
Learning Lightprobes for Mixed Reality Illumination
David Mandl∗1 Kwang Moo Yi2 Peter Mohr1 Peter Roth1 Pascal Fua2 Vincent Lepetit3 Dieter Schmalstieg1 Denis Kalkofen1

1Graz University of Technology 2EPFL 3University of Bordeaux

Figure 1: Coherent Illumination. The real scene consists of an action figure of The Hulk and a toy car. To demonstrate the result of our system,
we place a 3D scan next to the real action figure and display it using Mixed Reality: (left) The 3D reconstruction is rendered without real world
light estimation. (right) Our system estimates the current lighting from a single input image. The estimated lighting is used to illuminate the 3D
reconstruction. Note that we only register the real world lighting and do not consider any camera effects such as exposure or blur.

ABSTRACT

This paper presents the first photometric registration pipeline for
Mixed Reality based on high quality illumination estimation by
convolutional neural network (CNN) methods. For easy adapta-
tion and deployment of the system, we train the CNN using purely
synthetic images and apply them to real image data. To keep the
pipeline accurate and efficient, we propose to fuse the light esti-
mation results from multiple CNN instances, and we show an ap-
proach for caching estimates over time. For optimal performance,
we furthermore explore multiple strategies for the CNN training.
Experimental results show that the proposed method yields highly
accurate estimates for photo-realistic augmentations.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Artificial, augmented,Virtual Realities; I.4.8 [Image Processing and
Computer Vision]: Photometric registration—3D Reconstruction

1 INTRODUCTION

Mixed Reality (MR) extends the real environment with virtual ob-
jects, enabling many powerful applications. Many MR applica-
tions, such as home shopping [10], require the rendering of virtual
objects into the scene, so that they are indistinguishable from real
objects.

Rendering convincing MR scenes requires photometric registra-
tion to ensure that the appearance of virtual objects is rendered con-
sistently with the lighting of the real scene. A key step in doing
so is to estimate the incident lighting of a scene. Common ap-

∗e-mail: mandl@icg.tugraz.at

proaches rely on active lightprobes, e.g., fisheye cameras strategi-
cally placed in the scene [14], or passive lightprobes, like chrome
spheres, or other reference objects with known shape and reflectiv-
ity [4]. An obvious major downside of having a lightprobe is that
it interferes with the user’s experience. As an alternative, Gruber et
al. [8] demonstrated a probe-less method that estimates the incident
light purely from reflections in the unmodified scene, scanned in
real-time with a commodity RGB-D sensor. This approach forgoes
artificial lightprobes, but suffers from high computational demands
and cannot be used on mobile devices [7].

We propose learned lightprobes as an alternative to the probeless
method of Gruber et al. [8]. Like the probeless method, learned
lightprobes work in an unmodified scene, providing unobtrusive
user experience, while still retaining the computational benefits of
a normal lightprobe. The incident lighting is estimated with a pre-
trained convolutional neural network (CNN), which is orders of
magnitude cheaper to evaluate at runtime than inverse rendering.

Our method estimates the incident lighting by analyzing the ap-
pearance of a known object in the scene, the learned lightprobe.
A great advantage of the learned lightprobe is that practically any-
thing can be a lightprobe. Application developers are free in their
choice of what constitutes a lightprobe. The lightprobe can be an
arbitrary object of the scene, or it can be a prop used in the MR ap-
plication. For example, an MR video game can make use of a live
action figure, such as the Hulk in Figure 1, and animate the figure in
a closeup view, which is not possible with traditional lightprobes.
The only practical requirement is that the lightprobe should have a
good distribution of surface normals. If a single lightprobe is found
to be insufficient, multiple lightprobes can easily be combined.

During preparation, we first reconstruct the 3D geometry and the
material of a real object to be used as lightprobe, using the inverse
rendering framework of Richter-Trummer et al. [21]. Second, we
use the reconstructed model to train a set of CNN instances cor-



Figure 2: Our system is split into a preparation and an online phase. (a) We reconstruct the geometry and albedo map of a 3D object, (b)
which we render from a set of uniformly distributed camera poses. (c) For each pose, we illuminate the model with different spherical harmonics
variations (d) and the resulting images are used to train a set of CNN instances. (e) The CNN results for all camera poses are stored in a
database. (f) During AR rendering we take a live camera frame, (g) which we use to detect the camera pose. (h) Subsequently, we use the
camera pose to select the CNN which was trained from the most similar pose in the database. (i) Furthermore, we input the camera frame into
the selected CNN, (j) which outputs estimated Spherical Harmonics. (k) We use the estimated lighting to illuminate augmented 3D objects within
the camera frame.

responding to a discrete set of quantized viewing directions. For
each of these viewing directions, we synthesize images taken under
a large variety of different illumination conditions and use them as
training data.

At runtime, we estimate the 3D pose of the live camera to se-
lect the corresponding CNN. The camera image is sent through the
selected CNN, which outputs the estimate of the current incident
illumination. Finally, a differential rendering step inserts virtual
objects into the real scene. Optionally, we exploit temporal consis-
tency to improve the results for a scene with constant or only slowly
changing lighting: A single view of the lightprobe may not cover a
sufficiently large range of surface normals to reliably estimate the
entire hemisphere of incident light directions. We overcome this re-
striction by retaining and merging a history of illumination results
from previous frames, as the camera moves to explore the scene.

Our work is the first to estimate incident lighting in real-time
from arbitrary scenes, providing the following contributions:

• We present the first end-to-end system for learning and using
arbitrary 3D objects to act as lightprobes for coherent illu-
mination of augmentations in AR. Our system is suitable for
real-time applications on consumer devices, such as smart-
phones and tablets.

• We present a novel approach for light estimation based on ren-
derings of a reconstruction under various illuminations.

• We discuss how caching of illumination estimates can be used
to reconstruct the current lighting from multiple observations.

• We evaluate three strategies to learn a set of CNN instances
across an object’s bounding sphere. We compare results from
a CNN trained from a single point of view with interpolated
results from multiple neighboring CNN instances and CNN
instances trained with data from multiple neighboring views.

2 RELATED WORK

A large body of work on coherent rendering for MR exists [22].
Here, we focus on methods that provide an estimate of the current
lighting in the user’s environment only.

Photometric registration has its origin in computer graphics re-
search. The pioneering work of Debevec et al. [4] introduced the

idea of light estimation from a set of 2D photographs of a mirror-
coated ball placed inside the scene. Light reflections on passive
lightprobes can be observed in the photographs and subsequently
used to compute an environment map. Active lightprobes capture
the lighting directly using a set of video cameras. They are placed
inside the scene in order to capture the entire environment map di-
rectly [14]. To observe the entire environment lighting with a mini-
mal number of cameras, active lightprobes commonly make use of
fisheye lenses.

While lightprobes deliver high quality environment maps, they
are invasive and require preparing the environment. To avoid prepa-
ration, some research on light detection from objects naturally oc-
curring in the scene has been done. For example, Pilet et al. [19]
propose a method for photometric calibration by reconstructing a
lightfield from a planar surface. Similarly, Jachnik et al. [11] cap-
ture a lightflight from observations of a planar surface, but they in-
clude specular reflections. Specular reflections have also been used
to infer lighting on arbitrary objects with known shape [16]. How-
ever, this is not always possible, as there is no guarantee that there
is always a specular objects in the scene.

Alternatively, one can attempt to estimate illumination from dif-
fuse reflections. Gruber et al. [8] demonstrated that a spherical
harmonics (SH) framework is able to recover real-world lighting
from an online reconstruction using an RGB-D camera. They solve
for incident directional lighting in SH form from selected sample
points on the reconstructed surfaces. However, the sample points
must have a suitable distribution of surface normals. Furthermore,
solving an inverse light transport problem is computationally ex-
pensive. Even with image-space optimizations [9], the system re-
quires a desktop GPU to estimate the lighting at approximately 20
frames per second, while the sparse sampling imposes restrictions
on the visual quality.

The approach of Knorr and Kurz [15] estimates incident light
from human faces using machine learning from a variety of faces
under different illumination conditions. The method applies a face
tracker and matches distinctive observation points of the detected
face to the training database to estimate the real-world light. How-
ever, the accuracy of the face tracking is a limiting factor on the
quality of the recovered illumination. Moreover, the method is lim-
ited to applications where only frontal face views are available.



Figure 3: The CNN input are images with 224x224 pixels. The input
images pass through five convolution layers, one hidden layer with
500 neurons and arrive at an output layer, which combines the result
to 16 SH coefficients used to render the input image.

3 METHOD

Our system (Figure 2) consists of an offline preparation phase, in
which the appearance of a lightprobe object in synthetic images
(Section 3.1) is used to train a CNN to recognize the current inci-
dent illumination (Section 3.2), followed by an online phase esti-
mating the lighting in real time for arbitrary scenes containing the
lightprobe (Section 3.3).

3.1 Synthesis of training images

A key aspect for CNN training is rich training data. Especially,
given the fact that we want our system to be adaptable for all possi-
ble camera poses, this becomes even more important. Using image
synthesis to supply sizeable amounts of training data without addi-
tional cost in human labor is an obvious approach, but often suffers
from the limitations of image synthesis to faithfully reproduce real-
world phenomena, such as noise. Our method does not suffer from
such limitations. We first reconstruct real-world exemplars and then
synthesize many variations of the exemplar’s appearance. Since we
use bandwidth-limited lighting variations based on spherical har-
monics [6] (SH), our process is largely free of the problems that
plague previous training-by-synthesis approaches.

We use an SH representation with four bands. This SH represen-
tation consists of 16 coefficients, l j = [C0, · · · ,C15]

T in the range
[−1,1], which we found very suitable as a low-dimensional learn-
ing target for a CNN, at the same time being powerful enough to
provide a detailed light setup. We empirically found a space of
215 illumination variations sufficient, which is created by setting
the ambient light C0 = 1 and quantizing the higher-order SH coef-
ficients C1 to C15 with two different values in the range of -1 to 1.
Note, selecting only two different values for each coefficient keeps
the size of the database small enough for training the CNNs in an
acceptable amount of time. Since only a subset of possible light
conditions is used for training, the detection of very different light
settings might suffer from missing training data. Though we found
the size of our database to be sufficient we can easily increase it
by simply making the sampling interval for the SH values finer.
Therefore, in a future work we will compare results from learning
different numbers of SH bands and variations of patterns for select-
ing values for the SH coefficients.

To build a model for generating the synthetic images, we use
the approach of Richter-Trummer et al. [21], which jointly derives
the geometry of a 3D model and corresponding material properties.
Unlike other reconstruction methods designed for digital content
studios, this approach requires only a consumer RGB-D sensor and
can deliver the material estimates in a matter of minutes on a con-
ventional desktop computer.

Figure 4: (a) Input image, (b) illumination corresponding to the in-
put image, (c) synthetic image, (d) illumination estimated from input
image, which was used to render synthetic image, (e) color-coded
per-pixel difference between the illuminations.

To provide the training data, we repeatedly render the recon-
structed object, while systematically varying the incident illumi-
nation. For each camera pose Pi, we render a set of training images
Ti, each with size 224×224. The image size was chosen carefully
to match the overall receptive field of the standard six-layer CNN,
shown in Figure 3. To cover the entire object in the field of view,
we select the camera poses Pi on a sphere with a diameter of 1.5
times the object diameter, looking towards the object’s center. For
each image set, we systematically vary the environmental lighting
l j. The resulting database for a camera pose Pi consists of 215 im-
ages Ti, j.

3.2 Training the CNN
We train one CNN per Pi directly on the SH coefficients, using Ti, j
as training data and l j lighting as reference for the corresponding
loss function. Note that this approach does not require an inter-
mediate image storage, since only one single synthetic image is
considered for training at a time.

Our CNN is implemented on top of the Theano framework [23],
using the layout shown in Figure 3. Each image passes through five
convolution-and-pooling layers with Rectifide Linear Unit (ReLU)
activation. The first layer is using a 5×5 filter kernel, while the re-
maining four layers use a 3×3 kernel size. After each convolution,
we downsample the image to half of its size with max-pooling, i.e.
max-pooling with a 2× 2 kernel with a stride of 2, which is then
followed by ReLU. At the end of the pipeline, we use a standard
fully connected layer with 500 neurons and tanh activation. We use
ReLUs in the convolution layers to enhance the training speed [5],
and use tanh at the end to keep the output of the network within the
range of SH coefficients.

The loss function is a standard mean squared error function, thus
solving a linear regression problem. For validation during training,
similar to the standard MNIST dataset, [17] we use one sixth of the
training data as the validation set to have both rich training and val-
idation data. For validation, we observe the Euclidean distance of
the estimate to the ground-truth. We also follow the standard prac-
tices when training the CNNs. We use Stochastic Gradient Descent
(SGD) and iterate the CNN with a maximum of 200 epochs, using
a learning rate lr = 0.1 and an improvement threshold of t < 0.995.

3.3 CNN selection and rendering
At runtime, we estimate the environmental lighting for every frame,
allowing real-time response to illumination changes. First, the pose
of the lightprobe in the image is detected. We use SLAM [3] to
retrieve the 3D pose of the MR display. More specifically, our
implementation uses PTAMM [2], an open source extension of
PTAM [13], which is able to save the point map for re-initialization



Figure 5: Caching Illumination Estimates. (a) Input image and (b) the estimated lighting. (c) The color-coded difference between the lighting
used to generate the image in a) and the estimated lighting. (d) The difference between used and estimated lighting projected to the lightprobe.
(e) Another image using the same illumination is used to (f) update the light estimate, resulting in (g) a smaller error, (h) which is illustrated by
projection on the lightprobe.

at any later time. The re-initialization allows us to register our light-
probe reconstruction to the map once in order to retrieve the camera
pose relative to the reconstruction.

Second, the Pi closest to the current camera pose is selected.
We compare the view vector of the tracked camera with the view
vectors of the reference poses, and select one or multiple CNN in-
stances depending on the fusing strategy (Section 5). We mask out
pixels that do not correspond to the lightprobe, as indicated by a
phantom rendering of the lightprobe [1]. We crop the image to a
square area around the target object and scale it to the resolution of
224×224 pixels to match the CNN input size. This image is fed to
the CNN, which returns an estimate of the current illumination en-
coded in SH form. The resulting SH coefficients are used to render
virtual objects coherently to real objects in the users environment.

4 ILLUMINATION CACHING

Figure 4 illustrates the estimated lighting and the remaining errors.
In this figure, we compare the input image to a synthetic image ren-
dered from the reconstructed geometry and the lighting estimated
by the CNN. Since the difference between the input image and the
rendering under the estimated illumination is very subtle, we color-
code the pixel differences between the input illumination map and
the estimated illumination map with a rainbow color map for error
visualization: blue is referring to small error values and yellow to
red encode high error values. Note that the high error is concen-
trated near the border of the illumination sphere. This error refers
to directions illuminating the object in the synthetic image from
behind, leading to no visible effects in the synthetic image.

Since the CNN is trained with observations of light reflections,
it can only estimate those parts of the environmental lighting which
caused these reflections. Therefore, certain parts of the environ-
mental lighting do not appear in a single synthetic image, for exam-
ple the borders of the illumination sphere. Consequently, the CNN
is not able to learn these illumination effects.

This implies that the error depends on the geometry of the light-
probe (specifically, on a sufficient distribution of surface normals),
and will always include an unmatched region of lighting directions
along the negative optical axis. Clearly this is a problem, as for
certain visual effects, like shadows, the entire lighting needs to be
known.

We overcome this limitation by caching previous light estima-
tions in a conventional environment map and update this map with

newer estimations, as they become available. This however is not
as trivial as it sounds, because an SH representation uses basis
functions with global support (in directional space), and we cannot
cache and update individual SH coefficients directly. Instead, we
use the reconstructed mesh of the lightprobe to cache illumination
information per vertex.

After estimating the lighting from the current camera pose, we il-
luminate an untextured version of the reconstructed mesh and save
the resulting intensity values per vertex. Finally, we iterate over
the mesh vertices and project the lighting samples into a SH rep-
resentation of the environment map. We use a single pass inverse
rendering similar to [21] to calculate the values of the SH coeffi-
cients from the illuminated vertices. New values projected from the
mesh will replace old values in the cache, while vertices not seen in
the current camera image remain unchanged.

Figure 5 shows the environment lighting estimated from two in-
dependent observations. Figure 5(a), (b), (c), and (d) show the es-
timated illumination and the error from a single point. Figure 5(e),
(f), (g) and (h) illustrate the light estimation and the error after the
light estimation from the point of view in (e) has been included.
Note the lower error in (g) and (h) compared to (c) and (d).

5 POSE SAMPLING AND INTERPOLATION STRATEGIES

Our approach generates a CNN for every single camera pose on the
scaled bounding sphere of the object. This requires not only to train
many CNN instances, but it also requires to re-initialize the CNN
for every new frame. For improved efficiency, we increase the dis-
tance between poses used for training the convolutional networks
adaptively.

We conducted a series of tests applying a CNN trained to pre-
dict lighting for a certain pose, on input images obtained from in-
creasingly different camera poses. The input images are rendered
with randomly chosen spherical harmonics coefficients. Figure 6(a)
shows the resulting color-coded environment maps. The environ-
ment maps are compared per pixel, and the resulting difference is
color-coded. We use a blue-red map where blue pixel refers to zero
to low error and red pixels encode high error values.

From left to right, we increased the distance from the learned
pose in steps of 1◦. The picture on the left shows the error for the
learned pose. The results indicate a tolerable residual error only
for increments of 2−3◦, placing too much demand on storage and
runtime.



(a) Deviation by 1◦ from left to right

(b) Upper row: nearest CNN is used for light estimation. Lower row: interpolation of results is used for light estimation

Figure 6: (a) Difference between the light estimation received from our system for camera poses with an increased distance to the pose used
in CNN training. From left to right, we increase the distance by 1◦ on the bounding sphere. (b) Comparison of estimates from nearest neighbor
selection (upper row) to an interpolation of the results from two neighboring poses (lower row). The images on the left and on the right show the
results for trained poses. The poses have been picked with a distance of 10◦. The results have been generated from input images which have
been captured at increments of 1◦. Note the improved interpolation results for locations between trained poses.

Figure 7: (a) We train a CNN for each sample on a triangulated
sphere. (b) To improve results, we augment the training data with
images rendered from sample points inside the triangle of the corner
point. (c) Data augmentation via disk sampling. To reduce the num-
ber of CNN instances, we augment the training data with renderings
from camera points which belong to all surrounding triangles.

As a remedy, we exploited the fact that an SH representation al-
lows for linear interpolation. We interpolate the results of neighbor-
ing CNN instances enclosing the current pose. As indicated by Fig-
ure 6(b), interpolating the results from neighboring CNN instances
can improve the estimation and allows to increase the increments
between poses used for training CNN instances.

While interpolation can improve the results, a rather high error
is still present for camera poses which do not agree with any of the
learned poses (middle sphere in Figure 6(b), lower row). It seems
likely that the high error at those viewpoints is because of the fact
that the system has never seen any rendering from nearby poses.
Therefore, to alleviate this problem, when training a CNN for a
pose, we augment the training data with images generated from
similar poses. In particular, we triangulate the bounding sphere,
and we train a CNN at each vertex with images that correspond to
the corner and additional images rendered from four more sample
positions inside the triangle (see Figure 7(b) for an illustration).

Figure 8(a) shows the difference between the estimates and the
ground-truth illumination for nine sampling points inside a triangle
which do not coincide with either a vertex or a CNN sample posi-
tion. The upper row illustrates the error using only the CNN learned

for the nearest vertex, and the lower row shows interpolated results
from the three vertices of a triangle. Note that the error is very small
(except for the red areas at the border corresponding to backside
lighting). Furthermore, notice that the error is homogeneous across
all samples for both, the nearest neighbor CNN and the interpolated
results, in contrast to the errors without data augmentation, shown
in Figure 6(b).

Thus, we conclude that training a CNN with additional images
rendered at surrounding poses improves the quality of the estimates,
without any noticeable degradation of the estimation for the given
pose. However, a naive strategy of simply selecting additional
viewpoints from the CNN sampling grid (vertexes in Figure 7) re-
quires training a CNN at each vertex, i.e., six CNN instances at each
sample point (one CNN per triangle). To reduce the overall number
of CNN instances, we use an alternative strategy for selecting the
poses used for data augmentation. Instead of selecting additional
sample points, we train a CNN at each vertex with samples from
the adjacent triangles. To keep the overall number of images used
to train a single CNN manageable, we take only a single sample
position inside a triangle in addition to one sample at each edge
connected to the vertex of the CNN. Thus, we sample a disk around
the corner point (see Figure 7(c) for an illustration).

Figure 8(b) shows the difference between the estimates and the
ground-truth using the disk sampling approach. Similar to the tri-
angle sampling, the difference between interpolation and nearest
neighbor selection is very small. Comparing the results in Fig-
ure 8(a) to Figure 8(b) furthermore reveals that both strategies gen-
erate similar results. However, the disk sampling approach requires
six times fewer CNNs.

6 VISUAL QUALITY AND PERFORMANCE

Our approach is very flexible and allows to use any real world ob-
ject as a lightprobe. To illustrate this, Figure 10 shows a number of
further results rendered with light estimates derived from our sys-
tem on different objects. Note that regardless of the choice of the
lightprobe, we get high quality renderings.

Figure 9 visualizes the quality of our results in a real world envi-
ronment. It shows the difference of the estimated lighting to a direct



(a) Data Augmentation via Triangle Sampling - Distance between Corner Points = 10 Degree

(b) Data Augmentation via Disk Sampling - Distance between Corner Points = 10 Degree

Figure 8: Triangle vs. disk sampling for data augmentation. Upper rows show nearest neighbor selection and lower rows show results from
interpolating between corner points. (a) Results obtained from using data augmentation via triangle sampling. (b) Results obtained from using
data augmentation via disk sampling. Notice that the difference is not significant, whereas the Disk Sampling requires six times less number of
CNNs.

Figure 9: Augmented Reality rendering using our light estimation and
the real world object as light probe. (a) Visualization of the difference
between our estimated lighting and (b) the current real world lighting,
which has been directly captured using a 360 camera. (c) Augmen-
tation of a virtual bunny using the estimated lighting.

capture of the environment map using a 360 panoramic camera (in
this example a Samsung 360). The difference is color-coded using
a rainbow color map visualization. Notice that the difference be-
tween the captured lighting and the one estimated by our system is
slightly higher compared to the difference when using synthetic im-
ages as input to the system (see Figure 8 and Figure 6). We believe
this is caused by the virtual nature of our training samples and the
fact that we generate only light combination from two different val-
ues in four SH bands. Therefore, we will further investigate more
realistic rendering techniques to create training samples as well as
other light sampling strategies in order to provide a high range of
different lightings and more photo-realistic training data.

As Table 1 shows, the run-time performance of our system is

Table 1: Performance Measurements

Training Estimation
PC

Estimation
Tablet

Sampling
Strategy N.N. Interpol. N.N. Interpol.

Single
Pose 1h 1 ms 1 ms 42 ms 126 ms

Within
Triangle 5h 5 ms 5 ms 42 ms 126 ms

Within
Disk 13h 5 ms 5 ms 42 ms 126 ms

very efficient, achieving realtime. N.N refers to nearest neighbor
selection and Interpol. refers to interpolating the results between
the 3 corners of the triangle. Training is performed on a desktop PC
using an i7-4770S with 3.1Ghz, 32 GB RAM and a Geforce 980
GTX GPU with 4 GB VRAM. The measurements refer to training
a single CNN. A singled trained CNN requires approximately 4MB
of memory. We tested the runtime performance of our system on
the same desktop PC and a tablet. For the tablet configuration we
choose a Razor tablet running Windows 8.1. The tablet is using a i5
1.7Ghz CPU with 4GB of RAM and a mobile GPU, a Geforce GT
640MLE with 2GB VRAM.

7 CONCLUSION AND FUTURE WORK

This paper presents the first real-time photometric registration
pipeline with low computational demands. A set of CNN instances
is trained based on purely synthetic images of an arbitrarily shaped
lightprobe and applied in real-time to live video frames. Our experi-
mental results show that the proposed method gives highly accurate



estimates and enables photo-realistic rendering. Robustness and ef-
ficiency of the basic approach are significantly enhanced by exploit-
ing temporal coherence through illumination caching and by ex-
ploiting spatial coherence with sampling and interpolation of cam-
era poses used for training. Furthermore, our experimental results
show that with our data augmentation strategy, the scope of per-
missible poses supported by a given CNN is expanded, ultimately
reducing residual errors at the online stage.

Our work provides a flexible tool for photo-realistic rendering in
MR applications. In order to further improve its ease of use, we will
combine it with an object recognition system to automatically se-
lect lightprobes at run-time from a database of prepared objects. We
expect that, as this database grows, optimization of the CNN will
become more important. Therefore, additional future work will fo-
cus on further reducing the number CNN instances required to pro-
vide high quality estimates. To this aim, we will investigate jointly
trained CNN instances and combinations of multiple lightprobes,
exploiting the fact that real-world scenes usually contain multiple
objects.

Since more realistic training data will eventually generate better
results in real world environments, we will also investigate other
global illumination techniques to generate photo-realistic training
samples. In addition, we will investigate different strategies to effi-
ciently sample the full range of possible light situations into a small
to medium sized database, which can be used to train a CNN in an
acceptable amount of time.

Furthermore, we will extend our system to include more vi-
sual effects, such as shadow rendering based on point-light de-
tection [20] and camera effects as proposed by Murray and
Klein [18] [12]. These features will supplement our work, build-
ing a toolbox for photo-realistic MR applications.

ACKNOWLEDGEMENTS

This work was funded in part by the EU FP7-ICT project
MAGELLAN under contract 611526 and the Christian Doppler
Laboratory for Semantic 3D Computer Vision.

REFERENCES

[1] D. E. Breen, R. T. Whitaker, E. Rose, and M. Tuceryan. Interactive
Occlusion and Automatic Object Placement for Augmented Reality.
Computer Graphics Forum, 1996.

[2] R. O. Castle, G. Klein, and D. W. Murray. Video-rate localization in
multiple maps for wearable augmented reality. In Proceedings of the
12th IEEE International Symposium on Wearable Computers, Pitts-
burgh PA, Sept 28 - Oct 1, 2008, pages 15–22, 2008.

[3] A. J. Davison, W. W. Mayol, and D. W. Murray. Real-time localisa-
tion and mapping with wearable active vision. In Proceedings of the
2Nd IEEE/ACM International Symposium on Mixed and Augmented
Reality, ISMAR ’03, pages 18–, Washington, DC, USA, 2003. IEEE
Computer Society.

[4] P. Debevec. Rendering synthetic objects into real scenes: Bridg-
ing traditional and image-based graphics with global illumination and
high dynamic range photography. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’98, pages 189–198, New York, NY, USA, 1998. ACM.

[5] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural net-
works. In G. Gordon, D. Dunson, and M. Dudk, editors, Proceedings
of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Re-
search, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

[6] R. Green. Spherical harmonic lighting: The gritty details. In Archives
of the Game Developers Conference (Vol. 56, p. 4), 2003.

[7] L. Gruber, T. Langlotz, P. Sen, T. Hollerer, and D. Schmalstieg. Ef-
ficient and robust radiance transfer for probeless photorealistic aug-
mented reality. In Proceedings of IEEE Virtual Reality 2014 (VR’14),
Minnesota, MN, USA, March 2014.

[8] L. Gruber, T. Richter-Trummer, and D. Schmalstieg. Real-time pho-
tometric registration from arbitrary geometry. In Proceedings of
IEEE International Symposium on Mixed and Augmented Reality (IS-
MAR’12), pages 119–128. IEEE Computer Society, 2012.

[9] L. Gruber, J. Ventura, and D. Schmalstieg. Image-space illumination
for augmented reality in dynamic environments. In Proceedings of
IEEE Virtual Reality (VR’15), pages 127 – 134, 2015.

[10] S. Hauswiesner, M. Straka, and G. Reitmayr. Coherent image-based
rendering of real-world objects. In Symposium on Interactive 3D
Graphics and Games, I3D ’11, pages 183–190, 2011.

[11] J. Jachnik, R. A. Newcombe, and A. J. Davison. Real-time surface
light-field capture for augmentation of planar specular surfaces. In
Proceedings of IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR’12), pages 91–97, 2012.

[12] G. Klein and D. Murray. Compositing for small cameras. In Proceed-
ings of Seventh IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’08), Cambridge, September 2008.

[13] G. Klein and D. W. Murray. Parallel tracking and mapping for small
ar workspaces. In Proceedings of IEEE International Symposium on
Mixed and Augmented Reality (ISMAR’07), pages 225–234, 2007.

[14] M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wim-
mer. Differential instant radiosity for mixed reality. In Proceedings
of IEEE International Symposium on Mixed and Augmented Reality
(ISMAR’11), pages 99–107, 2010.

[15] S. B. Knorr and D. Kurz. Real-time illumination estimation from faces
for coherent rendering. In Proceedings of IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR’14), pages 113–122,
Los Alamitos, CA, USA, 2014. IEEE Computer Society.

[16] P. Lagger and P. Fua. Using specularities to recover multiple light
sources in the presence of texture. In Proceedings of ICPR, pages
587–590, 2006.

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE,
pages 2278–2324, 1998.

[18] D. W. Murray and G. Klein. Simulating low-cost cameras for aug-
mented reality compositing. IEEE Transactions on Visualization &
Computer Graphics, 16:369–380, 2009.

[19] J. Pilet, A. Geiger, P. Lagger, V. Lepetit, and P. Fua. An all-in-one
solution to geometric and photometric calibration. In Proceedings
of the 5th IEEE and ACM International Symposium on Mixed and
Augmented Reality, Proceedings of IEEE International Symposium on
Mixed and Augmented Reality (ISMAR’06), pages 69–78, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[20] T. Rhee, L. Petikam, B. Allen, and A. Chalmers. Mr360: Mixed reality
rendering for 360 panoramic videos. IEEE Transactions on Visualiza-
tion and Computer Graphics, 23(4):1379–1388, April 2017.

[21] T. Richter-Trummer, D. Kalkofen, J. Park, D. Schmalstieg, undefined,
undefined, undefined, and undefined. Instant mixed reality lighting
from casual scanning. Proceedings of IEEE International Symposium
on Mixed and Augmented Reality (ISMAR’17), 00:27–36, 2016.

[22] D. Schmalstieg and T. Hollerer. Augmented Reality: Principles and
Practice. Addison Wesley Professional, 2015.

[23] Theano Development Team. Theano: A Python framework for
fast computation of mathematical expressions. arXiv e-prints,
abs/1605.02688, May 2016.



Figure 10: Results. (left) Rendering without light estimation (right) Rendering with light estimation obtained from our system. Virtual objects are
the smaller elephant, the tiger, the second The Hulk, and the bunny. Lightprobes are the bigger elephant, the horse and the action figure of The
Hulk.


