.01). Therefore, we
average the scores for color and depth to determine the final
weight.

As often discussed in the literature on inpainting, the
source ratio (rule 2) has the second highest (wS = 0.44) and
the highest impact (wS = 0.58) on the inpainting quality
in color and depth domain. In other words, the inpainting
method is able to offer high-quality keyframe inpainting
when a small ROI is given. Except for this rule 2 and

Fig. 10. Weights over all measures. We use the weighting parameters to
balance the metric. We obtained the weights for color (blue) and depth
(orange).

depth continuity (rule 5, wD = 0.48 and 0.35 in color and
depth, respectively), the other measures show relatively low
weights in comparison. This suggests that there is no clear
guideline to find a “good” keyframe that provides high
inpainting quality, apart from the source ratio and depth
continuity. This result explains the difficulties encountered
in manually selecting keyframes and supports the idea of an
automatic approach. While meeting individual criteria may
have only a subtle impact, addressing many or all of them
can increase the odds of selecting a good keyframe.

The weight of rule 4 (the ratio of normals facing the
camera) appears counter-intuitive, as it takes negative val-
ues in both color and depth domains (wZ = −0.15 and
−0.05). As discussed in Section 3.4, the rule applies best to
inpainting algorithms for planar scenes. However, our test
dataset contains a variety of depth discontinuities, which
causes varying surface normals (see the “Gaussian curva-
ture” score in TABLE 1 and example images in Fig. 9a). As
demonstrated in Fig. 18, wZ shows the expected positive
values for planar inpainting algorithms.

Overall, our results suggest that, in keyframe selection,
one has to keep the ROI size small and also maintain color,
depth, and normal values of the observed scene. These
requirements are difficult for users to satisfy concurrently,
especially when moving the camera, while the scene recon-
struction is ongoing. When the user is not able to move
in order to change the ROI size, the keyframe selection
becomes hard to judge. In any case, updates in 3D recon-
struction are often hidden from the user in an augmented
reality (AR) view, and, therefore, are hard to be interpreted
as keyframe selection criteria. Thus, we implemented appli-
cations including automatic keyframe selection (Section 5.1)
and user navigation for an appropriate keyframe selection
(Section 5.2).

4.4 Comparisons with a baseline approach
To evaluate the weighted metric, c, we prepared another
dataset by including seven new sequences using different
scenes. Like the previous dataset (Section 4.2), the new
dataset consists of color, mask, depth, and normal images.
Each scene contains 550 frames. We excluded the first
50 frames as extreme cases since they are erratic due to
the SLAM initialization. We further separated each scene
of 500 frames into five subset sequences containing the
first 100, 200, 300, 400, and 500 to evaluate shorter and
longer sequences. Using the new dataset, we compared our
approach, named weighted selection (WS), with a baseline,
named average selection (AS), which sets all weights uni-
formly to wk = 1/6. Both contenders selected their best and
worst keyframes after scoring all frames. We then ran our
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Fig. 11. Selection quality of WS and AS in color and depth domains.
WS is able to select keyframes with higher chances for good inpainting
results in terms of LPIPS. In comparison, AS has a more limited ability
with respect to selection of ranking.

keyframe inpainting on the selected keyframes 100 times
and calculated the LPIPS scores to evaluate how stable the
inpainting method’s quality is.

While we expect that AS selects plausible keyframes that
follow the rules in Section 3, WS should improve chances
to obtain higher-quality inpainting results, i.e., lower LPIPS
scores, on the selected best keyframes. Therefore, we cal-
culate the probability that LPIPS scores of WS are lower
than those of AS in their best-scored keyframes per sub-
sequence. In addition, we expect that WS selects keyframes
that result in lower-quality inpainting results on the selected
worst-scored keyframes. We therefore calculate the prob-
ability that LPIPS scores of WS are higher than those of
AS in their worst-scored keyframes. We also evaluate the
ranking ability of AS and WS by checking if the approaches
correctly evaluated the best keyframes better than the worst
keyframes in LPIPS. For this purpose, we calculate the
probability that LPIPS scores of AS and WS on their best
keyframes are lower than those of their worst keyframes.

Fig. 11 shows the results in the seven test sequences with
five subsets each. This figure summarizes that WS can select
better and worse keyframes that would end up with higher
and lower quality inpainting results, respectively, under its
control (See the blue bars that go above the 50% borderlines
in the figure). The ranking ability of AS is clearly worse
than that of WS, which means that AS tends to confuse
good and bad keyframes. The ranking ability of WS in
the depth domain is relatively lower than that in the color
domain. Balancing the quality between the color and depth
inpainting remains future work.

4.5 Comparisons with random selections
One may consider that, as novice users would do, randomly
picking keyframes might work better than our selections.
We, therefore, randomly selected 100 keyframes in each of
the seven test sequences and inpainted the keyframes 100
times each. We binned these keyframes into each subset.
Then, we compared the probability that LPIPS scores of best

Fig. 12. Comparison of RS, WS and AS in the color and depth domains.
The sampled points show the probability that LPIPS scores of the best-
selected keyframes of WS and AS are lower than the random selection
(RS) in each sub-sequence.

Fig. 13. Standard deviations of WS, AS, and RS in each sub-sequence.
The lower values mean smaller differences in inpainting results.

keyframes are lower than those of the random selection
in each sub-sequence. We labeled this approach random
selection, or RS.

Fig. 12 summarizes the mean probability of how often
the best keyframes of AS and WS perform better than RS in
each sub-sequence of the seven scenes. WS clearly achieves
higher performance than AS in all sub-sequences, especially
in the depth channel. WS achieves almost identical perfor-
mance to RS in longer sequences. However, we note that RS
has no ability of ranking, while WS does (Fig. 11). Overall,
WS performs better (54.2% and 51.9%) than AS (48.8%
and 40.6%) and RS (50% and 50%) in the color and depth
domain, respectively.

Fig. 13 shows variations in standard deviations of LPIPS
scores in each sub-sequence. Here, standard deviations
represent possible variances in inpainting results at each
selected keyframe. Therefore, a lower score implies smaller
differences in inpainting quality – the user may expect fewer
trials until successful inpainting. We see that WS achieves
the best performance in this evaluation.
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(a) Frames progressing from the left to the right

(b) Original color + Mask area (c) Inpainted color (d) Original depth (e) Inpainted depth

Fig. 14. Automatic keyframe selection. (a) To an untrained user, it may not always be immediately obvious which frame ends up with a high-quality
inpainting result. The proposed system evaluates the criteria over the frames to automatically select a good keyframe. The user explores the scene
taken under various camera motions, e.g., while reconstructing the scene for AR. (b–e) Our keyframe criteria avoids selecting frames that would
result in low quality results and increases chances to obtain a high-quality inpainting both in color and depth domains.

5 APPLICATIONS

We demonstrate how our metric can be used to ease
keyframe selections in practical AR applications. The first
application is a complete DR system with an automatic
keyframe selection function. The second application is an
AR navigation to let the user seek better keyframes. The
third application is an AR marker hiding tool, which shows
how our method can be applied for planar scenes with a
known fiducial marker.

5.1 Automatic keyframe selection
Upon the object of interest identification, a DR system can
immediately start calculating the metric. While the user
explores the scene, the system updates the highest frame
score and keeps the frame as a keyframe (color, depth, and
normal images, a pose T ∈ SE(3), and a metric score c).
Our automatic keyframe selection scheme preserves such a
keyframe and inpaints it on the user’s request, independent
of the current camera location.

Fig. 14 presents an example case of our automatic
keyframe selection. While the camera explores the scene,
the proposed approach calculates all criteria in Section 3
and the resulting metric, c, at every frame (Fig. 15). As
the camera perspective varies during the exploration, it is
difficult for the user to determine which specific frame to
choose as a keyframe by visual checks alone (Fig. 14a). The
proposed approach is able to automatically find a keyframe
where the inpainting algorithm can be expected to provide
overall good results in both color and depth domains, while
avoiding poor keyframe selections (Fig. 14b–e).

Sections 4.4 and 4.5 suggest that our method may, in rare
cases, select a poor keyframe, where inpainting repeatedly

Fig. 15. Plots of metrics over the frames of the scene in Fig. 14. The
DR system evaluates every frame, once a bounding object is placed
in the scene. During the scene exploration, the system preserves best-
scoring keyframes, while discarding others. Therefore, regardless where
the user is located, the DR system can start keyframe inpainting with
the latest keyframe. The black bars, which almost overlap on the AS
selections, show the best and worst keyframe selected solely by cS.

fails. To avoid such worst-case behavior, we rely on the
ranking and switch to the second best keyframe after several
failed inpainting attempts. To this end, we keep multiple
keyframes, e.g., on the second peak after around #400 frame
in Fig. 15. First, we compare the current frame score c with
the score ci of keyframe i. If c is greater than ci, and a
Frobenius norm ||I − T−1

i T||F is smaller than a threshold
t1, then keyframe i is replaced with the current frame. If
the Frobenius norm is greater than or equal to t, we check

1. The threshold t scales depending on the SLAM trajectory scale.
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(a) Scene exploration (b) 3D arrow overlay on the AR display

Fig. 16. User navigation. (a) Our method evaluates frames only along the
camera trajectory. To explore better keyframes, the AR device should be
moved to ti, where the highest score was obtained. (b) To this end, the
AR navigation guides the user with a 3D arrow annotation.

keyframe i + 1 and repeat this procedure until the last
keyframe.

One may consider that our final metric, c, relies too
much on cS (rule 2). The parameter cS does have a more
substantial effect than the others, but its contribution is only
proportional to the relative chosen weight as discussed in
Section 4.3. See Fig. 15 for a visual analysis.

5.2 User navigation
To support easier explorations in the automatic keyframe
selection system, the DR system encourages the user to
move the camera randomly, while the system accumulates
the scores over the frames. Then, the system can guide the
user to the location with the highest score to identify an
even better keyframe. To this end, we implemented an AR
navigation visualization that shows a 3D arrow to indicate
the direction to the best keyframe at ti ∈ R3 from the
current frame at t ∈ R3. The 3D arrow faces towards
(ti − t)/||ti − t||. Fig. 16 illustrates the user navigation
application.

5.3 Marker hiding
Marker hiding is a popular application of DR, which in-
paints a fiducial marker used for tracking the camera [2],
[18]. We implement a marker hiding application and use
it to compare multiple 2D inpainting algorithms for our
approach. We expect different weighting parameters, as
every inpainting method has a distinct statistical behavior.

Substituting different inpainting methods. In this appli-
cation, we replace the SLAM system [25] with an ArUco
marker [38] to detect camera poses at every frame. For
comparison, we selected PixMix [8], a successful algorithm
for inpainting, and the content-aware fill in Adobe Photo-
shop CS5.1, representing the commercial state of the art. We
assume that the marker is placed in a planar scene. There-
fore, we make the following assumptions for the criteria
in Section 3: Normal correlation is always the same, i.e.,
wN = 0 (rule 3). The scene normal vector is equivalent to
the up vector of the marker (rule 4). No depth continuity

(a) Marker image (b) Ground truth image

Fig. 17. Example frames from the AR marker hiding dataset. The dataset
consists of (a) marker images and (b) their corresponding ground truth
images. Marker up vectors are used to calculate eq. 6. We inpaint the
ground truth image with a given ROI.

Fig. 18. Weights for the AR marker hiding application using (top) PixMix
inpainting and (bottom) Photoshop content-aware fill as the core inpaint-
ing algorithm.

is observed, i.e., wD = 0 (rule 5). The scene geometry is
complete and corresponds to the marker plane, i.e., wR = 0
(rule 6).

Dataset generation. We prepared another dataset that in-
cludes 127 pairs of images with and without markers by
fixing a camera while photographing (Fig. 17a, b). On each
keyframe, we ran the inpainting algorithms 100 times to
obtain 127,000 inpainted results in total for each algorithm.
The ROI is identified by a marker as a slightly larger
rectangle area than the actual marker to ensure the marker
area is fully covered (Fig. 17a).

Results. Fig. 18 shows weights of the two inpainting algo-
rithms. Both algorithms show strong impact to the source
size (rule 2), i.e., cS. The resulting weights are similar to each
other, but different from the 3D inpainting case (especially,
wZ ≤ 0). The order of wZ and wC is different in the
inpainting algorithms, but the differences are subtle. The
obtained weights can be used to calculate the scores in AR
marker hiding. Fig. 19 shows a qualitative comparison of a
good and a bad keyframe inpainting in a scene based on
our metric and weights. We show PixMix and Photoshop
content-aware fill in Fig. 19a and b, respectively. Note that,
as discussed in Section 3.4, with a known fiducial marker,
we could transform the input image to a canonical image
space to remove perspective distortions [2], [18], which
diminishes the contribution of cZ. However, for more gen-
eralized target objects [8], the inpainting algorithms would
perform better on keyframes found with cZ measured.

6 DISCUSSION AND CONCLUSIONS

In this paper, we studied a metric for good keyframes to
inpaint in DR. The metric is calculated as a sum of six
criteria, added according to the weights observed from
inpainting real scenes. The results demonstrate that our
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(a) PixMix inpainting (b) Photoshop content-aware fill

Fig. 19. Example frames of marker hiding inpainting results using (a) PixMix inpainting [8] and (b) Photoshop content-aware fill with a good and a
bad keyframe, as distinguished using our metric, c, in a scene. Left and right column images are original and inpainted images, respectively.

method enables the automatic selection of keyframes for
high-quality inpainting, reducing the number of inpainting
attempts required until a convincing result is obtained. We
further implemented three practical DR applications that
demonstrate the impact of the proposed method.

While the proposed method improves DR experiences,
some issues need to be addressed. We evaluate only
keyframes, assuming that a well-inpainted keyframe would
be used in subsequent frames for temporally coherent in-
painting [8], [9], [15]. Due to the large contribution of cS
to the final keyframe score, a keyframe could suffer from
its limited pixel resolution when used for the subsequent
frames. However, existing inpainting algorithms for DR
already mitigate this issue by successive pixel searching [8],
[33] and multi-keyframe projection [15]. Nonetheless, one
could extend our framework to evaluate not only individ-
ual keyframes but also multiple keyframes or entire frame
sequences. Intervals between keyframes and computational
load would also play an important role in the best set
of keyframes selection. For example, too closely spaced
keyframes merely waste performance while producing sim-
ilar inpainting results.

To determine the balancing weights, we used LPIPS
in our evaluations, which should closely mimic human
perception. As mentioned in Section 3.7, this evaluation
could be replaced with data collection from a user study for
more human-centric results. However, evaluating inpainted
images consistently in user studies is known to be difficult,
as results depend on human judgment with respect to the
application requirements [35]. We consider finding better
ways of normalizing such judgment an interesting, but chal-
lenging direction for future work. Alternatively, developing
a deep neural network that scores frames directly could cir-
cumvent the problem. However, the weight analysis would
still remain a black box.
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