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Abstract— In this contribution, we present a semi-automatic 

segmentation algorithm for radiofrequency ablation (RFA) 

zones via optimal s-t-cuts. Our interactive graph-based 

approach builds upon a polyhedron to construct the graph and 

was specifically designed for computed tomography (CT) 

acquisitions from patients that had RFA treatments of 

Hepatocellular Carcinomas (HCC). For evaluation, we used 

twelve post-interventional CT datasets from the clinical routine 

and as evaluation metric we utilized the Dice Similarity 

Coefficient (DSC), which is commonly accepted for judging 

computer aided medical segmentation tasks. Compared with 

pure manual slice-by-slice expert segmentations from 

interventional radiologists, we were able to achieve a DSC of 

about eighty percent, which is sufficient for our clinical needs. 

Moreover, our approach was able to handle images containing 

(DSC=75.9%) and not containing (78.1%) the RFA needles still 

in place. Additionally, we found no statistically significant 

difference (p<0.423) between the segmentation results of the 

subgroups for a Mann-Whitney test. Finally, to the best of our 

knowledge, this is the first time a segmentation approach for CT 

scans including the RFA needles is reported and we show why 

another state-of-the-art segmentation method fails for these 

cases. Intraoperative scans including an RFA probe are very 

critical in the clinical practice and need a very careful 

segmentation and inspection to avoid under-treatment, which 

may result in tumor recurrence (up to 40%). If the decision can 

be made during the intervention, an additional ablation can be 

performed without removing the entire needle. This decreases 

the patient stress and associated risks and costs of a separate 

intervention at a later date. Ultimately, the segmented ablation 

zone containing the RFA needle can be used for a precise 

ablation simulation as the real needle position is known. 

I. INTRODUCTION 

Mainly because of hepatitis infections and alcohol abuse, 
liver cancer is on the rise worldwide. Especially patients with 
Hepatocellular Carcinomas (HCC) have a poor prognosis 
because of its late symptomatic onset resulting in a median 
survival time of four to six months from the time of diagnosis 
when untreated. However, according to the recent treatment 
guidelines [1], Radiofrequency ablations (RFA) serve as a first 
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line therapy approach for early HCC in patients with liver 
cirrhosis. In addition, the local usage of ablation therapies 
increases for metastatic liver disease. Originally developed for 
patients who were not eligible for surgery, the usage has now 
expanded to patients as a bridge to liver transplantation and 
even as an alternative to surgical resection in the early stages 
of the disease [2]. In the early 1990s, RFA was first described 
followed by huge technical advances throughout the last 
decades. In summary, the underlying principle is based on a 
high frequency alternating current which is delivered through 
one or more electrodes placed inside the lesion [3] (Fig. 1.). 

 

 

Fig. 1. Sketch of a liver (brown) with an umbrella-shaped and fully expanded 
radiofrequency ablation (RFA) needle in black. The needle tips are located 

inside a liver tumor (red) which is surrounded by the necrotic zone (light 

brown). 

 

The heat that is generated around the electrodes destroys the 
cancer cells by inducing a coagulative necrosis as a result of 
denaturation of cellular proteins. In general, tissue necrosis 
already begins at approximately 60°C, but in general, 
temperatures over 100° are needed to achieve satisfying 
results. Also the placement of the needle and the individual 
impedance determine the amount of destroyed tissue. Further, 
it is inversely proportional to the square of the distance from 
the electrode, and as a result, tissue cools rapidly away from 
the tip of the needle probe. Thus, the proximity to large blood 
vessels plays also a major role in the heat transmission. 
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Normally, the blood flow protects the vessel wall from getting 
damaged, however, on the flipside acts as a heat sink by 
cooling down nearby tissue limiting the methods overall 
success [4]. As a consequence, a significant mismatch between 
expected and truly induced lesion size and geometry has been 
observed in many liver RFAs. On one side, it can lead to over-
treatment with severe injuries (up to 9% major complications 
[5]) or, on the other side, to under-treatment with tumor 
recurrence (up to 40% [5]). Cohort patient studies have shown 
the evidence of a significant reduction in the recurrence rate, if 
there is a safety rim generated around the tumor via the RFA 
[6]. This elicits the need for (1.) a reliable method for the 
comparison of localization, geometry and size of the tumor in 
the preoperative images, and (2.) a thermally induced lesion 
after ablation. Tumor recurrence can be diagnosed by the 
detection of typical alteration in tissue enhancement, but an 
increase of the size or a change of the geometry of the lesion 
seems to be a more sensitive indicator of early recurrence in 
follow-up imaging. Thus, a reliable and feasible determination 
of the ablation zone at baseline and follow-up may contribute 
to a positive outcome for the patient and can therefore lead to 
a better understanding of the cause of new tumor growth. And 
the additional knowledge might lead to an improvement of 
ablation protocols or even in the long term to new treatment 
strategies. However, the determination of therapeutically 
induced lesions after minimally invasive cancer treatment can 
be performed by segmentation, which is usually done by a very 
time consuming manual (slice-by-slice) procedure – and thus 
not yet part of the clinical routine. But a validated 
segmentation algorithm may have the potential to increase the 
acceptance of the method in the medical community and 
finally lead to a benefit in patient treatment. The overall 
segmentation (and partially also registration) field in 
Computer Vision deals with the computer-aided analysis and 
classification of image data in a broad range of applications 
[7]-[19]. This can be the automatic detection of humans in 
videos [20] or the volumetry of brains from medical images 
[21]. The aim of a segmentation algorithm is mainly to support 
and speedup a time-consuming manual selection and 
contouring process. In the literature, a number of algorithms 
have been proposed, like Active Contours (ACM) [22]-[25], 
Deformable Models [26]-[32], Active Appearance Models 
(AAM) [33]-[36], graph-based approaches [37]-[40], fuzzy-
based approaches [41], or neural networks [42], which often 
base on a mathematical model from another discipline, like 
Physics or Electrical Engineering, or a combination of several 
mathematical models. Furthermore (or alternatively), the 
segmentation methods can be classified as fully-automatic or 
semi-automatic algorithms. A research group working in the 
specific area of (semi-)automatic segmentation of ablation 
zones in RFA scans of the liver are Passera et al. [43]. They 
apply a Live-Wire algorithm (implemented within the 
MeVisLab platform [44], www.mevislab.de) and clustering 
for the segmentation, but they did not use data where the RFA 
needle is still present within the scan. However, this is the case 
when the interventional radiologist (or interventionalist) 
particularly wants to assess the size of the induced lesion, to 
check if an additional ablation is needed. And to avoid the 
repositioning or the replacement of the needle, it remains 
inside the liver while performing the control scan. In addition, 
the introduced segmentation method worked only in 2D, 
which can be very time-consuming in case of tumors or 

ablation zones that extend over many slices and the reported 
segmentation time was ten minutes. McCreedy et al. [45] 
presented another 2D livewire-based method, a radio 
frequency ablation registration, segmentation, and fusion tool 
called RFAST. However, the (segmentation) process has not 
been described in detail and no quantitative segmentation 
results have been presented. Keil et al. [46] presented the semi-
automated segmentation of liver metastases treated by 
radiofrequency ablation with an algorithm that consists of six 
steps including a three-dimensional region growing and 
morphologic operations, like erosion, dilation. In addition, the 
user has to draw a diameter across larger lesions or provide a 
single click inside smaller lesion as initialization. A workflow 
oriented software support for image guided RF ablations of 
focal liver malignancies has been introduced by Weihusen et 
al. [47]. Thereby, they also segment coagulation necrosis in the 
– post-interventional – control scans (after the ablation). After 
the user has provided a seed point inside the ablation zone, a 
morphology-based region growing algorithm is started, which 
has been proposed by Kuhnigk et al. [48]. Finally, the user has 
the option to correct the segmentation outcome towards more 
“irregular” or “roundish” geometry by manual interaction. 
Initial results of a 3D shape-based analysis of CT acquisitions 
for the detection of local recurrence of liver metastases after 
RFA treatment, have been reported by Bricault et al. [49]. In 
doing so, they applied a semi-automated 3D segmentation 
method that uses a “tagged” watershed algorithm. On average, 
the segmentation process took about four minutes and the 
minimum required user interaction included two mouse clicks: 
the first one in the ablated tumor and the second one in the 
surrounding liver parenchyma. Elsewhere, Stippel et al. [50] 
introduced a volumetric evaluation study of the variability of 
the size and the shape of necrosis that have been induced by 
RF ablations in human livers. Therefore, the study has been 
performed with the software package VA 40C from Siemens 
on a Leonardo workstation. For the overall segmentation 
process of the ablation-induced lesions, a region of interest had 
to be defined in each slice by manually tracking the 
approximate lesion borders. Then, the precise border of the 
lesion was determined by a filter algorithm from the software 
package, which was based on density differences between the 
ablated and the liver tissue. In addition to this section, we want 
to point the interested reader to a state of the art publication 
about computer-assisted planning, intervention and 
assessment of liver tumor ablation from Schumann et al. [51].  

Finally, to the best of our knowledge, there is no work that 
has studied the semi-automatic 3D segmentation of post-
interventional RF ablation zones with clinical data that has the 
ablation needles still in place. 

II. MATERIAL AND METHODS 

A. Data Acquisition 

We used twelve datasets from ten patients, who underwent 
radiofrequency ablation in the liver, for this retrospective study 
[52], [53]. The number of slices in z direction ranged from 52 
to 232 and all datasets had a matrix size of 512x512 in x- and 
y-direction. The slice thickness was either one or two mm, and 
the pixel spacing ranged from 0.679 to 0.777, with spacing 
between the slices of one to three mm. The ablation needle was 
still present in six datasets, and all datasets have been acquired 
on multislice CT scanner (Philips Brilliance or Mx8000, 
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Philips Healthcare, Netherlands). The data analysis and 
publication, was approved by the Institutional Review Board 
(IRB) of the Leipzig University Hospital under the reference 
number: 381-14-15122014. In addition, we plan to provide the 
datasets to the research community on our ClinicImppact 
project page: 

http://www.clinicimppact.eu/ 

Medical ablation datasets from a comprehensive pig study 
can already be found on the webpage of our European Project 
named GoSmart [54]: 

http://www.gosmart-project.eu/ 

B. Manual Segmentation 

The Ground Truth of the ablation zones has been generated 
by setting up a simple segmentation framework for manual 
contouring under MeVisLab. This allowed the physicians to 
manually outline the RFA lesions slice-by-slice without any 
algorithmic support (to avoid distortions). Then, the single 
contours were voxelized and merged to a 3D mask, which 
represented the manual segmented ablation zone. Afterwards, 
the 3D masks were used for comparison and quantitative 
evaluation with the RFA-Cut segmentation results. 

C. Evaluation Metric 

For evaluation we used the Dice Similarity Coefficient 
(DSC) metric [55]-[58], widely used in medical image analysis 
and describing the agreement between two binary volumes M 
and S: 
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M and S are the binary masks from the manual (M) and the 
semi-automatic RFA-Cut (S) segmentations, V(·) denotes the 
volume (in cm3) and (∩) denotes the intersection. The volume 
was computed by counting the number of voxels and 
multiplying them with the physical size of voxels. However, 
in addition to the DSC, we measured also the time it took an 
experienced radiologist to manually outline the ablation zones 
and compared it with the computation time of the semi-
automatic RFA-Cut segmentations. 

D. Semi-automatic Segmentations with the RFA-Cut 

The semi-automatic segmentation algorithm named RFA-
Cut uses a spherical template to set up a three-dimensional 
graph G(V,E) around the ablation zone [59]. Altogether, the 
Graph G consists of nodes Vn  and edges Ee  connecting 

these nodes, and a source s and a sink t [60]-[63]. The nodes n 
are sampled along rays whose origin resides at the user-defined 
seed point (inside the image), while their direction points 
towards the surface of a polyhedron [64]. After the graph has 
been constructed (for more details please see [65]-[69] and its 
origin for aorta segmentation and stent simulation [70]-[79]), 
the segmentation result is calculated by dividing the graph into 
two sets of nodes via a Min-Cut/Max-Flow algorithm [80]. In 
doing so, one set of nodes represents the ablation zone (called 
foreground) and the other set represents the surrounding 
structures (called background). Note that the basic 
segmentation scheme has already been successfully applied to 
pituitary adenomas [81] and prostate central glands [82]. 

However, the rigid segmentation scheme was later turned into 
an interactive real-time approach [83]-[87], and for this study 
it was enhanced by an additional refinement option [88]-[91]. 
To initialize the interactive segmentation process, the user has 
to place only one seed point roughly in the middle of the 
ablation zone on a 2D slice of the (CT) scan (note: the 
segmentation, however, performs in 3D). From the seed point 
position, the graph is generated in the background (not visible 
to the user) and segmentation result is automatically calculate 
(min-cut) and displayed to the user in 2D and 3D views. 
Nevertheless, the user can drag the seed point around to 
interactively generate new segmentation results, which always 
depend on the new/current seed point positions. Moreover, the 
user can drop the seed point (by means it remains at a fixed 
position in the image) and add an arbitrary amount of 
additional seed points along the border of the ablation zone. In 
doing so, the algorithm gets additional input about the location 
of the border and steers the behavior of the min-cut. Though, 
the user can always come back to the initial seed point, grab it 
and start dragging it around the image again. Note that the 
additional placed seed points along the ablation boarder will 
not get lost then, they stay fixed and continue to 
influence/restrict the min-cut calculation. The schematic 
workflow of the RFA-Cut is shown in Fig. 2. 

 

 

Fig. 2. Schematic workflow of the RFA-Cut segmentation: a sphere (left, 

blue) is used to construct a graph (second image from the left). Then, the 
graph is constructed (note: not visible to the user) at the user-defined seed 

point position within the image (third image from the left). Finally, the 

segmentation result of the RFA-Cut (red) corresponding to the current seed 
point is shown to the user (rightmost image). 

III. RESULTS 

Our proposed interactive segmentation algorithm RFA-Cut 
has been implemented as an own C++ module (under 
Microsoft Visual Studio 2008) for the medical prototyping 
platform MeVisLab. The overall computation of the 
segmentation result – including the graph construction from 
the current user-defined seed point position and the optimal 
min-cut calculation – could be performed within one second 
on a laptop (with Intel Core i5-750 CPU, 4 × 2.66 GHz, 8 GB 
RAM, Windows 7 Professional x64 Version with Service Pack 
1 installed). As a consequence, this enabled real-time feedback 
of our algorithm presented to the user and the immediate 
response and feedback of the segmentation allowed user 
guidance of the algorithm to a satisfying outcome. 

Fig. 3. shows the result of a semi-automatic segmentation 
of a post-interventional ablation zone for visual inspection. 
Because the computed tomography (CT) data has been 
acquired immediately after the treatment, the ablation needle 
is still in place and thus visible in the scan. The image on the 
left shows the axial slice with a user-defined seed point (blue) 
and the red dots are the border of the segmentation in this slice 
(note: these dots represent the last nodes of the graph that are 
still bound to the source s after the min-cut calculation). The 
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image in the middle shows the segmentation result in a 3D 
view, and the red dots show the last nodes of the graph which 
are still connected to the source after executing the min-cut 
calculation. The rightmost image presents a closed surface in 
green, which represents the segmentation result, and that has 
been generated from the graph’s nodes. Later, this closed 
surface is used to generate the solid 3D mask for the Dice 
Similarity Coefficient calculation with a pure manual slice-by-
slice segmentation. 
 

 

Fig. 3.  RFA-Cut segmentation result of an ablation zone in a post-

interventional CT scan (still including the ablation needle). The axial slice 
where the user-defined seed point (blue) has been placed, is shown in the left 

image. In addition, the corresponding segmentation result (red dots) is 

presented (note: the red dots are the last nodes of the graph that are still bound 
to the source s after the min-cut calculation). A 3D view of all nodes (red 

dots) that describe the surface of the segmented ablation zone after the min-
cut calculation is shown in the middle image. Moreover, the rightmost image 

displays a closed surface (green) of the segmentation result of the RFA-Cut 

(red dots from the previous image). Finally, the closed surface of the 
segmentation result is used to generate a solid mask for the DSC calculation. 

Table 1 and Table 2 present the direct comparison of manual 
slice-by-slice segmentations from physician 1 and 2 with 
RFA-Cut segmentation results for twelve ablation zones using 
the Dice Similarity Coefficient. In addition, Table 3 presents 
the direct inter-observer comparison of manual slice-by-slice 
segmentations from physician 1 and physician 2 via the DSC. 

 
Volume (cm3) Number of Voxel DSC 

(%) manual 1 semi manual 1 semi 

Range 

10.0 

– 
122.6 

6.3 

– 
104.0 

5866 

– 
70806 

3689 

– 
70208 

71.8 

– 
83.5 

  

  
  

35.9 

  

30.0 

33.0 

  

25.1 

31294.8 30756.3 
77.0 

  

4.7 

Tab. 1. This table presents the direct comparison of manual slice-by-slice 

segmentations from physician 1 and semi-automatic RFA-Cut segmentation 
results for twelve ablation zones via the DSC. 

 
Volume (cm3) Number of Voxel DSC 

(%) manual 2 semi manual 2 semi 

Range 

11.1 
– 

117.7 

6.3 
– 

104.0 

6543 
– 

67963 

3689 
– 

70208 

68.1 
– 

85.3 
  

  
  

36.2 

  

28.7 

33.0 

  

25.1 
31240.1 30756.3 

77.1 

  

5.8 

Tab. 2. Similar to the first table, this table presents the direct comparison of 

the RFA-Cut segmentation results with physician 2. 

 
Volume (cm3) Number of Voxel DSC 

(%) manual 1 manual 2 manual 1 manual 2 

Range 

10.0 

– 

122.6 

11.1 

– 

117,7 

5866 

– 

70806 

6543 

– 

67963 

82.4 

– 

92.6 
  

  
  

35.9 

  

30.0 

36.2 

  

28.7 

31294.8 31240.1 
88.8 

  

3.3 

Tab. 3. This table presents the direct comparison of the manual slice-by-slice 

segmentations from physician 1 and physician 2 (from table 1 and table 2) 
for the twelve ablation zones also via the DSC. 

 

Furthermore, we differentiated between the acquisitions 

where the RF electrodes where still in place and the cases 

where the RF electrodes have already been removed. 

However, we found no significant differences between these 

cases, and the DSC values between experts were significantly 

higher (p<0.01) than those between automatic and manual 

processing (88.8% vs. 77.0%). This was also independent of 

whether the needle was still included (86.8% vs. 75.9%, 

p<0.05) in the dataset or not (90.9% vs. 78.1%, p<0.05), 

respectively. For automatic processing the segmented 

volumes appeared to be smaller  than for experts (33.03 ml vs 

36.02 ml), but the differences were not statistically 

significant: p=0.308. This was also the case for scans with the 

needle included (25.76 ml vs. 25.93 ml, p=0.917) and without 

(40.30 ml vs. 46.10 ml, p=0.249). The overall mean DSC 

value of both experts appeared to be smaller when the needle 

was present (75.9% vs. 78.1% without, p=0.423), however, 

the difference was not significant. On the other hand, the 

inter-observer DSC was significantly higher when the needle 

was not present (90.9% without vs. 86.8%, p=0.025). The 

statistical differences in the DSC values and segmentation 

volumes between the methods were analyzed with Wilcoxon 

signed-rank tests. And differences between both subgroups 

(with and without needle present) with a Mann-Whitney test. 

All analyses were performed with Version 20 of SPSS from 

IBM (using a level of significance of 0.05). However, in 

summary, the main difference between the automatic and 

manual segmentation is the computation time. Making use of 

the introduced automatic tool, a segmentation could be 

performed in a few seconds, whereas a pure manual 

segmentation took on average between 48 seconds and 8 min 

16 seconds (mean 3 min 13 seconds). 

IV. CONCLUSIONS 

Radiofrequency ablations of liver tumors induces areas of 
tissue necrosis, which can be visualized reliably in contrast 
enhanced CT scans. In this paper, an interactive segmentation 
algorithm was applied to routine control CT scans after RFA 
of liver cancer for the semi-automatic determination of 
thermally induced lesions. Semi-automatic segmentation 
accuracy was found to be sufficient for most of the cases, 
although a manual slice-by-slice segmentation still provided 
the best accuracy. However, speed was the main advantage of 
the proposed tool over manual segmentation, which makes it 
an appealing alternative for physicians. As stated in the 
introduction, a minimally invasive RFA can be an alternative 
to open surgery and might also be suitable for inoperable 
patients. In addition, when the interventional radiologist 
presumes that continuing of the therapy might be necessary, 
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the RFA needle may still reside in the target organ during 
image acquisition (note that post-interventional imaging is 
regularly performed to document the success of the RFA 
treatment). Furthermore, hardening artefacts can compromise 
the image quality significantly, but such cases were also 
segmented and included in this study. Manual slice-by-slice 
segmentations have been performed by two radiological 
experts for the evaluation of the RFA-Cut; this enabled the 
DSC calculation between the manual and the semi-automatic 
RFA-Cut segmentation outcome. In conclusion, the achieved 
highlights of this publication are: 

 Applying an interactive segmentation algorithm to 
RFA acquisitions from the clinical routine; 

 Using post-interventional patient scans with and 
without RFA needles still in place; 

 Clinical experts performed manual slice-by-slice 
segmentations for an evaluation;  

 DSC calculation for a statistical validation of the 
RFA-Cut; 

For a comparison of our employed method with an existing 
segmentation approach, we applied the GrowCut 
implementation in (3D) Slicer (www.slicer.org) [92], [93] to 
our data. This GrowCut implementation is user friendly, 
because it does not require any precise parameter setting. 
Rather the user initializes the algorithm by marking areas in 
the image with several simple strokes (Fig. 4.). Moreover, 
we’ve had already good experiences with certain types of brain 
tumors (Glioblastoma multiforme (GBM) [94] and pituitary 
adenomas [95]) and vertebral bodies [96]. But especially the 
cases where the needles were still in place and therefore visible 
within the images caused segmentation problems (Fig. 5.). In 
more detail, GrowCut leaks along the needles, because it 
cannot handle the large gray value differences between the 
ablation zone (dark) and the RFA needle (bright). In addition, 
the initialization of GrowCut (marking parts of the lesion and 
the background) takes a trained user between thirty and sixty 
seconds, in contrast to our method that needs only a single seed 
point. Furthermore, the user has to wait several seconds for the 
GrowCut segmentation result (about ten seconds on the PC we 
used also for interactive method). In contrast, our method 
provides the segmentation result immediately, which also 
makes refinement much more convenient. The sharp edges of 
the GrowCut segmentation result (green) in the rightmost 
image of Fig. 5. occur, because the (3D) Slicer implementation 
restricts the segmentation area with a bounding box – note that 
the size of the bounding box depends on the manual GrowCut 
initialization of the user. 

There are several areas for future work, like the integration 
of the interactive segmentation algorithm into a medical 
application framework for supporting ablation therapies. The 
framework is currently under development within a project 
funded by the European FP7 program and is based the 
continuation on the European project IMPPACT (Image-based 
Multi-scale Physiological Planning for Ablation Cancer 
Treatment, grant agreement no. 223877) [97] 
(http://www.imppact.eu/). More precise, we plan to use our 
semi-automatic algorithm for the segmentation of difficult 
cases where automatic methods fail. Furthermore, we plan to 
provide the datasets acquired during the project over the next 

years to the public. Finally, we want to investigate the 
possibilities for liver tumor tracking after one or several RFA 
interventions and support the needle placement [98] with our 
real-time segmentation algorithm and motion tracking [99] in 
an Augmented Reality (AR) setting [100]. 

 

 

Fig. 4. Manual GrowCut initialization for the segmentation of the RF ablation 

zone: the ablated zone is marked in green and the background is marked in 
yellow on three 2D slices, respectively. 

 

 

Fig. 5. The GrowCut segmentation result (green) for the manual initializing 

from Fig. 4. The GrowCut segmentation leaks along the RF ablation  needle, 

because it cannot handle the large gray value differences between the ablation 
zone (dark) and the needle (bright). The sharp edges of the segmentation 

result in the rightmost image occur, because the GrowCut implementation 

under Slicer automatic restricts the segmentation area with a bounding box 
that depends on the user initialization. 
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