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Figure 1. Retargeting a ’henna decoration’ video tutorial to a teapot decoration scenario in the user’s workspace. (left) The user extracts relevant
motion from the video, (middle) scales it and aligns the result to a 3D scan of a teapot in the current workspace. With our editing tools, the user can
quickly alter the original tutorial to meet their requirements. In this example, the original video tutorial shows a decoration consisting of dots, which
requires a special henna pen. The user chooses to connect the dots into lines which can be drawn with a ceramic pen on the teapot. The user also scales
down the entire ornament to better fit the desired aesthetics. (right) Using augmented reality, the user validates the result directly on the real teapot.

ABSTRACT
A video tutorial effectively conveys complex motions, but
may be hard to follow precisely because of its restriction to
a predetermined viewpoint. Augmented reality (AR) tutori-
als have been demonstrated to be more effective. We bring
the advantages of both together by interactively retargeting
conventional, two-dimensional videos into three-dimensional
AR tutorials. Unlike previous work, we do not simply overlay
video, but synthesize 3D-registered motion from the video.
Since the information in the resulting AR tutorial is registered
to 3D objects, the user can freely change the viewpoint with-
out degrading the experience. This approach applies to many
styles of video tutorials. In this work, we concentrate on a
class of tutorials which alter the surface of an object.
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INTRODUCTION
With the success of video sharing platforms, the production
and distribution of homemade video tutorials is rapidly in-
creasing, resulting in a large body of video tutorials available
for nearly every aspect of life. Videos allow the demonstration
of complex actions required to solve a certain task. Video
tutorials are powerful in communicating motions quickly, but
precisely following the instructions can be very challenging:
Users have to match objects in the video with corresponding
objects in their real environment. They must infer 3D motion
paths, speed and velocity only from 2D video cues. In addi-
tion, object appearances in the video may differ from the real
world, making it difficult to identify matching landmarks. The
problem is exacerbated by the fact that the user’s viewpoint
often deviates from the one in the video.

The separation of task locations between the video screen
and the real environment requires mentally complex hand-
eye coordination [6]. To overcome this coordination problem,
augmented reality (AR) tutorials present visual instructions
directly registered in the user’s real environment [38]. It has
been shown that AR can significantly reduce the cognitive
load required to follow instructions [20].

Unfortunately, authoring AR tutorials is a time-consuming
process, which requires skills in 3D modeling and animation,
in addition to mastering the technical components of an AR
system. Consequently, few AR tutorials – certainly much
fewer than video tutorials – exist today. In this paper, we ad-



dress this shortage with a novel system capable of retargeting
homemade video tutorials to AR. We concentrate on a class of
tutorials showing tools operating on object surfaces. This kind
of tutorial describes actions that alter the surface of an object.
Common examples are: painting, calligraphy, soldering or
isolating circuits, make-up, and decorating, e.g., a teapot as
shown in Figure 1.

Unlike previous work [16, 39], we do not simply overlay
the video on the real object. Overlaid videos are efficient
to produce, but not as effective as 3D tutorials, if the action
is view-dependent or if the object in the video slightly dif-
fers from the one available to the user. In addition, a video
overlay may clutter and occlude the real object, especially in
surface manipulation tutorials, and animations in the video
may distract the user while following the tutorial [44].

Therefore, our system extracts 3D motions from the video and
registers the results to the 3D objects in the user’s environment.
This enables the user to freely change the viewpoint without
degrading the quality of the AR experience. Moreover, this
allows the presentation of instructions using effective illustra-
tive visualizations, such as dynamic glyphs [36]. Illustrative
visualizations are able to convey important information in an
effective way with minimal clutter and, if necessary, without
showing an animation. They also enable quick previews of
arbitrary aggregate actions.

Furthermore, extracting 3D motions allows the editing of the
tutorial’s temporal structure. This may involve changing or
adding actions or mixing multiple video tutorials into a novel
one. For example, the tutorial in Figure 1 demonstrates draw-
ing thick dots. However, a very specific tool is required to
create thick dots, which the user might not have. Therefore,
our system allows the connection of these dots into continuous
lines representing the overall shape of the decoration. The
result can be reproduced with a conventional flat drawing pen
commonly used to decorate ceramics.

Our work provides three contributions.

• We provide the first system for retargeting videos show-
ing tools with surface contact to AR. It includes a novel
approach to capture motion with 3D surface contact from
tracked 2D trajectories using registered 3D models, and a
set of visualization techniques for conveying instructions in
AR.
• We have conducted a user experiment of our system, from

which we derive information about acceptance and perfor-
mance, including an iteratively designed visualization for
AR instructions.
• We discuss the components of our system, and we identify

requirements and improvements for the design of similar
systems.

RELATED WORK
Authoring computer-based tutorials traditionally involves the
creation of dynamic glyphs, i. e., graphical elements, to
present the path and direction of motions [36]. However,
manual creation is very time and cost intensive, research has
aimed at automating the authoring process. Automatic gen-
eration of AR instructions goes back to the pioneering work

on KARMA [15], which is based on the idea of using rules to
derive graphical representations, as proposed by Seligman and
Feiner [41]. However, KARMA relies on a manually created
knowledge database to derive its visualizations.

Script languages, which capture visualizations in procedural
form, have been proposed by multiple authors, such as Butz [8]
and Ledermann [28]. However, authoring by scripting always
requires formal knowledge about the tutorial content in addi-
tion to programming skills. Therefore, systems which require
less user input have drawn attention. Agrawala et al. [1], Li
et al. [30], Kalkofen et al. [22] and Kerbl et al. [24] showed
the automatic generation of disassembly instructions for rigid
objects. Mohr et al. [33] demonstrated the automatic gener-
ation of 3D animations from images depicting an assembly
sequence. All these systems derive a sequence of actions con-
sisting of straight motions only. Therefore, they are unsuitable
for tutorials which involve complex motions.

The authoring of more complex actions has been proposed
by capturing the necessary steps. For example, Grabler et.
al demonstrate the generation of photo manipulation tutori-
als [17] from recorded actions in a photo-manipulation tool,
and Chi et. al mixed 2D image and video material to generate
tutorials [9]. Our system follows the idea of recording and
replaying actions and lifts it to 3D AR environments.

AR tutorials have already been generated using 3D motion
capture systems. Examples include assembling furniture [46]
and Lego toy-sets [18], or gestural commands [45]. While
3D motion capture is the obvious way of providing input,
these systems handle rather simple motions. However, the
very recent work from Chi et al. [10] captures more complex
motions from which the system generates illustrative step-by-
step diagrams. While the generated drawings are optimized
for effective communication, the system presents the results in
2D, rather than registered in 3D AR. Similarly, AR instruction
systems often make use of the idea of a 2D mirror. Examples
include AR instructions for physiotherapy [43] and dance [2]
applications. While this concept has been demonstrated to be
effective, it is limited to body centric instructions.

Several works [16, 39, 27, 13] forgo the use of 3D capturing
and, instead, overlay recorded 2D video directly in the AR
display. Using 2D video has the advantage that the original
demonstration is preserved without requiring any spatial or
semantic interpretation. However, showing a registered 2D
video does not allow a truly free choice of the viewpoint.
Moreover, the video occupies substantial screen space. Both
severely restrict the practical value. In contrast, the system of
Damen et al. [13] provides the video tutorial using a heads-up
display which allows clearly seeing all objects. However, no
direct augmentation is given why the user has to mentally
match landmarks between real objects and video data.

The methods in this paper are also inspired by research on
extracting image layers [42] and motions from video data [25,
12]. However, while these systems aim to generate editable
static 2D visualizations, our system allows editing entire se-
quences which are going to be presented within an interactive
3D environment.



Figure 2. System overview. (left) We extract object and user motions by tracking known model features in the 2D video. Here, tracked features are
used to record the path of the brush and to align a face model in each frame. (middle) After validating and possibly editing the extracted motion, we
retarget the motion data to real world 3D objects. This requires registering the same 3D model as used in the extraction stage, in this case, a face model,
to the live camera image. By tracking the model in 3D, we are able to relate video data to the real world. In this example, we present the recorded path
of the brush directly on the user’s face. (right) Since we retarget the extracted motion data in 3D, we can choose an arbitrary point of view. To provide
effective visual instructions, we generate dynamic glyphs (here: timed arrows) and we indicate the position of the brush over time using a red circle.

OVERVIEW
We begin with an overview of our system. It is designed to
let an author quickly extract the relevant information from a
source video and compose an AR tutorial that operates in the
environment of the user. All steps can be done by a single
person, but there are two clear roles: the expert editor and the
actual consumer of the tutorial. The extraction phase is more
suited for an expert, i.e. the person who generates the video
tutorial. The editing/retargeting phase is about adapting the
tutorial to the object of choice. This is a preparation task that
the end-user might do prior to consuming the instructions. If
one has the same object no adaptation is necessary, otherwise
the tutorial has to be aligned (i.e. retargeted) to the new object.

Step 1 – Extraction The user loads the input video. The
system either recognizes the main object (such as the face in
Figure 2), or the user interactively models the 3D object of
interest. The user selects the tip of the tool from which the
motion is tracked and extracted. If the system loses tracking,
the user is asked to insert a cut or to reinitialize the tool tracker.

In Figure 2 (left) the system recognizes the face and auto-
matically registers a deformable face mesh. Afterwards, the
user marks the tip of the make-up brush in the first frame of
an action. The system is now able to track the brush within
each frame of the action. We map the tracked 2D trajectory
of the brush onto the 3D mesh of the face, which retargets
the 2D into a 3D trajectory. The mapping is implemented by
automatically unwrapping the 3D mesh into 2D texture space.
This allows us to directly add the 2D tracked trajectory of the
brush to the 2D texture of the face.

Step 2 – Editing The extracted motions are validated, cor-
rected where necessary, and registered to the user’s real world
object. By tracking the 3D model of the object in the video,
the extracted motions are registered automatically. However,
we allow the repositioning and reorientation of the extracted
motion, and we provide tools for combining multiple sources
into new tutorials.

In Figure 2 (middle), we retarget the trajectory of the make-up
brush by registering the face mesh along with its previously
generated 2D texture to the user’s face.

Step 3 – Visualization The motion is presented using an ef-
fective visualization based on arrows to indicate direction and
position. Optionally, our system is able to show an anima-
tion of the tip of the tool along the extracted 3D trajectory.
However, based on user feedback we recommend to use anima-
tions only if mimicking the speed and velocity of the original
motion is important.

In Figure 2 (right), we abstract the motion by using one arrow
for each segment of the trajectory. Note that, based on user
feedback we slightly refined the visualization shown in Figure 2
(right), resulting in a presentation which uses arrows along
the outline of the trajectory (see Figure 7).

EXTRACTION
In order to extract motion with surface contact, we first extract
the 3D motion of the surface by tracking the corresponding
3D object. Subsequently, we extract the motion of the tip of
the tool relative to the surface.

Tracking the 3D motion of known objects from monocular
videos is a standard task in AR, assuming that a 3D model
of the object and intrinsic camera parameters are available.
For objects with enough surface texture, a popular approach
is to match SIFT features [31] extracted from the live video
with a 3D feature point cloud representing the object. The
3D positions associated with matched features are forwarded
to pose estimation using a variant of the Perspective-n-Points
(PnP) algorithm, such as the one of Lepetit et al. [29]. After
successfully computing the pose of an object in the first frame,
pose estimation in subsequent frames can be made faster by
incremental tracking [32].

Extracting the 3D motion from arbitrary videos from, e.g.,
online sources is more difficult, since the 3D model and the in-
trinsic camera parameters are unavailable. Therefore, we must



Figure 3. Extracting motion with surface contact. (a) We extract the 2D trajectory by tracking the tip of the tool in unwrapped texture space. (b) We
convert the 2D trajectory to 3D by back-projecting the video data to a corresponding 3D model, in this case, a face.

interactively create a 3D model and adjust internal camera
parameters as part of the authoring process.

Our system extracts 3D motion of three different types of 3D
objects. In particular, we provide tools to extract 3D motion of
piecewise planar objects, rigid objects, and deformable objects
with a known shape model, such as human faces. For each
of them, we provide an optimized set of tools to create the
necessary 3D model with minimal user input.

Planar objects
Piecewise planar objects, such as planes or boxes, can be con-
veniently specified by interactively drawing on top of the first
video frame. We let the user specify the corners of a rectangu-
lar area and its dimensions. Note that a minimum of four points
is sufficient to estimate a pose from a homography. However,
to produce more stable results, we incrementally track all dis-
tinctive features inside the rectangular area throughout the
video sequence. The locations of the distinctive features in
the plane are estimated directly during the extraction from the
image.

Non-planar objects
Non-planar 3D objects require a more complex 3D point cloud
than a tracking model. Unfortunately, for most online videos,
we cannot expect to successfully perform structure from mo-
tion to obtain 3D geometry: The internal camera parameters
are unavailable and may even change, when optical zoom
is used. The objects in the video may lack texture features.
Visibility may be limited due to restricted camera motion. Oc-
clusions, such as from the author’s hands, may be significant.

Instead, our method utilizes the fact that a user wishing to
replicate a tutorial in AR must have access to the same class
of objects as the ones used in the video. While actual shape
and appearance may differ between the object in the video
and the one available to the user, the overall topological and
geometric characteristics will be similar. Therefore, we let the
user provide a physically available object as a template for the
tracking model.

Creating a 3D reconstruction of an existing physical object is
relatively straight forward using consumer depth sensors [35]
or even mobile phone cameras [37]. If no physical template

is available, the user can instead search for a template model
in an online database, such as Sketchup 3D Warehouse1. If
the template model slightly differs from the tracking model,
we incrementally deform based on the approach of Kraevoy et
al. [26].

Deformable objects
If the shape is known a priori, such as the human face in
Figure 2, a deformable model can be tracked by determining an
update to the deformation parameters in each frame. This kind
of tracking is commonly based on specially trained models.
Our system implements facial model deformation based on
a constrained local neural field [3]. Since the face tracker
operates in image space, we map the 2D facial landmarks to a
3D model of a human face (see Figure 3).

Motion Capture
To extract the path of a tool which alters the workpiece (i.
e., the 3D surface), we extract the trajectory of its tip. The
user has to select starting and ending frames of an action in
order to input information about surface contact. In-between
the selected frames we assume the tool has contact to the
surface. To extract its motion, we track the position of the
tool relative to the workpiece, and we track the workpiece
in 3D space as described before. This enables us to extract
2D trajectory in image space which we subsequently convert
to a 3D trajectory by using perspective projection from the
tracked camera’s point in space onto the 3D surface (Figure 3).
Note that we have derived the 3D pose of the object relative
to the camera for every frame before. This allows the deriva-
tion of the camera pose as the inverse of the 3D object pose
transformation.

Since the tool’s tip is often very small and usually located in
front of a changing background, tracking the tip from monoc-
ular video can be difficult without the exact knowledge of
the tool’s appearance. Therefore, conventional feature detec-
tion approaches do not yield satisfying results. We overcome
this problem by applying a tracking-learning-detection ap-
proach [34], which identifies robust features by updating a

1www.warehouse.sketchup.com



Figure 4. Segmentation and Layering. (a) We interactively segment the input data by selecting starting and ending frames. (b) This results in a set of
actions (red), which we can use to derive image layers.

Table 1. Tool tracking accuracy measurements.
unit:mm pencil felt-tip marker brush

tip-size (lxw) 2x0.5 4x2 7x5 24x6
stroke-width 0.5 1.2 2.2 10-14
error (avg) 0.17 0.23 0.37 4.47

learned classifier, while tracking an initial user selection. In
order to track a tool, the user identifies its tip by selecting
a rectangular patch in the first video frame (marked red in
Figure 3(b)). This area is used to initialize the classifier, which
is improved in subsequent frames. As proposed by Kalal et
al. [21], we use an ensemble classifier for detection and P-N
learning to update the tracking model.

After extracting the path of the tool in image space, we project
its position to the surface of the workpiece. We have imple-
mented this by recording the tool trajectory in a 2D texture
atlas, generated by unwrapping the 3D mesh of the work-
piece. The texture coordinates allow us to directly map the
tool trajectory from image space to the surface.

Accuracy Analysis
The accuracy of the tool tracker depends on the stroke width,
tip size and speed. While the tracker follows the tip it might
not follow the actual center of the stroke. The author can di-
rectly adjust this offset during/after extraction. Table 1 shows
tracking accuracy measurements of a variety of drawing tools.
The watercolor brush has the largest error due to its large and
deformable tip, while all other tools produced an average error
of less than 0.5 mm.

EDITING
After extracting objects and their motions, an editing pass lets
the user arrange the content into the form necessary for AR
presentation. This mainly concerns the temporal structure (mo-
tion segments) and the spatial arrangement (layers of affected
surfaces).

We split the motions into temporal segments to allow con-
venient navigation, as proposed by Pongnumkul et al. [40].
For each segment, we compile the visual changes caused by
the performed action into a corresponding image layer. The
resulting set of layers allow us to edit the extracted motion,
to realign them (i. e., reposition and reorient), and to create
new compositions of multiple actions from possibly different
tutorials.

Temporal segmentation
We define a temporal segment by an action in the input video,
e. g., a brush stroke painted on a canvas. We carry out the
segmentation semi-automatically, and we let the user refine
the result at any point in time. More specifically, we ask the
user to define starting and ending points of an action along
with a meaningful name during extraction. We allow to group
successive actions into a single level of a hierarchy, and we
automatically refine the resulting segments based on an anal-
ysis of the motions of the tool within a segment. To refine
segments, we identify turning points of the motion, i. e., points
in the path were the angle between two neighboring line seg-
ments exceed a threshold. In our examples, we used an angle
of 90◦ as threshold.

Layering
For each segment, we also extract a layer storing a video
matte and the foreground colors which represent the changes
between the starting and ending keyframes of a segment. We
calculate the foreground color using the method of Chuang
et al. [11] which intersects vectors between foreground and
background colors in RGB space. Background colors are
derived from pixels in future frames of the video which have
been identified to be overwritten by the action.

After estimating background and foreground colors along
the trajectory of an action, we calculate the alpha value as
α = |B1−F |/|B0−F |, where B0 represents the background
color in the starting frame of the segment, B1 represents the
background color in the ending frame, and F , the estimated
foreground color. This method requires the presence of two
different background colors B0 and B1. Therefore, if an in-
sufficient color distribution in the background is present, we
resort to simple chroma keying to estimate the foreground
color. While this part of our system is similar to the work of
Tan et al. [42] it extends it by allowing for a moving camera
and it simplifies deriving layers based on tool interaction.

By using the segmentation and the mattes, we can generate
a layered representation of the source video. A few selected
layers of a painting tutorial are shown in Figure 4(c).

The layered representation can be manipulated in a way that
is similar to common image editing software. Specifically,
layers (and the embedded paths) can be re-arranged, scaled and
combined. Multiple layers from different video tutorials can
be mixed, if the depicted models are geometrically compatible.
We support the Adobe Photoshop format for editing of layers
in third-party tools.



Furthermore, our system allows any combination of layers
to be rearranged on the real object. An initial registration
of a layer is available from the extraction pass. The user can
interactively reposition and reorient layers using a texture atlas
corresponding to the surface of the real object. For example,
the decorations shown in Figure 2 were originally applied to a
jewelry box, but later retargeted to a teapot.

VISUALIZATION
To visually communicate instructions we generate graphical
elements based on the extracted 3D motion. Following the
work of Nienhaus et al. [36] the goal of our design was to
introduce minimal visual clutter by providing abstractions of
the motion. Therefore, in our initial design we create dynamic
glyphs based on arrows which we combine with an animation
of the motion. We present the animation using a red circle
which marks tip of the captured tool. However, we iteratively
optimized our design as users were not totally satisfied with
its usability. We present the design iterations in the evaluation
sections.

In all our visualizations we reduce the complexity of motion
paths, as raw motion trajectories are often too cluttered and
jittery to be suitable for path visualization (Figure 2, mid-
dle). Our filter simplifies a path by first using the approach
of Douglas et al. [14](Figure 6(b)), followed by an additional
segmentation of the paths into smaller segments. To segment
the path, we search for turning points by comparing the angle
between two neighboring line segments to a threshold (the
example in Figure 6(c) uses a threshold of 90◦). Subsequently,
we cluster turning points which are placed close to each other
by recursive merging based on distance. The resulting paths
can be used to abstract the motion using arrows. We create
an arrow head at each turning point and the endpoint (Fig-
ure 6(c)).

EVALUATING THE AUTHORING
We have tested our system on a number of different video
tutorials. Throughout this paper, we present snapshots to
discuss the tutorials. The video material supplied with this
paper shows the results in greater detail.

We collected feedback on the authoring step for samples from a
facial make-up and a painting scenario in an expert evaluation.
Facial make-up tutorials include motions with surface contact
on a 3D human face model. Figure 5 illustrates the video
tutorial. The retargeting system automatically finds the face
of the tutor. The author has to initialize the tool tracker in the
first frame of every segment of the video and stop tracking in
the last frame of a segment. In a few cases, the tracker had to
be re-initialized after tracking failures.

The painting tutorial includes motion with surface contact on
a canvas. Figure 4 illustrates the painting tutorial. We model
the canvas as a planar object, and further extract actions and
layers. We use Adobe Photoshop as an interface for editing,
where we load the extracted layers automatically. Photoshop
provides operations like translation, rotation or scale, allowing
to modify the input tutorials. We can add layers from multiple
tutorials to combine several source tutorials into a new one.

Four expert users, experienced in using image and video edit-
ing software, participated in the evaluation. Before starting,
the participants familiarized themselves with the content of
the videos, the task in the tutorial and the authoring tool. To
collect feedback on the tool tracking, we asked the experts to
extract the motion in two ways: first, by redrawing the line
manually on the surface texture representation that shows the
final result of an instruction; second, by using the tool tracker
to extract the path of the tools automatically.

To comfortably extract start and end frames of instructions we
allowed the modification of the input video frame rate by a
scale factor. Based on our experience, we set the scale factor to
0.5, resulting in a time-scaled video. While users appreciated
scaling the speed of the video playback, they also asked for an
interactive control of the scale factor.

For the facial make-up sample, participants required approxi-
mately four minutes for 50 seconds of time-scaled video. For
the painting tutorial, participants required around eight min-
utes for three minutes of time-scaled video.

The tool tracker was met with positive responses. Aside from
occasional tracking failures, participants were comfortable
using this tool. When directly compared to redrawing the
instructions manually, participants considered the tracking
was faster for extracting the instruction. Two participants even
stated explicitly that it is more accurate. With respect to the
tracking, one participant remarked that our results are precise
enough to rather rely on the extracted original drawing than
on a line she is redrawing manually.

Participants generally suggested more advanced tools, such
as shortcuts to fill areas in paintings. The current authoring
software relies solely on extracting paths. However, future
work will investigate the use of collections of tools that allow
the efficient extraction for actions in areas. A fill instruction
could be specified in one frame and automatically extended to
instruction steps over multiple frames.

EVALUATING EFFICIENCY OF AR MAKE-UP TUTORIAL
A second experiment was conducted with the goal to corrobo-
rate the precision of activities performed when following the
AR tutorials. The intention was to observe the reaction of
non-technical users in performing a common task aided by
AR tutorials, and to compare the results with those obtained
when following conventional video instructions.

Design. We introduced a structure for making comparisons.
The study had two conditions: video (V) and AR. The AR
condition showed the instructions step by step. We chose a
face-painting task based on a video downloaded from Youtube
(Figure 5(a)). The tutorial involved two types of precision
tasks, namely painting points and painting lines. It had the
advantage that it could be divided into two symmetrical parts:
left and right side of the face.

The study was organized as a repeated measures design with
two independent variables: interface (V, AR) and task (left,
right side of face). Task was treated as random variable for
counterbalancing the design so that each participant uses a
different configuration. The possible configurations were



Figure 5. Experiment setup for a retargeted make-up tutorial. (a) Input video tutorial. (b) We showed the resulting AR tutorial using an AR mirror,
which consisted of a camera and an USB display. (c) Participants could use the AR mirror and the video which we placed next to the mirror.

(ARle f t ,Vright), (ARright ,Vle f t), (Vle f t ,ARright), (Vright ,ARle f t).
Participants were randomly assigned to configurations. A
make-up AR-Mirror was built for the study, replacing a table-
stand make-up mirror with a display (Mimo Magic-Touch,
10.1”, 1024x600 pixels) and camera, shown in Figure 5(b).
We control the AR visualization using a standard PC mouse
and a next button, and we control the video using the interface
of a common video player with functionality to scroll back
and forth.

Pilot. We performed a pilot study with the described setup.
Three female participants (X = 33 years old) were asked to
take part in the test. They signed a consent form accepting that
their performance be video-recorded. Answers to a pre-test
questionnaire indicated that one participant relies on make-
up videos, whereas the other two had never followed video
instructions for make-up before. The session was closed with
the participants rating the difficulty of reaching for the controls
and a semi-structured interview.

Having to reach for controls was not seen as hindrance either
in AR (M = 4.6 of 7, higher means easier) or in V (M =
4). Participants commented on the lack of preview in AR
("There is no preview. I have no idea what I am trying to
achieve, because I only see each individual instruction.") and
on occlusion issues ("Occlusion. I cannot see my skin. The
instruction is getting in the way, and I cannot see if I am
painting it correctly or not.").

Revision and Experiment. After the pilot, the interface was
modified as follows:

• Full preview was added for future steps of the tutorial.
• The visualization was modified to avoid occluding the user’s

skin. It displays only the outline of the motion trajectory and
the motion is shown using an animated circle (Figure 6(d)).
The arrow is still used to preview a segment’s path, but it
fades out after the preview phase (Figure 6(d)).

Six participants took part in the study (1 female, X = 34.3
years old sd=4.8). The setup and the procedure were identical
to the pilot. However, in contrast to the pilot study, we asked
to follow the instructions as accurately as possible. Note that,
while other researchers have compared monitor versus AR
instructions [20], we were interested in the perceived quality
of the instructions generated with our method. However, we
also measured error and task completion time to evaluate the
performance of our AR visualization system.

Results and Discussion. The task completion time was mea-
sured using a stop watch from the point in time where par-
ticipants announced the start of the drawing. The drawing
was considered finished when the last stroke was placed. The
error was measured by normalizing the texture atlases con-
taining the strokes of the tutorial make-up and the user-drawn
make-up and comparing them using the l2-distance between
the image pixels. Wilcoxon signed rank tests did not reveal
any significant differences in time (V: mean=82.2s, sd=29,
median=72; AR: mean=102.4s, sd=31.9, median=88) or er-
ror (V: mean=0.45, sd=0.04, median=0.47; AR: mean=0.42,
sd=0.02, median=0.42).

We received overall positive feedback on the AR condition.
Comments from the experiment included "I was more confi-
dent of being accurate when using AR.";"I felt I was quicker
using AR. Being accurate with the video was difficult, because
I didn’t know where exactly I have to place the dots.";"The
mirrored video was difficult to (mentally) invert.";"In AR I
didn’t have to think, I could concentrate on the drawing.".

All participants unanimously preferred AR over the video
when the goal was being as accurate as possible. In a compar-
ative questionnaire, they unanimously expressed feeling more
confident and faster with the AR interface. In the video condi-
tion, two participants did not pick the correct side of the face,
when starting the task. They were instructed to continue on
the correct side. This was not an issue in AR, which showed
instructions directly on the face of the participants. However,
while the participants felt that AR allowed them to follow the
motion exactly where they should appear, we noticed that lines
drawn in the AR mode tend to include a bit more jitter. We be-
lieve that this is because in V people drew continuously while
in AR they used a stop and go strategy which allowed them to
repetitively validate the result. We see two possible reasons
for this behavior. First, our 3D face tracker is not perfectly
modelling face deformations. Therefore, the augmented lines
were floating a bit over the skin of the user as soon as the face
was deformed. This may have distracted the user resulting
in a stop and go strategy. Second, our visualization encodes
the speed of the motion using a moving dot. This may have
distracted participants, because they switched their focus from
being accurate in space to being accurate in time and the other
way around, thereby causing them to continuously interrupt
the motion.



Figure 6. Path generation and first revision of AR visualization. (a) We generate path illustrations from motion capture data. (b) The extracted path
data is analyzed and simplified. In particular, we remove zig-zag overdraw along the trajectory by clustering and detect turning points (marked in
green). (c) We generate arrows in-between turning points, the start point and end point. (d) At runtime, we use the arrows to provide a preview of the
motions. To minimize occlusion, the arrow is replaced by the border of the tool’s trajectory. The red dot shows the extracted tool position over time. (e)
The combination of visualization techniques provide an overview first, before the user can follow the exact motion.

Even though we received positive feedback on our AR in-
terface, it did not outperform video based tutorials in task
completion time or error rate. We believe we detected no
differences due to the imperfect real world modelling of the
user’s face in AR and the distracting animation which was not
necessary for the task.

EVALUATING EFFICIENCY OF AR KANJI TUTORIAL
After the make-up study, animations were removed from the
interface. Instead, the direction of the motion is encoded in
the border of the instruction glyph (Figure 7(c)). We per-
formed a third experiment to collect quantitative data on the
performance of the second revision of our AR visualization
system. Since we speculate that the face tracking solution
was not accurate enough to allow objective comparison of
the quantitative data, we switched to a drawing scenario, in
which accurate tracking and a rigid scene (without deforma-
tion) could be ensured. Therefore, participants were asked to
follow Kanji drawing tutorials on paper using our AR interface
and a common video interface.

In the AR condition, participants used an Optical See-Through
Head Mounted Display (HMD), a Microsoft Hololens, to re-
ceive instructions augmented on a piece of white paper (Fig-
ure 7(a)). The Hololens has no standard mouse interface,
therefore we had to change the AR interface so that switching
to the next instruction was done using a handheld controller
(Figure 7(a)).

Design. We designed a repeated measures within-subjects
study to compare the performance and user experience of the
AR interface to a common video interface. We introduced
one independent variable interface with two conditions: AR
interface (AR2) and video interface (V2). The task was to
follow a tutorial with the goal to draw a single Kanji symbol
in a target area as it was shown in the respective interface. The
task was repeated ten times for each interface using a different
Kanji symbol for each repetition. Correctly following the
tutorial involves drawing strokes of the proper size, from the
correct direction and in the right order.

We prepared a set of 20 symbols, which were of similar com-
plexity (based on the number of strokes) consisting of 6 to 8
strokes. The 20 symbols were divided into two pools of ten
symbols, each pool contained an equal total number of strokes.
The tasks and the pools of symbols were counterbalanced to
avoid learning effects and bias by the choice of symbols for
each pool.

As dependent variables we measured task completion time and
error of each task, subjective workload measured by the NASA
TLX [19], usability on the System Usability Scale (SUS) [7]
and overall preference.

Apparatus. Participants performed the task standing in front
of a whiteboard and drawing with an ordinary pen on a 10cm×
10cm piece of paper attached to the board (Figure 7).

In AR2, participants wore a Microsoft Hololens HMD and
used the second revision of our visualization (Figure 7). In
V2, an Nvidia Shield tablet (17.2cm× 10.8cm) showing the
instruction video was mounted above the target area (Fig-
ure 7(b)). Participants were presented the unmodified tutorial
video and had to follow the instructions. The MX Player
application2 was used as video player. The unmodified tuto-
rial videos did not show an overview at the beginning of the
tutorial. Participants could browse through the video using
common video controls (Figure 7(b)).

Procedure. After an introduction and filling out a demo-
graphic questionnaire, participants performed a training task
for the first interface using a training symbol, different for AR2
and V2, that was not part of the tested set of symbols. After
participants were comfortable using the interface, the mea-
sured tasks started and participants were instructed to be fast
and accurate. The symbols from the current pool were shown
in random order. After finishing the 10 symbols for one inter-
face, participants filled out the NASA TLX and the SUS. The
second condition started thereafter, following the same proce-
dure. After filling the second SUS questionnaire, participants
filled out a preference questionnaire and a semi-structured
interview was conducted. A session took approximately 45m.
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Figure 7. Retargeted Kanji tutorial and final revision of AR visualization. (a) The AR visualization is presented using an Optical See-Through HMD
(Microsoft Hololens) and a handheld clicker that the user is holding in one hand. (b) The video tutorial is shown on a tablet mounted right above the
drawing area. This reduced the influence of head motion. (c) Our final glyph design encodes the direction of the stroke on its border using arrow heads.
The system presents one glyph at a time next to a full preview of the final drawing. This picture shows the six instructions presented to the user in AR.

Task completion time was measured using a stop watch from
the point in time where participants announced the start of the
drawing. The drawing was considered finished when the last
stroke was placed. The error was measured as in the previous
study using the l2-distance between the image pixels of the
tutorial Kanji and user-drawn Kanji. Hypotheses. Due to the
presentation of the tutorial using AR and the preceding au-
thoring step to process the tutorial instructions, we expect that
when working with AR2 users will be significantly faster and
more accurate than when using unmodified video instructions
(H1). Furthermore, users will prefer AR2, due to its improved
usability and intuitive visualization (H2).

Results. 12 participants (3 female, X =31.3 (sd=6.2) years
old) volunteered for the study. On a scale from one to five,
five meaning best, the mean of self-rated AR experience was
2.7 (sd=1.2), video tutorial experience was 3 (sd=0.6), Kanji
experience was 1.3 (sd=0.65) and general drawing ability
rated as 2 (sd=1.3). With 12 participants, two interfaces
and ten different symbols per interface, there were a total
of 12× 2× 10 = 240 trials. The data was evaluated using a
level of significance of 0.05 and Wilcoxon signed rank tests.

Table 2 shows the mean, standard deviation and median of
task completion time, error, NASA TLX and SUS for AR2
and VR2. Figure 8 shows the boxplots of the measurements.
Wilcoxon signed rank tests revealed a statistically signifi-
cant difference in task completion time ((Z = −3.0594, p <
0.001,r = 0.62)), error (Z = −2.9025, p < 0.05,r = 0.59),
NASA TLX (Z = −3.0594, p < 0.001,r = 0.62) and SUS
(Z = 2.3552, p < 0.05,r = 0.48). In all cases AR2 outper-
formed V2. These results support H1 and H2.

All 12 participants preferred AR2 over V2, when asked to
choose one of the two interfaces in the after-study question-
naire.

Discussion. Our results support H1 and H2. Our system
clearly outperforms traditional video tutorials and is also pre-
ferred by the participants. The median SUS value of 92.5 for
the AR interface is higher than the average of 70 and, based on
the analysis of Bangor et al. [4], can be translated into the ad-
jective “excellent”. The traditional video interface has median
SUS value of 76.25 and receives the adjective “good” [4].

Participants were very positive about the AR interface in the
after-study interview and clearly preferred this interface, simi-
lar to the results of the previous study.

Five participants mentioned the clear benefit of AR in the abil-
ity to control the speed in which the instructions were shown.
The lack of speed control in V2 was considered as stressful,
because the video was either too slow or too fast. Two par-
ticipants remarked that they appreciated the preview of the
finished Kanji in the beginning of the instructions, which un-
derlines the usefulness of our authoring system in reformatting
video tutorials into a more sophisticated format for learning.

Four participants again noted problems with occlusions in
the AR condition. The visualization sometimes occluded the
drawn line, especially when they drew out of the bounds.
While closing off the indicated drawing area could be regarded
as desirable feature, it would be better, if a visualization could
identify user-relevant content to avoid occlusion. Seven par-
ticipants noticed that the focal plane of the Hololens did not
match the surface they were working on. This is a long-known
problem of this kind of HMD technology. While unpleasant,
participants could still easily finish the task.

In condition V2, participants paused the video frequently to
keep up with the instructions. This indicates the value of
step-by-step instructions as extracted by our system. While
we compared our system to a standard video interface V2,
it would be interesting to compare the AR condition with
a more advanced video interface that also supports step-by-
step instructions, or even automatic pause-and-play techniques
such as the one presented by Pongnumkul et al. [40]. We
speculate that part of the performance difference between AR
and V2 comes from the segmentation of the tutorials into
steps in the AR condition and that the performance of a more
advanced video tutorial will be closer to the AR condition.

Based on a visual comparison of the resulting drawings, we
noticed no difference in jitter between drawings generated
with interface V2 compared to interface AR2 (see the comple-
mentary material for scans of the drawings). Since we changed
both, the glyph design and the application (to one which does
not require deformable object modelling and tracking), a fu-
ture experiment will have to investigate the actual impact of
each of the two factors to jittery drawings in AR instructions.



Table 2. Measurements of Kanji study (mean (sd), median).
Cond. Time (s) Error SUS Nasa TLX

AR2 20 (3.7), 19.9 0.41 (0.03), 0.4 89.6 (10.1), 92.5 22.4 (11.6), 21.3
V2 30.7 (6.6), 30.1 0.46 (0.02), 0.46 68.1 (20.8), 76.3 46.5 (16.1), 45.4

Figure 8. Kanji study results. Stars indicate significant differences.

DISCUSSION AND FUTURE WORK
We have presented a flexible framework for retargeting tutori-
als from video to AR. Users can quickly extract motions from
video sources by providing just enough cues to initialize the
motion reconstruction. The input required by the user is small,
making the authoring process simple and swift.

We performed a series of evaluations to improve the design
of our authoring system as well as the tutoring system. In
particular, we have redesigned the AR visualization twice and
the method to step through instructions once. In addition,
we have extended the initial set of authoring tools based on
user feedback. The resulting AR tutorial clearly outperformed
video based instructions for precise drawing tasks.

Next to the revisions we have implemented, we noticed a
number of challenging situations for our system. We compiled
a number of recommendations to address challenges when
systems for applications similar to ours.

Compensate for limited tracking during extraction. Any sys-
tem following our approach to guide extraction based on fea-
ture tracking will be limited by the capabilities of current
tracking methods. For example, if the input video is very dark,
noisy or blurry, the surface and tool tracker may require ex-
cessive user input to manually correct failure cases. Similarly,
subtle visual additions or color alterations, such as in facial
make-up, cannot be detected with current computer vision
techniques. While better cameras or improved multi-channel
tracking methods can overcome these restrictions in the future,
we recommend also using common 2D image drawing tools
to provide the information manually. This will lead to a more
time consuming authoring process, but allows by-passing dif-
ficult input material.

Compensate for limited tracking and scene modelling during
playback. Our 3D face tracker is not able to precisely han-
dle face deformations in 3D during playback. Our make-up
experiment indicates that small errors in tracking and scene
modelling has a high impact on the performance of the AR
visualization. While better tracking technology can overcome
this problem in the future, we recommend adding visual feed-
back for users, so that they can control their movements to

avoid situations, where the tracking system will introduce
large errors or potentially fail. For instance, the user can apply
the feedback to stabilize deformable scenes and thus will avoid
motion which may lead to floating augmentations.

Provide real-time feedback on the user’s performance. Our
current approach presents the trajectory and the direction of
the motion the user has to perform. We do not provide any
feedback on the performance of the user or other forms of
guidance, while using the AR tutorial. Instead, we rely on
the user’s ability to directly observe any deviations in-situ.
However, this requires additional user attention and may result
in a stop and go strategy similar to what was observed in our
make-up study. Obviously, with robust difference detection
in real time performed on the user’s video stream, we can
extend the tutorial system to respond to the user’s actions
and provide feedback in a more explicit way, similar to the
feedback proposed by Bau and Macay [5]. To limit the amount
of visual information provided to the user, we furtermore
recommend using other modalities, such as vibration or sound,
to provide feedback.

Automatic contrast adaptation. Our system presents the ex-
tracted motion using the revised glyph design in a user defined
color. This approach assumes similar contrast between real
world background and the augmentation over the entire tuto-
rial. However, this assumption limits the set of tutorials the
system can effectively display. To ensure visibility of AR
instructions at any point in time, adaptive approaches, such as
saliency differencing [23], or static methods which provide
contrast on the border of glyphs [22] should be considered.

Combine with video presentation Our work demonstrates how
AR can support following video tutorials. However, we do
not believe that AR should replace 2D video tutorials entirely.
From our experience, it is most suitable for delicate motions
but likely not as efficient as video to communicate coarse ac-
tions, such as filling an area. For more extensive procedures,
the most powerful approach may combine conventional video
and AR. For example, surface-filling actions do not require
very precise motion. Only the border has to be handled care-
fully, while filling the interior does not require special motions.
In such cases, conventional video can be interleaved with AR,
depending on the specific requirements of the action.

Besides our design recommendations, several directions for
future work exist. For example, we aim at increasing the num-
ber of object classes our system can support, such as assembly
or dance tutorials. This requires human body motion tracking
as well as tracking of other body parts, such as hands, from
2D video. Furthermore, we will investigate tools to effectively
extract and visualize 3D tutorials which require precise motion
in time. This will require the design of visualizations which
encode speed, velocity and the direction of tools in 3D. An
important part of this work will be the evaluation of these vi-
sualizations, which need to convey different attributes without
distracting the user.
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